1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
|
.TH ei 3 "erl_interface 3.5.7" "Ericsson AB" "C LIBRARY FUNCTIONS"
.SH NAME
ei \- routines for handling the erlang binary term format
.SH DESCRIPTION
.LP
The library \fIei\fR contains macros and functions to encode and decode the erlang binary term format\&.
.LP
With \fIei\fR, you can convert atoms, lists, numbers and binaries to and from the binary format\&. This is useful when writing port programs and drivers\&. \fIei\fR uses a given buffer, and no dynamic memory (with the exception of \fIei_decode_fun()\fR), and is often quite fast\&.
.LP
It also handles C-nodes, C-programs that talks erlang distribution with erlang nodes (or other C-nodes) using the erlang distribution format\&. The difference between \fIei\fR and \fIerl_interface\fR is that \fIei\fR uses the binary format directly when sending and receiving terms\&. It is also thread safe, and using threads, one process can handle multiple C-nodes\&. The \fIerl_interface\fR library is built on top of \fIei\fR, but of legacy reasons, it doesn\&'t allow for multiple C-nodes\&. In general, \fIei\fR is the preferred way of doing C-nodes\&.
.LP
The decode and encode functions use a buffer an index into the buffer, which points at the point where to encode and decode\&. The index is updated to point right after the term encoded/decoded\&. No checking is done whether the term fits in the buffer or not\&. If encoding goes outside the buffer, the program may crash\&.
.LP
All functions takes two parameter, \fIbuf\fR is a pointer to the buffer where the binary data is / will be, \fIindex\fR is a pointer to an index into the buffer\&. This parameter will be incremented with the size of the term decoded / encoded\&. The data is thus at \fIbuf[*index]\fR when an \fIei\fR function is called\&.
.LP
The encode functions all assumes that the \fIbuf\fR and \fIindex\fR parameters points to a buffer big enough for the data\&. To get the size of an encoded term, without encoding it, pass \fINULL\fR instead of a buffer pointer\&. The \fIindex\fR parameter will be incremented, but nothing will be encoded\&. This is the way in \fIei\fR to "preflight" term encoding\&.
.LP
There are also encode-functions that uses a dynamic buffer\&. It is often more convenient to use these to encode data\&. All encode funcions comes in two versions: those starting with \fIei_x\fR, uses a dynamic buffer\&.
.LP
All functions return \fI0\fR if successful, and \fI-1\fR if not\&. (For instance, if a term is not of the expected type, or the data to decode is not a valid erlang term\&.)
.LP
Some of the decode-functions needs a preallocated buffer\&. This buffer must be allocated big enough, and for non compound types the \fIei_get_type()\fR function returns the size required (note that for strings an extra byte is needed for the 0 string terminator)\&.
.SH EXPORTS
.LP
.B
void ei_set_compat_rel(release_number)
.br
.RS
.TP
Types
unsigned release_number;
.br
.RE
.RS
.LP
By default, the \fIei\fR library is only guaranteed to be compatible with other Erlang/OTP components from the same release as the \fIei\fR library itself\&. For example, \fIei\fR from the OTP R10 release is not compatible with an Erlang emulator from the OTP R9 release by default\&.
.LP
A call to \fIei_set_compat_rel(release_number)\fR sets the \fIei\fR library in compatibility mode of release \fIrelease_number\fR\&. Valid range of \fIrelease_number\fR is [7, current release]\&. This makes it possible to communicate with Erlang/OTP components from earlier releases\&.
.SS Note:
.LP
If this function is called, it may only be called once and must be called before any other functions in the \fIei\fR library is called\&.
.SS Warning:
.LP
You may run into trouble if this feature is used carelessly\&. Always make sure that all communicating components are either from the same Erlang/OTP release, or from release X and release Y where all components from release Y are in compatibility mode of release X\&.
.RE
.LP
.B
int ei_encode_version(char *buf, int *index)
.br
.B
int ei_x_encode_version(ei_x_buff* x)
.br
.RS
.LP
Encodes a version magic number for the binary format\&. Must be the first token in a binary term\&.
.RE
.LP
.B
int ei_encode_long(char *buf, int *index, long p)
.br
.B
int ei_x_encode_long(ei_x_buff* x, long p)
.br
.RS
.LP
Encodes a long integer in the binary format\&. Note that if the code is 64 bits the function ei_encode_long() is exactly the same as ei_encode_longlong()\&.
.RE
.LP
.B
int ei_encode_ulong(char *buf, int *index, unsigned long p)
.br
.B
int ei_x_encode_ulong(ei_x_buff* x, unsigned long p)
.br
.RS
.LP
Encodes an unsigned long integer in the binary format\&. Note that if the code is 64 bits the function ei_encode_ulong() is exactly the same as ei_encode_ulonglong()\&.
.RE
.LP
.B
int ei_encode_longlong(char *buf, int *index, long long p)
.br
.B
int ei_x_encode_longlong(ei_x_buff* x, long long p)
.br
.RS
.LP
Encodes a GCC \fIlong long\fR or Visual C++ \fI__int64\fR (64 bit) integer in the binary format\&. Note that this function is missing in the VxWorks port\&.
.RE
.LP
.B
int ei_encode_ulonglong(char *buf, int *index, unsigned long long p)
.br
.B
int ei_x_encode_ulonglong(ei_x_buff* x, unsigned long long p)
.br
.RS
.LP
Encodes a GCC \fIunsigned long long\fR or Visual C++ \fIunsigned __int64\fR (64 bit) integer in the binary format\&. Note that this function is missing in the VxWorks port\&.
.RE
.LP
.B
int ei_encode_bignum(char *buf, int *index, mpz_t obj)
.br
.B
int ei_x_encode_bignum(ei_x_buff *x, mpz_t obj)
.br
.RS
.LP
Encodes a GMP \fImpz_t\fR integer to binary format\&. To use this function the ei library needs to be configured and compiled to use the GMP library\&.
.RE
.LP
.B
int ei_encode_double(char *buf, int *index, double p)
.br
.B
int ei_x_encode_double(ei_x_buff* x, double p)
.br
.RS
.LP
Encodes a double-precision (64 bit) floating point number in the binary format\&.
.RE
.LP
.B
int ei_encode_boolean(char *buf, int *index, int p)
.br
.B
int ei_x_encode_boolean(ei_x_buff* x, int p)
.br
.RS
.LP
Encodes a boolean value, as the atom \fItrue\fR if p is not zero or \fIfalse\fR if p is zero\&.
.RE
.LP
.B
int ei_encode_char(char *buf, int *index, char p)
.br
.B
int ei_x_encode_char(ei_x_buff* x, char p)
.br
.RS
.LP
Encodes a char (8-bit) as an integer between 0-255 in the binary format\&. Note that for historical reasons the integer argument is of type \fIchar\fR\&. Your C code should consider the given argument to be of type \fIunsigned char\fR even if the C compilers and system may define \fIchar\fR to be signed\&.
.RE
.LP
.B
int ei_encode_string(char *buf, int *index, const char *p)
.br
.B
int ei_encode_string_len(char *buf, int *index, const char *p, int len)
.br
.B
int ei_x_encode_string(ei_x_buff* x, const char *p)
.br
.B
int ei_x_encode_string_len(ei_x_buff* x, const char* s, int len)
.br
.RS
.LP
Encodes a string in the binary format\&. (A string in erlang is a list, but is encoded as a character array in the binary format\&.) The string should be zero-terminated, except for the \fIei_x_encode_string_len()\fR function\&.
.RE
.LP
.B
int ei_encode_atom(char *buf, int *index, const char *p)
.br
.B
int ei_encode_atom_len(char *buf, int *index, const char *p, int len)
.br
.B
int ei_x_encode_atom(ei_x_buff* x, const char *p)
.br
.B
int ei_x_encode_atom_len(ei_x_buff* x, const char *p, int len)
.br
.RS
.LP
Encodes an atom in the binary format\&. The \fIp\fR parameter is the name of the atom\&. Only upto \fIMAXATOMLEN\fR bytes are encoded\&. The name should be zero-terminated, except for the \fIei_x_encode_atom_len()\fR function\&.
.RE
.LP
.B
int ei_encode_binary(char *buf, int *index, const void *p, long len)
.br
.B
int ei_x_encode_binary(ei_x_buff* x, const void *p, long len)
.br
.RS
.LP
Encodes a binary in the binary format\&. The data is at \fIp\fR, of \fIlen\fR bytes length\&.
.RE
.LP
.B
int ei_encode_pid(char *buf, int *index, const erlang_pid *p)
.br
.B
int ei_x_encode_pid(ei_x_buff* x, const erlang_pid *p)
.br
.RS
.LP
Encodes an erlang process identifier, pid, in the binary format\&. The \fIp\fR parameter points to an \fIerlang_pid\fR structure (which should have been obtained earlier with \fIei_decode_pid()\fR)\&.
.RE
.LP
.B
int ei_encode_fun(char *buf, int *index, const erlang_fun *p)
.br
.B
int ei_x_encode_fun(ei_x_buff* x, const erlang_fun* fun)
.br
.RS
.LP
Encodes a fun in the binary format\&. The \fIp\fR parameter points to an \fIerlang_fun\fR structure\&. The \fIerlang_fun\fR is not freed automatically, the \fIfree_fun\fR should be called if the fun is not needed after encoding\&.
.RE
.LP
.B
int ei_encode_port(char *buf, int *index, const erlang_port *p)
.br
.B
int ei_x_encode_port(ei_x_buff* x, const erlang_port *p)
.br
.RS
.LP
Encodes an erlang port in the binary format\&. The \fIp\fR parameter points to a \fIerlang_port\fR structure (which should have been obtained earlier with \fIei_decode_port()\fR\&.
.RE
.LP
.B
int ei_encode_ref(char *buf, int *index, const erlang_ref *p)
.br
.B
int ei_x_encode_ref(ei_x_buff* x, const erlang_ref *p)
.br
.RS
.LP
Encodes an erlang reference in the binary format\&. The \fIp\fR parameter points to a \fIerlang_ref\fR structure (which should have been obtained earlier with \fIei_decode_ref()\fR\&.
.RE
.LP
.B
int ei_encode_term(char *buf, int *index, void *t)
.br
.B
int ei_x_encode_term(ei_x_buff* x, void *t)
.br
.RS
.LP
This function encodes an \fIETERM\fR, as obtained from \fIerl_interface\fR\&. The \fIt\fR parameter is actually an \fIETERM\fR pointer\&. This function doesn\&'t free the \fIETERM\fR\&.
.RE
.LP
.B
int ei_encode_trace(char *buf, int *index, const erlang_trace *p)
.br
.B
int ei_x_encode_trace(ei_x_buff* x, const erlang_trace *p)
.br
.RS
.LP
This function encodes an erlang trace token in the binary format\&. The \fIp\fR parameter points to a \fIerlang_trace\fR structure (which should have been obtained earlier with \fIei_decode_trace()\fR\&.
.RE
.LP
.B
int ei_encode_tuple_header(char *buf, int *index, int arity)
.br
.B
int ei_x_encode_tuple_header(ei_x_buff* x, int arity)
.br
.RS
.LP
This function encodes a tuple header, with a specified arity\&. The next \fIarity\fR terms encoded will be the elements of the tuple\&. Tuples and lists are encoded recursively, so that a tuple may contain another tuple or list\&.
.LP
E\&.g\&. to encode the tuple \fI{a, {b, {}}}\fR:
.nf
ei_encode_tuple_header(buf, &i, 2);
ei_encode_atom(buf, &i, "a");
ei_encode_tuple_header(buf, &i, 2);
ei_encode_atom(buf, &i, "b");
ei_encode_tuple_header(buf, &i, 0);
.fi
.RE
.LP
.B
int ei_encode_list_header(char *buf, int *index, int arity)
.br
.B
int ei_x_encode_list_header(ei_x_buff* x, int arity)
.br
.RS
.LP
This function encodes a list header, with a specified arity\&. The next \fIarity+1\fR terms are the elements (actually it\&'s \fIarity\fR cons cells) and the tail of the list\&. Lists and tuples are encoded recursively, so that a list may contain another list or tuple\&.
.LP
E\&.g\&. to encode the list \fI[c, d, [e | f]]\fR:
.nf
ei_encode_list_header(buf, &i, 3);
ei_encode_atom(buf, &i, "c");
ei_encode_atom(buf, &i, "d");
ei_encode_list_header(buf, &i, 1);
ei_encode_atom(buf, &i, "e");
ei_encode_atom(buf, &i, "f");
ei_encode_empty_list(buf, &i);
.fi
.SS Note:
.LP
It may seem that there is no way to create a list without knowing the number of elements in advance\&. But indeed there is a way\&. Note that the list \fI[a, b, c]\fR can be written as \fI[a | [b | [c]]]\fR\&. Using this, a list can be written as conses\&.
.LP
To encode a list, without knowing the arity in advance:
.nf
while (something()) {
ei_x_encode_list_header(&x, 1);
ei_x_encode_ulong(&x, i); /* just an example */
}
ei_x_encode_empty_list(&x);
.fi
.RE
.LP
.B
int ei_encode_empty_list(char* buf, int* index)
.br
.B
int ei_x_encode_empty_list(ei_x_buff* x)
.br
.RS
.LP
This function encodes an empty list\&. It\&'s often used at the tail of a list\&.
.RE
.LP
.B
int ei_get_type(const char *buf, const int *index, int *type, int *size)
.br
.RS
.LP
This function returns the type in \fItype\fR and size in \fIsize\fR of the encoded term\&. For strings and atoms, size is the number of characters \fInot\fR including the terminating 0\&. For binaries, \fIsize\fR is the number of bytes\&. For lists and tuples, \fIsize\fR is the arity of the object\&. For other types, \fIsize\fR is 0\&. In all cases, \fIindex\fR is left unchanged\&.
.RE
.LP
.B
int ei_decode_version(const char *buf, int *index, int *version)
.br
.RS
.LP
This function decodes the version magic number for the erlang binary term format\&. It must be the first token in a binary term\&.
.RE
.LP
.B
int ei_decode_long(const char *buf, int *index, long *p)
.br
.RS
.LP
This function decodes a long integer from the binary format\&. Note that if the code is 64 bits the function ei_decode_long() is exactly the same as ei_decode_longlong()\&.
.RE
.LP
.B
int ei_decode_ulong(const char *buf, int *index, unsigned long *p)
.br
.RS
.LP
This function decodes an unsigned long integer from the binary format\&. Note that if the code is 64 bits the function ei_decode_ulong() is exactly the same as ei_decode_ulonglong()\&.
.RE
.LP
.B
int ei_decode_longlong(const char *buf, int *index, long long *p)
.br
.RS
.LP
This function decodes a GCC \fIlong long\fR or Visual C++ \fI__int64\fR (64 bit) integer from the binary format\&. Note that this function is missing in the VxWorks port\&.
.RE
.LP
.B
int ei_decode_ulonglong(const char *buf, int *index, unsigned long long *p)
.br
.RS
.LP
This function decodes a GCC \fIunsigned long long\fR or Visual C++ \fIunsigned __int64\fR (64 bit) integer from the binary format\&. Note that this function is missing in the VxWorks port\&.
.RE
.LP
.B
int ei_decode_bignum(const char *buf, int *index, mpz_t obj)
.br
.RS
.LP
This function decodes an integer in the binary format to a GMP \fImpz_t\fR integer\&. To use this function the ei library needs to be configured and compiled to use the GMP library\&.
.RE
.LP
.B
int ei_decode_double(const char *buf, int *index, double *p)
.br
.RS
.LP
This function decodes an double-precision (64 bit) floating point number from the binary format\&.
.RE
.LP
.B
int ei_decode_boolean(const char *buf, int *index, int *p)
.br
.RS
.LP
This function decodes a boolean value from the binary format\&. A boolean is actually an atom, \fItrue\fR decodes 1 and \fIfalse\fR decodes 0\&.
.RE
.LP
.B
int ei_decode_char(const char *buf, int *index, char *p)
.br
.RS
.LP
This function decodes a char (8-bit) integer between 0-255 from the binary format\&. Note that for historical reasons the returned integer is of type \fIchar\fR\&. Your C code should consider the returned value to be of type \fIunsigned char\fR even if the C compilers and system may define \fIchar\fR to be signed\&.
.RE
.LP
.B
int ei_decode_string(const char *buf, int *index, char *p)
.br
.RS
.LP
This function decodes a string from the binary format\&. A string in erlang is a list of integers between 0 and 255\&. Note that since the string is just a list, sometimes lists are encoded as strings by \fIterm_to_binary/1\fR, even if it was not intended\&.
.LP
The string is copied to \fIp\fR, and enough space must be allocated\&. The returned string is null terminated so you need to add an extra byte to the memory requirement\&.
.RE
.LP
.B
int ei_decode_atom(const char *buf, int *index, char *p)
.br
.RS
.LP
This function decodes an atom from the binary format\&. The name of the atom is placed at \fIp\fR\&. There can be at most \fIMAXATOMLEN\fR bytes placed in the buffer\&.
.RE
.LP
.B
int ei_decode_binary(const char *buf, int *index, void *p, long *len)
.br
.RS
.LP
This function decodes a binary from the binary format\&. The \fIlen\fR parameter is set to the actual size of the binary\&. Note that \fIei_decode_binary()\fR assumes that there are enough room for the binary\&. The size required can be fetched by \fIei_get_type()\fR\&.
.RE
.LP
.B
int ei_decode_fun(const char *buf, int *index, erlang_fun *p)
.br
.B
void free_fun(erlang_fun* f)
.br
.RS
.LP
This function decodes a fun from the binary format\&. The \fIp\fR parameter should be NULL or point to an \fIerlang_fun\fR structure\&. This is the only decode function that allocates memory; when the \fIerlang_fun\fR is no longer needed, it should be freed with \fIfree_fun\fR\&. (This has to do with the arbitrary size of the environment for a fun\&.)
.RE
.LP
.B
int ei_decode_pid(const char *buf, int *index, erlang_pid *p)
.br
.RS
.LP
Decodes a pid, process identifier, from the binary format\&.
.RE
.LP
.B
int ei_decode_port(const char *buf, int *index, erlang_port *p)
.br
.RS
.LP
This function decodes a port identifier from the binary format\&.
.RE
.LP
.B
int ei_decode_ref(const char *buf, int *index, erlang_ref *p)
.br
.RS
.LP
This function decodes a reference from the binary format\&.
.RE
.LP
.B
int ei_decode_trace(const char *buf, int *index, erlang_trace *p)
.br
.RS
.LP
Decodes an erlang trace token from the binary format\&.
.RE
.LP
.B
int ei_decode_tuple_header(const char *buf, int *index, int *arity)
.br
.RS
.LP
This function decodes a tuple header, the number of elements is returned in \fIarity\fR\&. The tuple elements follows in order in the buffer\&.
.RE
.LP
.B
int ei_decode_list_header(const char *buf, int *index, int *arity)
.br
.RS
.LP
This function decodes a list header from the binary format\&. The number of elements is returned in \fIarity\fR\&. The \fIarity+1\fR elements follows (the last one is the tail of the list, normally an empty list\&.) If \fIarity\fR is \fI0\fR, it\&'s an empty list\&.
.LP
Note that lists are encoded as strings, if they consist entirely of integers in the range 0\&.\&.255\&. This function will not decode such strings, use \fIei_decode_string()\fR instead\&.
.RE
.LP
.B
int ei_decode_ei_term(const char* buf, int* index, ei_term* term)
.br
.RS
.LP
This function decodes any term, or at least tries to\&. If the term pointed at by \fI*index\fR in \fIbuf\fR fits in the \fIterm\fR union, it is decoded, and the appropriate field in \fIterm->value\fR is set, and \fI*index\fR is incremented by the term size\&.
.LP
The function returns 0 on successful encoding, -1 on error, and 1 if the term seems alright, but does not fit in the \fIterm\fR structure\&. If it returns 0, the \fIindex\fR will be incremented, and the \fIterm\fR contains the decoded term\&.
.LP
The \fIterm\fR structure will contain the arity for a tuple or list, size for a binary, string or atom\&. It will contains a term if it\&'s any of the following: integer, float, atom, pid, port or ref\&.
.RE
.LP
.B
int ei_decode_term(const char *buf, int *index, void *t)
.br
.RS
.LP
This function decodes a term from the binary format\&. The term is return in \fIt\fR as a \fIETERM*\fR, so \fIt\fR is actually an \fIETERM**\fR (see \fIerl_interface(3)\fR\&. The term should later be deallocated\&.
.LP
Note that this function is located in the erl_interface library\&.
.RE
.LP
.B
int ei_print_term(FILE* fp, const char* buf, int* index)
.br
.B
int ei_s_print_term(char** s, const char* buf, int* index)
.br
.RS
.LP
This function prints a term, in clear text, to the file given by \fIfp\fR, or the buffer pointed to by \fIs\fR\&. It tries to resemble the term printing in the erlang shell\&.
.LP
In \fIei_s_print_term()\fR, the parameter \fIs\fR should point to a dynamically (malloc) allocated string of \fIBUFSIZ\fR bytes or a NULL pointer\&. The string may be reallocated (and \fI*s\fR may be updated) by this function if the result is more than \fIBUFSIZ\fR characters\&. The string returned is zero-terminated\&.
.LP
The return value is the number of characters written to the file or string, or -1 if \fIbuf[index]\fR doesn\&'t contain a valid term\&. Unfortunately, I/O errors on \fIfp\fR is not checked\&.
.LP
The argument \fIindex\fR is updated, i\&.e\&. this function can be viewed as en decode function that decodes a term into a human readable format\&.
.RE
.LP
.B
int ei_x_format(ei_x_buff* x, const char* fmt, \&.\&.\&.)
.br
.B
int ei_x_format_wo_ver(ei_x_buff* x, const char *fmt, \&.\&.\&. )
.br
.RS
.LP
Format a term, given as a string, to a buffer\&. This functions works like a sprintf for erlang terms\&. The \fIfmt\fR contains a format string, with arguments like \fI~d\fR, to insert terms from variables\&. The following formats are supported (with the C types given):
.LP
.nf
~a - an atom, char*
~s - a string, char*
~i - an integer, int
~l - a long integer, long int
~u - a unsigned long integer, unsigned long int
~f - a float, float
~d - a double float, double float
.fi
.LP
For instance, to encode a tuple with some stuff:
.nf
ei_x_format("{~a,~i,~d}", "numbers", 12, 3\&.14159)
encodes the tuple {numbers,12,3\&.14159}
.fi
.LP
The \fIei_x_format_wo_ver()\fR formats into a buffer, without the initial version byte\&.
.RE
.LP
.B
int ei_x_new(ei_x_buff* x)
.br
.B
int ei_x_new_with_version(ei_x_buff* x)
.br
.RS
.LP
This function allocates a new \fIei_x_buff\fR buffer\&. The fields of the structure pointed to by \fIx\fR parameter is filled in, and a default buffer is allocated\&. The \fIei_x_new_with_version()\fR also puts an initial version byte, that is used in the binary format\&. (So that \fIei_x_encode_version()\fR won\&'t be needed\&.)
.RE
.LP
.B
int ei_x_free(ei_x_buff* x)
.br
.RS
.LP
This function frees an \fIei_x_buff\fR buffer\&. The memory used by the buffer is returned to the OS\&.
.RE
.LP
.B
int ei_x_append(ei_x_buff* x, const ei_x_buff* x2)
.br
.B
int ei_x_append_buf(ei_x_buff* x, const char* buf, int len)
.br
.RS
.LP
These functions appends data at the end of the buffer \fIx\fR\&.
.RE
.LP
.B
int ei_skip_term(const char* buf, int* index)
.br
.RS
.LP
This function skips a term in the given buffer, it recursively skips elements of lists and tuples, so that a full term is skipped\&. This is a way to get the size of an erlang term\&.
.LP
\fIbuf\fR is the buffer\&.
.LP
\fIindex\fR is updated to point right after the term in the buffer\&.
.SS Note:
.LP
This can be useful when you want to hold arbitrary terms: just skip them and copy the binary term data to some buffer\&.
.LP
The function returns \fI0\fR on success and \fI-1\fR on failure\&.
.RE
.SH DEBUG INFORMATION
.LP
Some tips on what to check when the emulator doesn\&'t seem to receive the terms that you send\&.
.RS 2
.TP 2
*
be careful with the version header, use \fIei_x_new_with_version()\fR when appropriate
.TP 2
*
turn on distribution tracing on the erlang node
.TP 2
*
check the result codes from ei_decode_-calls
.RE
.SH SEE ALSO
.LP
erl_interface(3)
|