1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
|
.TH cprof 3 "tools 2.6.1" "Ericsson AB" "ERLANG MODULE DEFINITION"
.SH MODULE
cprof \- A simple Call Count Profiling Tool using breakpoints for minimal runtime performance impact\&.
.SH DESCRIPTION
.LP
The \fIcprof\fR module is used to profile a program to find out how many times different functions are called\&. Breakpoints similar to local call trace, but containing a counter, are used to minimise runtime performance impact\&.
.LP
Since breakpoints are used there is no need for special compilation of any module to be profiled\&. For now these breakpoints can only be set on BEAM code so BIF s cannot be call count traced\&.
.LP
The size of the call counters is the host machine word size\&. One bit is used when pausing the counter, so the maximum counter value for a 32-bit host is 2147483647\&.
.LP
The profiling result is delivered as a term containing a sorted list of entries, one per module\&. Each module entry contains a sorted list of functions\&. The sorting order in both cases is of decreasing call count\&.
.LP
Call count tracing is very lightweight compared to other forms of tracing since no trace message has to be generated\&. Some measurements indicates performance degradation in the vicinity of 10 percent\&.
.SH EXPORTS
.LP
.B
analyse() -> {AllCallCount, ModAnalysisList}
.br
.B
analyse(Limit) -> {AllCallCount, ModAnalysisList}
.br
.B
analyse(Mod) -> ModAnlysis
.br
.B
analyse(Mod, Limit) -> ModAnalysis
.br
.RS
.TP
Types
Limit = integer()
.br
Mod = atom()
.br
AllCallCount = integer()
.br
ModAnalysisList = [ModAnalysis]
.br
ModAnalysis = {Mod, ModCallCount, FuncAnalysisList}
.br
ModCallCount = integer()
.br
FuncAnalysisList = [{{Mod, Func, Arity}, FuncCallCount}]
.br
Func = atom()
.br
Arity = integer()
.br
FuncCallCount = integer()
.br
.RE
.RS
.LP
Collects and analyses the call counters presently in the node for either module \fIMod\fR, or for all modules (except \fIcprof\fR itself), and returns:
.RS 2
.TP 4
.B
\fIFuncAnalysisList\fR:
A list of tuples, one for each function in a module, in decreasing \fIFuncCallCount\fR order\&.
.TP 4
.B
\fIModCallCount\fR:
The sum of \fIFuncCallCount\fR values for all functions in module \fIMod\fR\&.
.TP 4
.B
\fIAllCallCount\fR:
The sum of \fIModCallCount\fR values for all modules concerned in \fIModAnalysisList\fR\&.
.TP 4
.B
\fIModAnalysisList\fR:
A list of tuples, one for each module except \fIcprof\fR, in decreasing \fIModCallCount\fR order\&.
.RE
.LP
If call counters are still running while \fIanalyse/0\&.\&.2\fR is executing, you might get an inconsistent result\&. This happens if the process executing \fIanalyse/0\&.\&.2\fR gets scheduled out so some other process can increment the counters that are being analysed, Calling \fIpause()\fR before analysing takes care of the problem\&.
.LP
If the \fIMod\fR argument is given, the result contains a \fIModAnalysis\fR tuple for module \fIMod\fR only, otherwise the result contains one \fIModAnalysis\fR tuple for all modules returned from \fIcode:all_loaded()\fR except \fIcprof\fR itself\&.
.LP
All functions with a \fIFuncCallCount\fR lower than \fILimit\fR are excluded from \fIFuncAnalysisList\fR\&. They are still included in \fIModCallCount\fR, though\&. The default value for \fILimit\fR is \fI1\fR\&.
.RE
.LP
.B
pause() -> integer()
.br
.RS
.LP
Pause call count tracing for all functions in all modules and stop it for all functions in modules to be loaded\&. This is the same as \fI(pause({\&'_\&', \&'_\&', \&'_\&'})+stop({on_load}))\fR\&.
.LP
See also pause/1\&.\&.3 below\&.
.RE
.LP
.B
pause(FuncSpec) -> integer()
.br
.B
pause(Mod, Func) -> integer()
.br
.B
pause(Mod, Func, Arity) -> integer()
.br
.RS
.TP
Types
FuncSpec = Mod | {Mod, Func, Arity}, {FS}
.br
Mod = atom()
.br
Func = atom()
.br
Arity = integer()
.br
FS = term()
.br
.RE
.RS
.LP
Pause call counters for matching functions in matching modules\&. The \fIFS\fR argument can be used to specify the first argument to \fIerlang:trace_pattern/3\fR\&. See erlang(3)\&.
.LP
The call counters for all matching functions that has got call count breakpoints are paused at their current count\&.
.LP
Return the number of matching functions that can have call count breakpoints, the same as \fIstart/0\&.\&.3\fR with the same arguments would have returned\&.
.RE
.LP
.B
restart() -> integer()
.br
.B
restart(FuncSpec) -> integer()
.br
.B
restart(Mod, Func) -> integer()
.br
.B
restart(Mod, Func, Arity) -> integer()
.br
.RS
.TP
Types
FuncSpec = Mod | {Mod, Func, Arity}, {FS}
.br
Mod = atom()
.br
Func = atom()
.br
Arity = integer()
.br
FS = term()
.br
.RE
.RS
.LP
Restart call counters for the matching functions in matching modules that are call count traced\&. The \fIFS\fR argument can be used to specify the first argument to \fIerlang:trace_pattern/3\fR\&. See erlang(3)\&.
.LP
The call counters for all matching functions that has got call count breakpoints are set to zero and running\&.
.LP
Return the number of matching functions that can have call count breakpoints, the same as \fIstart/0\&.\&.3\fR with the same arguments would have returned\&.
.RE
.LP
.B
start() -> integer()
.br
.RS
.LP
Start call count tracing for all functions in all modules, and also for all functions in modules to be loaded\&. This is the same as \fI(start({\&'_\&', \&'_\&', \&'_\&'})+start({on_load}))\fR\&.
.LP
See also start/1\&.\&.3 below\&.
.RE
.LP
.B
start(FuncSpec) -> integer()
.br
.B
start(Mod, Func) -> integer()
.br
.B
start(Mod, Func, Arity) -> integer()
.br
.RS
.TP
Types
FuncSpec = Mod | {Mod, Func, Arity}, {FS}
.br
Mod = atom()
.br
Func = atom()
.br
Arity = integer()
.br
FS = term()
.br
.RE
.RS
.LP
Start call count tracing for matching functions in matching modules\&. The \fIFS\fR argument can be used to specify the first argument to \fIerlang:trace_pattern/3\fR, for example \fIon_load\fR\&. See erlang(3)\&.
.LP
Set call count breakpoints on the matching functions that has no call count breakpoints\&. Call counters are set to zero and running for all matching functions\&.
.LP
Return the number of matching functions that has got call count breakpoints\&.
.RE
.LP
.B
stop() -> integer()
.br
.RS
.LP
Stop call count tracing for all functions in all modules, and also for all functions in modules to be loaded\&. This is the same as \fI(stop({\&'_\&', \&'_\&', \&'_\&'})+stop({on_load}))\fR\&.
.LP
See also stop/1\&.\&.3 below\&.
.RE
.LP
.B
stop(FuncSpec) -> integer()
.br
.B
stop(Mod, Func) -> integer()
.br
.B
stop(Mod, Func, Arity) -> integer()
.br
.RS
.TP
Types
FuncSpec = Mod | {Mod, Func, Arity}, {FS}
.br
Mod = atom()
.br
Func = atom()
.br
Arity = integer()
.br
FS = term()
.br
.RE
.RS
.LP
Stop call count tracing for matching functions in matching modules\&. The \fIFS\fR argument can be used to specify the first argument to \fIerlang:trace_pattern/3\fR, for example \fIon_load\fR\&. See erlang(3)\&.
.LP
Remove call count breakpoints from the matching functions that has call count breakpoints\&.
.LP
Return the number of matching functions that can have call count breakpoints, the same as \fIstart/0\&.\&.3\fR with the same arguments would have returned\&.
.RE
.SH SEE ALSO
.LP
eprof(3), fprof(3), erlang(3), User\&'s Guide
|