1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
|
.TH erl_syntax_lib 3 "syntax_tools 1.5.5" "Ericsson AB" "ERLANG MODULE DEFINITION"
.SH MODULE
erl_syntax_lib \- Support library for abstract Erlang syntax trees\&.
.SH DESCRIPTION
.LP
Support library for abstract Erlang syntax trees\&.
.LP
This module contains utility functions for working with the abstract data type defined in the module erl_syntax\&.
.SH DATA TYPES
.RS 2
.TP 4
.B
\fIordset(T) = ordset(T) (see module //stdlib/ordsets)\fR:
.TP 4
.B
\fIsyntaxTree() = syntaxTree() (see module erl_syntax)\fR:
.RS 4
.LP
An abstract syntax tree\&. See the erl_syntax module for details\&.
.LP
.RE
.RE
.SH EXPORTS
.LP
.B
analyze_application(Node::syntaxTree()) -> FunctionName | Arity
.br
.RS
.TP
Types
FunctionName = {atom(), Arity} | {ModuleName, FunctionName}
.br
Arity = integer()
.br
ModuleName = atom()
.br
.RE
.RS
.LP
Returns the name of a called function\&. The result is a representation of the name of the applied function \fIF/A\fR, if \fINode\fR represents a function application "\fI<em>F</em>(<em>X_1</em>, \&.\&.\&., <em>X_A</em>)\fR"\&. If the function is not explicitly named (i\&.e\&., \fIF\fR is given by some expression), only the arity \fIA\fR is returned\&.
.LP
The evaluation throws \fIsyntax_error\fR if \fINode\fR does not represent a well-formed application expression\&.
.LP
\fISee also:\fR analyze_function_name/1\&.
.RE
.LP
.B
analyze_attribute(Node::syntaxTree()) -> preprocessor | {atom(), atom()}
.br
.RS
.LP
Analyzes an attribute node\&. If \fINode\fR represents a preprocessor directive, the atom \fIpreprocessor\fR is returned\&. Otherwise, if \fINode\fR represents a module attribute "\fI-<em>Name</em>\&.\&.\&.\fR", a tuple \fI{Name, Info}\fR is returned, where \fIInfo\fR depends on \fIName\fR, as follows:
.RS 2
.TP 4
.B
\fI{module, Info}\fR:
where \fIInfo = analyze_module_attribute(Node)\fR\&.
.TP 4
.B
\fI{export, Info}\fR:
where \fIInfo = analyze_export_attribute(Node)\fR\&.
.TP 4
.B
\fI{import, Info}\fR:
where \fIInfo = analyze_import_attribute(Node)\fR\&.
.TP 4
.B
\fI{file, Info}\fR:
where \fIInfo = analyze_file_attribute(Node)\fR\&.
.TP 4
.B
\fI{record, Info}\fR:
where \fIInfo = analyze_record_attribute(Node)\fR\&.
.TP 4
.B
\fI{Name, Info}\fR:
where \fI{Name, Info} = analyze_wild_attribute(Node)\fR\&.
.RE
.LP
The evaluation throws \fIsyntax_error\fR if \fINode\fR does not represent a well-formed module attribute\&.
.LP
\fISee also:\fR analyze_export_attribute/1, analyze_file_attribute/1, analyze_import_attribute/1, analyze_module_attribute/1, analyze_record_attribute/1, analyze_wild_attribute/1\&.
.RE
.LP
.B
analyze_export_attribute(Node::syntaxTree()) -> [FunctionName]
.br
.RS
.TP
Types
FunctionName = atom() | {atom(), integer()} | {ModuleName, FunctionName}
.br
ModuleName = atom()
.br
.RE
.RS
.LP
Returns the list of function names declared by an export attribute\&. We do not guarantee that each name occurs at most once in the list\&. The order of listing is not defined\&.
.LP
The evaluation throws \fIsyntax_error\fR if \fINode\fR does not represent a well-formed export attribute\&.
.LP
\fISee also:\fR analyze_attribute/1\&.
.RE
.LP
.B
analyze_file_attribute(Node::syntaxTree()) -> {string(), integer()}
.br
.RS
.LP
Returns the file name and line number of a \fIfile\fR attribute\&. The result is the pair \fI{File, Line}\fR if \fINode\fR represents "\fI-file(File, Line)\&.\fR"\&.
.LP
The evaluation throws \fIsyntax_error\fR if \fINode\fR does not represent a well-formed \fIfile\fR attribute\&.
.LP
\fISee also:\fR analyze_attribute/1\&.
.RE
.LP
.B
analyze_form(Node::syntaxTree()) -> {atom(), term()} | atom()
.br
.RS
.LP
Analyzes a "source code form" node\&. If \fINode\fR is a "form" type (cf\&. \fIerl_syntax:is_form/1\fR), the returned value is a tuple \fI{Type, Info}\fR where \fIType\fR is the node type and \fIInfo\fR depends on \fIType\fR, as follows:
.RS 2
.TP 4
.B
\fI{attribute, Info}\fR:
where \fIInfo = analyze_attribute(Node)\fR\&.
.TP 4
.B
\fI{error_marker, Info}\fR:
where \fIInfo = erl_syntax:error_marker_info(Node)\fR\&.
.TP 4
.B
\fI{function, Info}\fR:
where \fIInfo = analyze_function(Node)\fR\&.
.TP 4
.B
\fI{rule, Info}\fR:
where \fIInfo = analyze_rule(Node)\fR\&.
.TP 4
.B
\fI{warning_marker, Info}\fR:
where \fIInfo = erl_syntax:warning_marker_info(Node)\fR\&.
.RE
.LP
For other types of forms, only the node type is returned\&.
.LP
The evaluation throws \fIsyntax_error\fR if \fINode\fR is not well-formed\&.
.LP
\fISee also:\fR analyze_attribute/1, analyze_function/1, analyze_rule/1, erl_syntax:error_marker_info/1, erl_syntax:is_form/1, erl_syntax:warning_marker_info/1\&.
.RE
.LP
.B
analyze_forms(Forms) -> [{Key, term()}]
.br
.RS
.TP
Types
Forms = syntaxTree() | [syntaxTree()]
.br
Key = attributes | errors | exports | functions | imports | module | records | rules | warnings
.br
.RE
.RS
.LP
Analyzes a sequence of "program forms"\&. The given \fIForms\fR may be a single syntax tree of type \fIform_list\fR, or a list of "program form" syntax trees\&. The returned value is a list of pairs \fI{Key, Info}\fR, where each value of \fIKey\fR occurs at most once in the list; the absence of a particular key indicates that there is no well-defined value for that key\&.
.LP
Each entry in the resulting list contains the following corresponding information about the program forms:
.RS 2
.TP 4
.B
\fI{attributes, Attributes}\fR:
.RS 2
.TP 2
*
\fIAttributes = [{atom(), term()}]\fR
.RE
.RS 4
.LP
\fIAttributes\fR is a list of pairs representing the names and corresponding values of all so-called "wild" attributes (as e\&.g\&. "\fI-compile(\&.\&.\&.)\fR") occurring in \fIForms\fR (cf\&. \fIanalyze_wild_attribute/1\fR)\&. We do not guarantee that each name occurs at most once in the list\&. The order of listing is not defined\&.
.RE
.TP 4
.B
\fI{errors, Errors}\fR:
.RS 2
.TP 2
*
\fIErrors = [term()]\fR
.RE
.RS 4
.LP
\fIErrors\fR is the list of error descriptors of all \fIerror_marker\fR nodes that occur in \fIForms\fR\&. The order of listing is not defined\&.
.RE
.TP 4
.B
\fI{exports, Exports}\fR:
.RS 2
.TP 2
*
\fIExports = [FunctionName]\fR
.TP 2
*
\fIFunctionName = atom() | {atom(), integer()} | {ModuleName, FunctionName}\fR
.TP 2
*
\fIModuleName = atom()\fR
.RE
.RS 4
.LP
\fIExports\fR is a list of representations of those function names that are listed by export declaration attributes in \fIForms\fR (cf\&. \fIanalyze_export_attribute/1\fR)\&. We do not guarantee that each name occurs at most once in the list\&. The order of listing is not defined\&.
.RE
.TP 4
.B
\fI{functions, Functions}\fR:
.RS 2
.TP 2
*
\fIFunctions = [{atom(), integer()}]\fR
.RE
.RS 4
.LP
\fIFunctions\fR is a list of the names of the functions that are defined in \fIForms\fR (cf\&. \fIanalyze_function/1\fR)\&. We do not guarantee that each name occurs at most once in the list\&. The order of listing is not defined\&.
.RE
.TP 4
.B
\fI{imports, Imports}\fR:
.RS 2
.TP 2
*
\fIImports = [{Module, Names}]\fR
.TP 2
*
\fIModule = atom()\fR
.TP 2
*
\fINames = [FunctionName]\fR
.TP 2
*
\fIFunctionName = atom() | {atom(), integer()} | {ModuleName, FunctionName}\fR
.TP 2
*
\fIModuleName = atom()\fR
.RE
.RS 4
.LP
\fIImports\fR is a list of pairs representing those module names and corresponding function names that are listed by import declaration attributes in \fIForms\fR (cf\&. \fIanalyze_import_attribute/1\fR), where each \fIModule\fR occurs at most once in \fIImports\fR\&. We do not guarantee that each name occurs at most once in the lists of function names\&. The order of listing is not defined\&.
.RE
.TP 4
.B
\fI{module, ModuleName}\fR:
.RS 2
.TP 2
*
\fIModuleName = atom()\fR
.RE
.RS 4
.LP
\fIModuleName\fR is the name declared by a module attribute in \fIForms\fR\&. If no module name is defined in \fIForms\fR, the result will contain no entry for the \fImodule\fR key\&. If multiple module name declarations should occur, all but the first will be ignored\&.
.RE
.TP 4
.B
\fI{records, Records}\fR:
.RS 2
.TP 2
*
\fIRecords = [{atom(), Fields}]\fR
.TP 2
*
\fIFields = [{atom(), Default}]\fR
.TP 2
*
\fIDefault = none | syntaxTree()\fR
.RE
.RS 4
.LP
\fIRecords\fR is a list of pairs representing the names and corresponding field declarations of all record declaration attributes occurring in \fIForms\fR\&. For fields declared without a default value, the corresponding value for \fIDefault\fR is the atom \fInone\fR (cf\&. \fIanalyze_record_attribute/1\fR)\&. We do not guarantee that each record name occurs at most once in the list\&. The order of listing is not defined\&.
.RE
.TP 4
.B
\fI{rules, Rules}\fR:
.RS 2
.TP 2
*
\fIRules = [{atom(), integer()}]\fR
.RE
.RS 4
.LP
\fIRules\fR is a list of the names of the rules that are defined in \fIForms\fR (cf\&. \fIanalyze_rule/1\fR)\&. We do not guarantee that each name occurs at most once in the list\&. The order of listing is not defined\&.
.RE
.TP 4
.B
\fI{warnings, Warnings}\fR:
.RS 2
.TP 2
*
\fIWarnings = [term()]\fR
.RE
.RS 4
.LP
\fIWarnings\fR is the list of error descriptors of all \fIwarning_marker\fR nodes that occur in \fIForms\fR\&. The order of listing is not defined\&.
.RE
.RE
.LP
The evaluation throws \fIsyntax_error\fR if an ill-formed Erlang construct is encountered\&.
.LP
\fISee also:\fR analyze_export_attribute/1, analyze_function/1, analyze_import_attribute/1, analyze_record_attribute/1, analyze_rule/1, analyze_wild_attribute/1, erl_syntax:error_marker_info/1, erl_syntax:warning_marker_info/1\&.
.RE
.LP
.B
analyze_function(Node::syntaxTree()) -> {atom(), integer()}
.br
.RS
.LP
Returns the name and arity of a function definition\&. The result is a pair \fI{Name, A}\fR if \fINode\fR represents a function definition "\fIName(<em>P_1</em>, \&.\&.\&., <em>P_A</em>) -> \&.\&.\&.\fR"\&.
.LP
The evaluation throws \fIsyntax_error\fR if \fINode\fR does not represent a well-formed function definition\&.
.LP
\fISee also:\fR analyze_rule/1\&.
.RE
.LP
.B
analyze_function_name(Node::syntaxTree()) -> FunctionName
.br
.RS
.TP
Types
FunctionName = atom() | {atom(), integer()} | {ModuleName, FunctionName}
.br
ModuleName = atom()
.br
.RE
.RS
.LP
Returns the function name represented by a syntax tree\&. If \fINode\fR represents a function name, such as "\fIfoo/1\fR" or "\fIbloggs:fred/2\fR", a uniform representation of that name is returned\&. Different nestings of arity and module name qualifiers in the syntax tree does not affect the result\&.
.LP
The evaluation throws \fIsyntax_error\fR if \fINode\fR does not represent a well-formed function name\&.
.RE
.LP
.B
analyze_implicit_fun(Node::syntaxTree()) -> FunctionName
.br
.RS
.TP
Types
FunctionName = atom() | {atom(), integer()} | {ModuleName, FunctionName}
.br
ModuleName = atom()
.br
.RE
.RS
.LP
Returns the name of an implicit fun expression "\fIfun <em>F</em>\fR"\&. The result is a representation of the function name \fIF\fR\&. (Cf\&. \fIanalyze_function_name/1\fR\&.)
.LP
The evaluation throws \fIsyntax_error\fR if \fINode\fR does not represent a well-formed implicit fun\&.
.LP
\fISee also:\fR analyze_function_name/1\&.
.RE
.LP
.B
analyze_import_attribute(Node::syntaxTree()) -> {atom(), [FunctionName]} | atom()
.br
.RS
.TP
Types
FunctionName = atom() | {atom(), integer()} | {ModuleName, FunctionName}
.br
ModuleName = atom()
.br
.RE
.RS
.LP
Returns the module name and (if present) list of function names declared by an import attribute\&. The returned value is an atom \fIModule\fR or a pair \fI{Module, Names}\fR, where \fINames\fR is a list of function names declared as imported from the module named by \fIModule\fR\&. We do not guarantee that each name occurs at most once in \fINames\fR\&. The order of listing is not defined\&.
.LP
The evaluation throws \fIsyntax_error\fR if \fINode\fR does not represent a well-formed import attribute\&.
.LP
\fISee also:\fR analyze_attribute/1\&.
.RE
.LP
.B
analyze_module_attribute(Node::syntaxTree()) -> Name::atom() | {Name::atom(), Variables::[atom()]}
.br
.RS
.LP
Returns the module name and possible parameters declared by a module attribute\&. If the attribute is a plain module declaration such as \fI-module(name)\fR, the result is the module name\&. If the attribute is a parameterized module declaration, the result is a tuple containing the module name and a list of the parameter variable names\&.
.LP
The evaluation throws \fIsyntax_error\fR if \fINode\fR does not represent a well-formed module attribute\&.
.LP
\fISee also:\fR analyze_attribute/1\&.
.RE
.LP
.B
analyze_record_attribute(Node::syntaxTree()) -> {atom(), Fields}
.br
.RS
.TP
Types
Fields = [{atom(), none | syntaxTree()}]
.br
.RE
.RS
.LP
Returns the name and the list of fields of a record declaration attribute\&. The result is a pair \fI{Name, Fields}\fR, if \fINode\fR represents "\fI-record(Name, {\&.\&.\&.})\&.\fR", where \fIFields\fR is a list of pairs \fI{Label, Default}\fR for each field "\fILabel\fR" or "\fILabel = <em>Default</em>\fR" in the declaration, listed in left-to-right order\&. If the field has no default-value declaration, the value for \fIDefault\fR will be the atom \fInone\fR\&. We do not guarantee that each label occurs at most one in the list\&.
.LP
The evaluation throws \fIsyntax_error\fR if \fINode\fR does not represent a well-formed record declaration attribute\&.
.LP
\fISee also:\fR analyze_attribute/1, analyze_record_field/1\&.
.RE
.LP
.B
analyze_record_expr(Node::syntaxTree()) -> {atom(), Info} | atom()
.br
.RS
.TP
Types
Info = {atom(), [{atom(), Value}]} | {atom(), atom()} | atom()
.br
Value = none | syntaxTree()
.br
.RE
.RS
.LP
Returns the record name and field name/names of a record expression\&. If \fINode\fR has type \fIrecord_expr\fR, \fIrecord_index_expr\fR or \fIrecord_access\fR, a pair \fI{Type, Info}\fR is returned, otherwise an atom \fIType\fR is returned\&. \fIType\fR is the node type of \fINode\fR, and \fIInfo\fR depends on \fIType\fR, as follows:
.RS 2
.TP 4
.B
\fIrecord_expr\fR::
\fI{atom(), [{atom(), Value}]}\fR
.TP 4
.B
\fIrecord_access\fR::
\fI{atom(), atom()} | atom()\fR
.TP 4
.B
\fIrecord_index_expr\fR::
\fI{atom(), atom()}\fR
.RE
.LP
.LP
For a \fIrecord_expr\fR node, \fIInfo\fR represents the record name and the list of descriptors for the involved fields, listed in the order they appear\&. (See \fIanalyze_record_field/1\fR for details on the field descriptors)\&. For a \fIrecord_access\fR node, \fIInfo\fR represents the record name and the field name (or if the record name is not included, only the field name; this is allowed only in Mnemosyne-query syntax)\&. For a \fIrecord_index_expr\fR node, \fIInfo\fR represents the record name and the name field name\&.
.LP
The evaluation throws \fIsyntax_error\fR if \fINode\fR represents a record expression that is not well-formed\&.
.LP
\fISee also:\fR analyze_record_attribute/1, analyze_record_field/1\&.
.RE
.LP
.B
analyze_record_field(Node::syntaxTree()) -> {atom(), Value}
.br
.RS
.TP
Types
Value = none | syntaxTree()
.br
.RE
.RS
.LP
Returns the label and value-expression of a record field specifier\&. The result is a pair \fI{Label, Value}\fR, if \fINode\fR represents "\fILabel = <em>Value</em>\fR" or "\fILabel\fR", where in the first case, \fIValue\fR is a syntax tree, and in the second case \fIValue\fR is \fInone\fR\&.
.LP
The evaluation throws \fIsyntax_error\fR if \fINode\fR does not represent a well-formed record field specifier\&.
.LP
\fISee also:\fR analyze_record_attribute/1, analyze_record_expr/1\&.
.RE
.LP
.B
analyze_rule(Node::syntaxTree()) -> {atom(), integer()}
.br
.RS
.LP
Returns the name and arity of a Mnemosyne rule\&. The result is a pair \fI{Name, A}\fR if \fINode\fR represents a rule "\fIName(<em>P_1</em>, \&.\&.\&., <em>P_A</em>) :- \&.\&.\&.\fR"\&.
.LP
The evaluation throws \fIsyntax_error\fR if \fINode\fR does not represent a well-formed Mnemosyne rule\&.
.LP
\fISee also:\fR analyze_function/1\&.
.RE
.LP
.B
analyze_wild_attribute(Node::syntaxTree()) -> {atom(), term()}
.br
.RS
.LP
Returns the name and value of a "wild" attribute\&. The result is the pair \fI{Name, Value}\fR, if \fINode\fR represents "\fI-Name(Value)\fR"\&.
.LP
Note that no checking is done whether \fIName\fR is a reserved attribute name such as \fImodule\fR or \fIexport\fR: it is assumed that the attribute is "wild"\&.
.LP
The evaluation throws \fIsyntax_error\fR if \fINode\fR does not represent a well-formed wild attribute\&.
.LP
\fISee also:\fR analyze_attribute/1\&.
.RE
.LP
.B
annotate_bindings(Tree::syntaxTree()) -> syntaxTree()
.br
.RS
.LP
Adds or updates annotations on nodes in a syntax tree\&. Equivalent to \fIannotate_bindings(Tree, Bindings)\fR where the top-level environment \fIBindings\fR is taken from the annotation \fI{env, Bindings}\fR on the root node of \fITree\fR\&. An exception is thrown if no such annotation should exist\&.
.LP
\fISee also:\fR annotate_bindings/2\&.
.RE
.LP
.B
annotate_bindings(Tree::syntaxTree(), Bindings::ordset(atom())) -> syntaxTree()
.br
.RS
.LP
Adds or updates annotations on nodes in a syntax tree\&. \fIBindings\fR specifies the set of bound variables in the environment of the top level node\&. The following annotations are affected:
.RS 2
.TP 2
*
\fI{env, Vars}\fR, representing the input environment of the subtree\&.
.TP 2
*
\fI{bound, Vars}\fR, representing the variables that are bound in the subtree\&.
.TP 2
*
\fI{free, Vars}\fR, representing the free variables in the subtree\&.
.RE
.LP
\fIBindings\fR and \fIVars\fR are ordered-set lists (cf\&. module \fIordsets\fR) of atoms representing variable names\&.
.LP
\fISee also:\fR ordsets(3), annotate_bindings/1\&.
.RE
.LP
.B
fold(F::Function, Start::term(), Tree::syntaxTree()) -> term()
.br
.RS
.TP
Types
Function = (syntaxTree(), term()) -> term()
.br
.RE
.RS
.LP
Folds a function over all nodes of a syntax tree\&. The result is the value of \fIFunction(X1, Function(X2, \&.\&.\&. Function(Xn, Start) \&.\&.\&. ))\fR, where \fI[X1, X2, \&.\&.\&., Xn]\fR are the nodes of \fITree\fR in a post-order traversal\&.
.LP
\fISee also:\fR fold_subtrees/3, foldl_listlist/3\&.
.RE
.LP
.B
fold_subtrees(F::Function, Start::term(), Tree::syntaxTree()) -> term()
.br
.RS
.TP
Types
Function = (syntaxTree(), term()) -> term()
.br
.RE
.RS
.LP
Folds a function over the immediate subtrees of a syntax tree\&. This is similar to \fIfold/3\fR, but only on the immediate subtrees of \fITree\fR, in left-to-right order; it does not include the root node of \fITree\fR\&.
.LP
\fISee also:\fR fold/3\&.
.RE
.LP
.B
foldl_listlist(F::Function, Start::term(), Ls::[[term()]]) -> term()
.br
.RS
.TP
Types
Function = (term(), term()) -> term()
.br
.RE
.RS
.LP
Like \fIlists:foldl/3\fR, but over a list of lists\&.
.LP
\fISee also:\fR lists:foldl/3, fold/3\&.
.RE
.LP
.B
function_name_expansions(Names::[Name]) -> [{ShortName, Name}]
.br
.RS
.TP
Types
Name = ShortName | {atom(), Name}
.br
ShortName = atom() | {atom(), integer()}
.br
.RE
.RS
.LP
Creates a mapping from corresponding short names to full function names\&. Names are represented by nested tuples of atoms and integers (cf\&. \fIanalyze_function_name/1\fR)\&. The result is a list containing a pair \fI{ShortName, Name}\fR for each element \fIName\fR in the given list, where the corresponding \fIShortName\fR is the rightmost-innermost part of \fIName\fR\&. The list thus represents a finite mapping from unqualified names to the corresponding qualified names\&.
.LP
Note: the resulting list can contain more than one tuple \fI{ShortName, Name}\fR for the same \fIShortName\fR, possibly with different values for \fIName\fR, depending on the given list\&.
.LP
\fISee also:\fR analyze_function_name/1\&.
.RE
.LP
.B
is_fail_expr(Tree::syntaxTree()) -> bool()
.br
.RS
.LP
Returns \fItrue\fR if \fITree\fR represents an expression which never terminates normally\&. Note that the reverse does not apply\&. Currently, the detected cases are calls to \fIexit/1\fR, \fIthrow/1\fR, \fIerlang:error/1\fR and \fIerlang:error/2\fR\&.
.LP
\fISee also:\fR erlang:error/1, erlang:error/2, erlang:exit/1, erlang:throw/1\&.
.RE
.LP
.B
limit(Tree, Depth) -> syntaxTree()
.br
.RS
.LP
Equivalent to \fIlimit(Tree, Depth, Text)\fR using the text \fI"\&.\&.\&."\fR as default replacement\&.
.LP
\fISee also:\fR limit/3, erl_syntax:text/1\&.
.RE
.LP
.B
limit(Tree::syntaxTree(), Depth::integer(), Node::syntaxTree()) -> syntaxTree()
.br
.RS
.LP
Limits a syntax tree to a specified depth\&. Replaces all non-leaf subtrees in \fITree\fR at the given \fIDepth\fR by \fINode\fR\&. If \fIDepth\fR is negative, the result is always \fINode\fR, even if \fITree\fR has no subtrees\&.
.LP
When a group of subtrees (as e\&.g\&., the argument list of an \fIapplication\fR node) is at the specified depth, and there are two or more subtrees in the group, these will be collectively replaced by \fINode\fR even if they are leaf nodes\&. Groups of subtrees that are above the specified depth will be limited in size, as if each subsequent tree in the group were one level deeper than the previous\&. E\&.g\&., if \fITree\fR represents a list of integers "\fI[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]\fR", the result of \fIlimit(Tree, 5)\fR will represent \fI[1, 2, 3, 4, \&.\&.\&.]\fR\&.
.LP
The resulting syntax tree is typically only useful for pretty-printing or similar visual formatting\&.
.LP
\fISee also:\fR limit/2\&.
.RE
.LP
.B
map(F::Function, Tree::syntaxTree()) -> syntaxTree()
.br
.RS
.TP
Types
Function = (syntaxTree()) -> syntaxTree()
.br
.RE
.RS
.LP
Applies a function to each node of a syntax tree\&. The result of each application replaces the corresponding original node\&. The order of traversal is bottom-up\&.
.LP
\fISee also:\fR map_subtrees/2\&.
.RE
.LP
.B
map_subtrees(F::Function, Tree::syntaxTree()) -> syntaxTree()
.br
.RS
.TP
Types
Function = (Tree) -> Tree1
.br
.RE
.RS
.LP
Applies a function to each immediate subtree of a syntax tree\&. The result of each application replaces the corresponding original node\&.
.LP
\fISee also:\fR map/2\&.
.RE
.LP
.B
mapfold(F::Function, Start::term(), Tree::syntaxTree()) -> {syntaxTree(), term()}
.br
.RS
.TP
Types
Function = (syntaxTree(), term()) -> {syntaxTree(), term()}
.br
.RE
.RS
.LP
Combines map and fold in a single operation\&. This is similar to \fImap/2\fR, but also propagates an extra value from each application of the \fIFunction\fR to the next, while doing a post-order traversal of the tree like \fIfold/3\fR\&. The value \fIStart\fR is passed to the first function application, and the final result is the result of the last application\&.
.LP
\fISee also:\fR fold/3, map/2\&.
.RE
.LP
.B
mapfold_subtrees(F::Function, Start::term(), Tree::syntaxTree()) -> {syntaxTree(), term()}
.br
.RS
.TP
Types
Function = (syntaxTree(), term()) -> {syntaxTree(), term()}
.br
.RE
.RS
.LP
Does a mapfold operation over the immediate subtrees of a syntax tree\&. This is similar to \fImapfold/3\fR, but only on the immediate subtrees of \fITree\fR, in left-to-right order; it does not include the root node of \fITree\fR\&.
.LP
\fISee also:\fR mapfold/3\&.
.RE
.LP
.B
mapfoldl_listlist(F::Function, S::State, Ls::[[term()]]) -> {[[term()]], term()}
.br
.RS
.TP
Types
Function = (term(), term()) -> {term(), term()}
.br
.RE
.RS
.LP
Like \fIlists:mapfoldl/3\fR, but over a list of lists\&. The list of lists in the result has the same structure as the given list of lists\&.
.RE
.LP
.B
new_variable_name(Used::set(atom())) -> atom()
.br
.RS
.LP
Returns an atom which is not already in the set \fIUsed\fR\&. This is equivalent to \fInew_variable_name(Function, Used)\fR, where \fIFunction\fR maps a given integer \fIN\fR to the atom whose name consists of "\fIV\fR" followed by the numeral for \fIN\fR\&.
.LP
\fISee also:\fR new_variable_name/2\&.
.RE
.LP
.B
new_variable_name(F::Function, Used::set(atom())) -> atom()
.br
.RS
.TP
Types
Function = (integer()) -> atom()
.br
.RE
.RS
.LP
Returns a user-named atom which is not already in the set \fIUsed\fR\&. The atom is generated by applying the given \fIFunction\fR to a generated integer\&. Integers are generated using an algorithm which tries to keep the names randomly distributed within a reasonably small range relative to the number of elements in the set\&.
.LP
This function uses the module \fIrandom\fR to generate new keys\&. The seed it uses may be initialized by calling \fIrandom:seed/0\fR or \fIrandom:seed/3\fR before this function is first called\&.
.LP
\fISee also:\fR random(3), sets(3), new_variable_name/1\&.
.RE
.LP
.B
new_variable_names(N::integer(), Used::set(atom())) -> [atom()]
.br
.RS
.LP
Like \fInew_variable_name/1\fR, but generates a list of \fIN\fR new names\&.
.LP
\fISee also:\fR new_variable_name/1\&.
.RE
.LP
.B
new_variable_names(N::integer(), F::Function, Used::set(atom())) -> [atom()]
.br
.RS
.TP
Types
Function = (integer()) -> atom()
.br
.RE
.RS
.LP
Like \fInew_variable_name/2\fR, but generates a list of \fIN\fR new names\&.
.LP
\fISee also:\fR new_variable_name/2\&.
.RE
.LP
.B
strip_comments(Tree::syntaxTree()) -> syntaxTree()
.br
.RS
.LP
Removes all comments from all nodes of a syntax tree\&. All other attributes (such as position information) remain unchanged\&. Standalone comments in form lists are removed; any other standalone comments are changed into null-comments (no text, no indentation)\&.
.RE
.LP
.B
to_comment(Tree) -> syntaxTree()
.br
.RS
.LP
Equivalent to to_comment(Tree, "% ")\&.
.RE
.LP
.B
to_comment(Tree::syntaxTree(), Prefix::string()) -> syntaxTree()
.br
.RS
.LP
Equivalent to \fIto_comment(Tree, Prefix, F)\fR for a default formatting function \fIF\fR\&. The default \fIF\fR simply calls \fIerl_prettypr:format/1\fR\&.
.LP
\fISee also:\fR to_comment/3, erl_prettypr:format/1\&.
.RE
.LP
.B
to_comment(Tree::syntaxTree(), Prefix::string(), F::Printer) -> syntaxTree()
.br
.RS
.TP
Types
Printer = (syntaxTree()) -> string()
.br
.RE
.RS
.LP
Transforms a syntax tree into an abstract comment\&. The lines of the comment contain the text for \fINode\fR, as produced by the given \fIPrinter\fR function\&. Each line of the comment is prefixed by the string \fIPrefix\fR (this does not include the initial "\fI%\fR" character of the comment line)\&.
.LP
For example, the result of \fIto_comment(erl_syntax:abstract([a, b, c]))\fR represents
.nf
%% [a,b,c]
.fi
.LP
(cf\&. \fIto_comment/1\fR)\&.
.LP
Note: the text returned by the formatting function will be split automatically into separate comment lines at each line break\&. No extra work is needed\&.
.LP
\fISee also:\fR to_comment/1, to_comment/2\&.
.RE
.LP
.B
variables(Tree::syntaxTree()) -> set(atom())
.br
.RS
.TP
Types
set(T) (see module //stdlib/sets)
.br
.RE
.RS
.LP
Returns the names of variables occurring in a syntax tree, The result is a set of variable names represented by atoms\&. Macro names are not included\&.
.LP
\fISee also:\fR sets(3)\&.
.RE
|