File: ei.3

package info (click to toggle)
erlang-manpages 1%3A12.b.3-1
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 4,188 kB
  • ctags: 2
  • sloc: makefile: 68; perl: 30; sh: 15
file content (635 lines) | stat: -rw-r--r-- 22,533 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
.TH ei 3 "erl_interface  3.5.7" "Ericsson AB" "C LIBRARY FUNCTIONS"
.SH NAME
ei \- routines for handling the erlang binary term format
.SH DESCRIPTION
.LP
The library \fIei\fR contains macros and functions to encode and decode the erlang binary term format\&.
.LP
With \fIei\fR, you can convert atoms, lists, numbers and binaries to and from the binary format\&. This is useful when writing port programs and drivers\&. \fIei\fR uses a given buffer, and no dynamic memory (with the exception of \fIei_decode_fun()\fR), and is often quite fast\&.
.LP
It also handles C-nodes, C-programs that talks erlang distribution with erlang nodes (or other C-nodes) using the erlang distribution format\&. The difference between \fIei\fR and \fIerl_interface\fR is that \fIei\fR uses the binary format directly when sending and receiving terms\&. It is also thread safe, and using threads, one process can handle multiple C-nodes\&. The \fIerl_interface\fR library is built on top of \fIei\fR, but of legacy reasons, it doesn\&'t allow for multiple C-nodes\&. In general, \fIei\fR is the preferred way of doing C-nodes\&.
.LP
The decode and encode functions use a buffer an index into the buffer, which points at the point where to encode and decode\&. The index is updated to point right after the term encoded/decoded\&. No checking is done whether the term fits in the buffer or not\&. If encoding goes outside the buffer, the program may crash\&.
.LP
All functions takes two parameter, \fIbuf\fR is a pointer to the buffer where the binary data is / will be, \fIindex\fR is a pointer to an index into the buffer\&. This parameter will be incremented with the size of the term decoded / encoded\&. The data is thus at \fIbuf[*index]\fR when an \fIei\fR function is called\&.
.LP
The encode functions all assumes that the \fIbuf\fR and \fIindex\fR parameters points to a buffer big enough for the data\&. To get the size of an encoded term, without encoding it, pass \fINULL\fR instead of a buffer pointer\&. The \fIindex\fR parameter will be incremented, but nothing will be encoded\&. This is the way in \fIei\fR to "preflight" term encoding\&.
.LP
There are also encode-functions that uses a dynamic buffer\&. It is often more convenient to use these to encode data\&. All encode funcions comes in two versions: those starting with \fIei_x\fR, uses a dynamic buffer\&.
.LP
All functions return \fI0\fR if successful, and \fI-1\fR if not\&. (For instance, if a term is not of the expected type, or the data to decode is not a valid erlang term\&.)
.LP
Some of the decode-functions needs a preallocated buffer\&. This buffer must be allocated big enough, and for non compound types the \fIei_get_type()\fR function returns the size required (note that for strings an extra byte is needed for the 0 string terminator)\&.

.SH EXPORTS
.LP
.B
void ei_set_compat_rel(release_number)
.br
.RS
.TP
Types
unsigned release_number;
.br
.RE
.RS
.LP
By default, the \fIei\fR library is only guaranteed to be compatible with other Erlang/OTP components from the same release as the \fIei\fR library itself\&. For example, \fIei\fR from the OTP R10 release is not compatible with an Erlang emulator from the OTP R9 release by default\&.
.LP
A call to \fIei_set_compat_rel(release_number)\fR sets the \fIei\fR library in compatibility mode of release \fIrelease_number\fR\&. Valid range of \fIrelease_number\fR is [7, current release]\&. This makes it possible to communicate with Erlang/OTP components from earlier releases\&.
.SS Note:
.LP
If this function is called, it may only be called once and must be called before any other functions in the \fIei\fR library is called\&.

.SS Warning:
.LP
You may run into trouble if this feature is used carelessly\&. Always make sure that all communicating components are either from the same Erlang/OTP release, or from release X and release Y where all components from release Y are in compatibility mode of release X\&.

.RE
.LP
.B
int ei_encode_version(char *buf, int *index)
.br
.B
int ei_x_encode_version(ei_x_buff* x)
.br
.RS
.LP
Encodes a version magic number for the binary format\&. Must be the first token in a binary term\&.
.RE
.LP
.B
int ei_encode_long(char *buf, int *index, long p)
.br
.B
int ei_x_encode_long(ei_x_buff* x, long p)
.br
.RS
.LP
Encodes a long integer in the binary format\&. Note that if the code is 64 bits the function ei_encode_long() is exactly the same as ei_encode_longlong()\&.
.RE
.LP
.B
int ei_encode_ulong(char *buf, int *index, unsigned long p)
.br
.B
int ei_x_encode_ulong(ei_x_buff* x, unsigned long p)
.br
.RS
.LP
Encodes an unsigned long integer in the binary format\&. Note that if the code is 64 bits the function ei_encode_ulong() is exactly the same as ei_encode_ulonglong()\&.
.RE
.LP
.B
int ei_encode_longlong(char *buf, int *index, long long p)
.br
.B
int ei_x_encode_longlong(ei_x_buff* x, long long p)
.br
.RS
.LP
Encodes a GCC \fIlong long\fR or Visual C++ \fI__int64\fR (64 bit) integer in the binary format\&. Note that this function is missing in the VxWorks port\&.
.RE
.LP
.B
int ei_encode_ulonglong(char *buf, int *index, unsigned long long p)
.br
.B
int ei_x_encode_ulonglong(ei_x_buff* x, unsigned long long p)
.br
.RS
.LP
Encodes a GCC \fIunsigned long long\fR or Visual C++ \fIunsigned __int64\fR (64 bit) integer in the binary format\&. Note that this function is missing in the VxWorks port\&.
.RE
.LP
.B
int ei_encode_bignum(char *buf, int *index, mpz_t obj)
.br
.B
int ei_x_encode_bignum(ei_x_buff *x, mpz_t obj)
.br
.RS
.LP
Encodes a GMP \fImpz_t\fR integer to binary format\&. To use this function the ei library needs to be configured and compiled to use the GMP library\&. 
.RE
.LP
.B
int ei_encode_double(char *buf, int *index, double p)
.br
.B
int ei_x_encode_double(ei_x_buff* x, double p)
.br
.RS
.LP
Encodes a double-precision (64 bit) floating point number in the binary format\&.
.RE
.LP
.B
int ei_encode_boolean(char *buf, int *index, int p)
.br
.B
int ei_x_encode_boolean(ei_x_buff* x, int p)
.br
.RS
.LP
Encodes a boolean value, as the atom \fItrue\fR if p is not zero or \fIfalse\fR if p is zero\&.
.RE
.LP
.B
int ei_encode_char(char *buf, int *index, char p)
.br
.B
int ei_x_encode_char(ei_x_buff* x, char p)
.br
.RS
.LP
Encodes a char (8-bit) as an integer between 0-255 in the binary format\&. Note that for historical reasons the integer argument is of type \fIchar\fR\&. Your C code should consider the given argument to be of type \fIunsigned char\fR even if the C compilers and system may define \fIchar\fR to be signed\&.
.RE
.LP
.B
int ei_encode_string(char *buf, int *index, const char *p)
.br
.B
int ei_encode_string_len(char *buf, int *index, const char *p, int len)
.br
.B
int ei_x_encode_string(ei_x_buff* x, const char *p)
.br
.B
int ei_x_encode_string_len(ei_x_buff* x, const char* s, int len)
.br
.RS
.LP
Encodes a string in the binary format\&. (A string in erlang is a list, but is encoded as a character array in the binary format\&.) The string should be zero-terminated, except for the \fIei_x_encode_string_len()\fR function\&.
.RE
.LP
.B
int ei_encode_atom(char *buf, int *index, const char *p)
.br
.B
int ei_encode_atom_len(char *buf, int *index, const char *p, int len)
.br
.B
int ei_x_encode_atom(ei_x_buff* x, const char *p)
.br
.B
int ei_x_encode_atom_len(ei_x_buff* x, const char *p, int len)
.br
.RS
.LP
Encodes an atom in the binary format\&. The \fIp\fR parameter is the name of the atom\&. Only upto \fIMAXATOMLEN\fR bytes are encoded\&. The name should be zero-terminated, except for the \fIei_x_encode_atom_len()\fR function\&.
.RE
.LP
.B
int ei_encode_binary(char *buf, int *index, const void *p, long len)
.br
.B
int ei_x_encode_binary(ei_x_buff* x, const void *p, long len)
.br
.RS
.LP
Encodes a binary in the binary format\&. The data is at \fIp\fR, of \fIlen\fR bytes length\&.
.RE
.LP
.B
int ei_encode_pid(char *buf, int *index, const erlang_pid *p)
.br
.B
int ei_x_encode_pid(ei_x_buff* x, const erlang_pid *p)
.br
.RS
.LP
Encodes an erlang process identifier, pid, in the binary format\&. The \fIp\fR parameter points to an \fIerlang_pid\fR structure (which should have been obtained earlier with \fIei_decode_pid()\fR)\&.
.RE
.LP
.B
int ei_encode_fun(char *buf, int *index, const erlang_fun *p)
.br
.B
int ei_x_encode_fun(ei_x_buff* x, const erlang_fun* fun)
.br
.RS
.LP
Encodes a fun in the binary format\&. The \fIp\fR parameter points to an \fIerlang_fun\fR structure\&. The \fIerlang_fun\fR is not freed automatically, the \fIfree_fun\fR should be called if the fun is not needed after encoding\&.
.RE
.LP
.B
int ei_encode_port(char *buf, int *index, const erlang_port *p)
.br
.B
int ei_x_encode_port(ei_x_buff* x, const erlang_port *p)
.br
.RS
.LP
Encodes an erlang port in the binary format\&. The \fIp\fR parameter points to a \fIerlang_port\fR structure (which should have been obtained earlier with \fIei_decode_port()\fR\&.
.RE
.LP
.B
int ei_encode_ref(char *buf, int *index, const erlang_ref *p)
.br
.B
int ei_x_encode_ref(ei_x_buff* x, const erlang_ref *p)
.br
.RS
.LP
Encodes an erlang reference in the binary format\&. The \fIp\fR parameter points to a \fIerlang_ref\fR structure (which should have been obtained earlier with \fIei_decode_ref()\fR\&.
.RE
.LP
.B
int ei_encode_term(char *buf, int *index, void *t)
.br
.B
int ei_x_encode_term(ei_x_buff* x, void *t)
.br
.RS
.LP
This function encodes an \fIETERM\fR, as obtained from \fIerl_interface\fR\&. The \fIt\fR parameter is actually an \fIETERM\fR pointer\&. This function doesn\&'t free the \fIETERM\fR\&.
.RE
.LP
.B
int ei_encode_trace(char *buf, int *index, const erlang_trace *p)
.br
.B
int ei_x_encode_trace(ei_x_buff* x, const erlang_trace *p)
.br
.RS
.LP
This function encodes an erlang trace token in the binary format\&. The \fIp\fR parameter points to a \fIerlang_trace\fR structure (which should have been obtained earlier with \fIei_decode_trace()\fR\&.
.RE
.LP
.B
int ei_encode_tuple_header(char *buf, int *index, int arity)
.br
.B
int ei_x_encode_tuple_header(ei_x_buff* x, int arity)
.br
.RS
.LP
This function encodes a tuple header, with a specified arity\&. The next \fIarity\fR terms encoded will be the elements of the tuple\&. Tuples and lists are encoded recursively, so that a tuple may contain another tuple or list\&.
.LP
E\&.g\&. to encode the tuple \fI{a, {b, {}}}\fR:

.nf
ei_encode_tuple_header(buf, &i, 2);
ei_encode_atom(buf, &i, "a");
ei_encode_tuple_header(buf, &i, 2);
ei_encode_atom(buf, &i, "b");
ei_encode_tuple_header(buf, &i, 0);
        
.fi
.RE
.LP
.B
int ei_encode_list_header(char *buf, int *index, int arity)
.br
.B
int ei_x_encode_list_header(ei_x_buff* x, int arity)
.br
.RS
.LP
This function encodes a list header, with a specified arity\&. The next \fIarity+1\fR terms are the elements (actually it\&'s \fIarity\fR cons cells) and the tail of the list\&. Lists and tuples are encoded recursively, so that a list may contain another list or tuple\&.
.LP
E\&.g\&. to encode the list \fI[c, d, [e | f]]\fR:

.nf
ei_encode_list_header(buf, &i, 3);
ei_encode_atom(buf, &i, "c");
ei_encode_atom(buf, &i, "d");
ei_encode_list_header(buf, &i, 1);
ei_encode_atom(buf, &i, "e");
ei_encode_atom(buf, &i, "f");
ei_encode_empty_list(buf, &i);
        
.fi
.SS Note:
.LP
It may seem that there is no way to create a list without knowing the number of elements in advance\&. But indeed there is a way\&. Note that the list \fI[a, b, c]\fR can be written as \fI[a | [b | [c]]]\fR\&. Using this, a list can be written as conses\&.

.LP
To encode a list, without knowing the arity in advance:

.nf
while (something()) {
    ei_x_encode_list_header(&x, 1);
    ei_x_encode_ulong(&x, i); /* just an example */
}
ei_x_encode_empty_list(&x);
        
.fi
.RE
.LP
.B
int ei_encode_empty_list(char* buf, int* index)
.br
.B
int ei_x_encode_empty_list(ei_x_buff* x)
.br
.RS
.LP
This function encodes an empty list\&. It\&'s often used at the tail of a list\&.
.RE
.LP
.B
int ei_get_type(const char *buf, const int *index, int *type, int *size)
.br
.RS
.LP
This function returns the type in \fItype\fR and size in \fIsize\fR of the encoded term\&. For strings and atoms, size is the number of characters \fInot\fR including the terminating 0\&. For binaries, \fIsize\fR is the number of bytes\&. For lists and tuples, \fIsize\fR is the arity of the object\&. For other types, \fIsize\fR is 0\&. In all cases, \fIindex\fR is left unchanged\&.
.RE
.LP
.B
int ei_decode_version(const char *buf, int *index, int *version)
.br
.RS
.LP
This function decodes the version magic number for the erlang binary term format\&. It must be the first token in a binary term\&.
.RE
.LP
.B
int ei_decode_long(const char *buf, int *index, long *p)
.br
.RS
.LP
This function decodes a long integer from the binary format\&. Note that if the code is 64 bits the function ei_decode_long() is exactly the same as ei_decode_longlong()\&.
.RE
.LP
.B
int ei_decode_ulong(const char *buf, int *index, unsigned long *p)
.br
.RS
.LP
This function decodes an unsigned long integer from the binary format\&. Note that if the code is 64 bits the function ei_decode_ulong() is exactly the same as ei_decode_ulonglong()\&.
.RE
.LP
.B
int ei_decode_longlong(const char *buf, int *index, long long *p)
.br
.RS
.LP
This function decodes a GCC \fIlong long\fR or Visual C++ \fI__int64\fR (64 bit) integer from the binary format\&. Note that this function is missing in the VxWorks port\&.
.RE
.LP
.B
int ei_decode_ulonglong(const char *buf, int *index, unsigned long long *p)
.br
.RS
.LP
This function decodes a GCC \fIunsigned long long\fR or Visual C++ \fIunsigned __int64\fR (64 bit) integer from the binary format\&. Note that this function is missing in the VxWorks port\&.
.RE
.LP
.B
int ei_decode_bignum(const char *buf, int *index, mpz_t obj)
.br
.RS
.LP
This function decodes an integer in the binary format to a GMP \fImpz_t\fR integer\&. To use this function the ei library needs to be configured and compiled to use the GMP library\&. 
.RE
.LP
.B
int ei_decode_double(const char *buf, int *index, double *p)
.br
.RS
.LP
This function decodes an double-precision (64 bit) floating point number from the binary format\&.
.RE
.LP
.B
int ei_decode_boolean(const char *buf, int *index, int *p)
.br
.RS
.LP
This function decodes a boolean value from the binary format\&. A boolean is actually an atom, \fItrue\fR decodes 1 and \fIfalse\fR decodes 0\&.
.RE
.LP
.B
int ei_decode_char(const char *buf, int *index, char *p)
.br
.RS
.LP
This function decodes a char (8-bit) integer between 0-255 from the binary format\&. Note that for historical reasons the returned integer is of type \fIchar\fR\&. Your C code should consider the returned value to be of type \fIunsigned char\fR even if the C compilers and system may define \fIchar\fR to be signed\&.
.RE
.LP
.B
int ei_decode_string(const char *buf, int *index, char *p)
.br
.RS
.LP
This function decodes a string from the binary format\&. A string in erlang is a list of integers between 0 and 255\&. Note that since the string is just a list, sometimes lists are encoded as strings by \fIterm_to_binary/1\fR, even if it was not intended\&.
.LP
The string is copied to \fIp\fR, and enough space must be allocated\&. The returned string is null terminated so you need to add an extra byte to the memory requirement\&.
.RE
.LP
.B
int ei_decode_atom(const char *buf, int *index, char *p)
.br
.RS
.LP
This function decodes an atom from the binary format\&. The name of the atom is placed at \fIp\fR\&. There can be at most \fIMAXATOMLEN\fR bytes placed in the buffer\&.
.RE
.LP
.B
int ei_decode_binary(const char *buf, int *index, void *p, long *len)
.br
.RS
.LP
This function decodes a binary from the binary format\&. The \fIlen\fR parameter is set to the actual size of the binary\&. Note that \fIei_decode_binary()\fR assumes that there are enough room for the binary\&. The size required can be fetched by \fIei_get_type()\fR\&.
.RE
.LP
.B
int ei_decode_fun(const char *buf, int *index, erlang_fun *p)
.br
.B
void free_fun(erlang_fun* f)
.br
.RS
.LP
This function decodes a fun from the binary format\&. The \fIp\fR parameter should be NULL or point to an \fIerlang_fun\fR structure\&. This is the only decode function that allocates memory; when the \fIerlang_fun\fR is no longer needed, it should be freed with \fIfree_fun\fR\&. (This has to do with the arbitrary size of the environment for a fun\&.)
.RE
.LP
.B
int ei_decode_pid(const char *buf, int *index, erlang_pid *p)
.br
.RS
.LP
Decodes a pid, process identifier, from the binary format\&.
.RE
.LP
.B
int ei_decode_port(const char *buf, int *index, erlang_port *p)
.br
.RS
.LP
This function decodes a port identifier from the binary format\&.
.RE
.LP
.B
int ei_decode_ref(const char *buf, int *index, erlang_ref *p)
.br
.RS
.LP
This function decodes a reference from the binary format\&.
.RE
.LP
.B
int ei_decode_trace(const char *buf, int *index, erlang_trace *p)
.br
.RS
.LP
Decodes an erlang trace token from the binary format\&.
.RE
.LP
.B
int ei_decode_tuple_header(const char *buf, int *index, int *arity)
.br
.RS
.LP
This function decodes a tuple header, the number of elements is returned in \fIarity\fR\&. The tuple elements follows in order in the buffer\&.
.RE
.LP
.B
int ei_decode_list_header(const char *buf, int *index, int *arity)
.br
.RS
.LP
This function decodes a list header from the binary format\&. The number of elements is returned in \fIarity\fR\&. The \fIarity+1\fR elements follows (the last one is the tail of the list, normally an empty list\&.) If \fIarity\fR is \fI0\fR, it\&'s an empty list\&.
.LP
Note that lists are encoded as strings, if they consist entirely of integers in the range 0\&.\&.255\&. This function will not decode such strings, use \fIei_decode_string()\fR instead\&.
.RE
.LP
.B
int ei_decode_ei_term(const char* buf, int* index, ei_term* term)
.br
.RS
.LP
This function decodes any term, or at least tries to\&. If the term pointed at by \fI*index\fR in \fIbuf\fR fits in the \fIterm\fR union, it is decoded, and the appropriate field in \fIterm->value\fR is set, and \fI*index\fR is incremented by the term size\&.
.LP
The function returns 0 on successful encoding, -1 on error, and 1 if the term seems alright, but does not fit in the \fIterm\fR structure\&. If it returns 0, the \fIindex\fR will be incremented, and the \fIterm\fR contains the decoded term\&.
.LP
The \fIterm\fR structure will contain the arity for a tuple or list, size for a binary, string or atom\&. It will contains a term if it\&'s any of the following: integer, float, atom, pid, port or ref\&.
.RE
.LP
.B
int ei_decode_term(const char *buf, int *index, void *t)
.br
.RS
.LP
This function decodes a term from the binary format\&. The term is return in \fIt\fR as a \fIETERM*\fR, so \fIt\fR is actually an \fIETERM**\fR (see \fIerl_interface(3)\fR\&. The term should later be deallocated\&.
.LP
Note that this function is located in the erl_interface library\&.
.RE
.LP
.B
int ei_print_term(FILE* fp, const char* buf, int* index)
.br
.B
int ei_s_print_term(char** s, const char* buf, int* index)
.br
.RS
.LP
This function prints a term, in clear text, to the file given by \fIfp\fR, or the buffer pointed to by \fIs\fR\&. It tries to resemble the term printing in the erlang shell\&.
.LP
In \fIei_s_print_term()\fR, the parameter \fIs\fR should point to a dynamically (malloc) allocated string of \fIBUFSIZ\fR bytes or a NULL pointer\&. The string may be reallocated (and \fI*s\fR may be updated) by this function if the result is more than \fIBUFSIZ\fR characters\&. The string returned is zero-terminated\&.
.LP
The return value is the number of characters written to the file or string, or -1 if \fIbuf[index]\fR doesn\&'t contain a valid term\&. Unfortunately, I/O errors on \fIfp\fR is not checked\&.
.LP
The argument \fIindex\fR is updated, i\&.e\&. this function can be viewed as en decode function that decodes a term into a human readable format\&.
.RE
.LP
.B
int ei_x_format(ei_x_buff* x, const char* fmt, \&.\&.\&.)
.br
.B
int ei_x_format_wo_ver(ei_x_buff* x, const char *fmt, \&.\&.\&. )
.br
.RS
.LP
Format a term, given as a string, to a buffer\&. This functions works like a sprintf for erlang terms\&. The \fIfmt\fR contains a format string, with arguments like \fI~d\fR, to insert terms from variables\&. The following formats are supported (with the C types given):
.LP


.nf
~a - an atom, char*
~s - a string, char*
~i - an integer, int
~l - a long integer, long int
~u - a unsigned long integer, unsigned long int
~f - a float, float
~d - a double float, double float
        
.fi
.LP
For instance, to encode a tuple with some stuff:

.nf
ei_x_format("{~a,~i,~d}", "numbers", 12, 3\&.14159)
encodes the tuple {numbers,12,3\&.14159}
        
.fi
.LP
The \fIei_x_format_wo_ver()\fR formats into a buffer, without the initial version byte\&.
.RE
.LP
.B
int ei_x_new(ei_x_buff* x)
.br
.B
int ei_x_new_with_version(ei_x_buff* x)
.br
.RS
.LP
This function allocates a new \fIei_x_buff\fR buffer\&. The fields of the structure pointed to by \fIx\fR parameter is filled in, and a default buffer is allocated\&. The \fIei_x_new_with_version()\fR also puts an initial version byte, that is used in the binary format\&. (So that \fIei_x_encode_version()\fR won\&'t be needed\&.)
.RE
.LP
.B
int ei_x_free(ei_x_buff* x)
.br
.RS
.LP
This function frees an \fIei_x_buff\fR buffer\&. The memory used by the buffer is returned to the OS\&.
.RE
.LP
.B
int ei_x_append(ei_x_buff* x, const ei_x_buff* x2)
.br
.B
int ei_x_append_buf(ei_x_buff* x, const char* buf, int len)
.br
.RS
.LP
These functions appends data at the end of the buffer \fIx\fR\&.
.RE
.LP
.B
int ei_skip_term(const char* buf, int* index)
.br
.RS
.LP
This function skips a term in the given buffer, it recursively skips elements of lists and tuples, so that a full term is skipped\&. This is a way to get the size of an erlang term\&.
.LP
\fIbuf\fR is the buffer\&.
.LP
\fIindex\fR is updated to point right after the term in the buffer\&.
.SS Note:
.LP
This can be useful when you want to hold arbitrary terms: just skip them and copy the binary term data to some buffer\&.

.LP
The function returns \fI0\fR on success and \fI-1\fR on failure\&.
.RE
.SH DEBUG INFORMATION
.LP
Some tips on what to check when the emulator doesn\&'t seem to receive the terms that you send\&.
.RS 2
.TP 2
*
be careful with the version header, use \fIei_x_new_with_version()\fR when appropriate
.TP 2
*
turn on distribution tracing on the erlang node
.TP 2
*
check the result codes from ei_decode_-calls
.RE
.SH SEE ALSO
.LP
erl_interface(3)