1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
|
.TH gb_trees 3 "stdlib 1.15.3" "Ericsson AB" "ERLANG MODULE DEFINITION"
.SH MODULE
gb_trees \- General Balanced Trees
.SH DESCRIPTION
.LP
An efficient implementation of Prof\&. Arne Andersson\&'s General Balanced Trees\&. These have no storage overhead compared to unbalaced binary trees, and their performance is in general better than AVL trees\&.
.SH DATA STRUCTURE
.LP
Data structure:
.nf
- {Size, Tree}, where `Tree\&' is composed of nodes of the form:
- {Key, Value, Smaller, Bigger}, and the "empty tree" node:
- nil\&.
.fi
.LP
There is no attempt to balance trees after deletions\&. Since deletions do not increase the height of a tree, this should be OK\&.
.LP
Original balance condition \fIh(T) <= ceil(c * log(|T|))\fR has been changed to the similar (but not quite equivalent) condition \fI2 ^ h(T) <= |T| ^ c\fR\&. This should also be OK\&.
.LP
Performance is comparable to the AVL trees in the Erlang book (and faster in general due to less overhead); the difference is that deletion works for these trees, but not for the book\&'s trees\&. Behaviour is logaritmic (as it should be)\&.
.SH DATA TYPES
.nf
gb_tree() = a GB tree
.fi
.SH EXPORTS
.LP
.B
balance(Tree1) -> Tree2
.br
.RS
.TP
Types
Tree1 = Tree2 = gb_tree()
.br
.RE
.RS
.LP
Rebalances \fITree1\fR\&. Note that this is rarely necessary, but may be motivated when a large number of nodes have been deleted from the tree without further insertions\&. Rebalancing could then be forced in order to minimise lookup times, since deletion only does not rebalance the tree\&.
.RE
.LP
.B
delete(Key, Tree1) -> Tree2
.br
.RS
.TP
Types
Key = term()
.br
Tree1 = Tree2 = gb_tree()
.br
.RE
.RS
.LP
Removes the node with key \fIKey\fR from \fITree1\fR; returns new tree\&. Assumes that the key is present in the tree, crashes otherwise\&.
.RE
.LP
.B
delete_any(Key, Tree1) -> Tree2
.br
.RS
.TP
Types
Key = term()
.br
Tree1 = Tree2 = gb_tree()
.br
.RE
.RS
.LP
Removes the node with key \fIKey\fR from \fITree1\fR if the key is present in the tree, otherwise does nothing; returns new tree\&.
.RE
.LP
.B
empty() -> Tree
.br
.RS
.TP
Types
Tree = gb_tree()
.br
.RE
.RS
.LP
Returns a new empty tree
.RE
.LP
.B
enter(Key, Val, Tree1) -> Tree2
.br
.RS
.TP
Types
Key = Val = term()
.br
Tree1 = Tree2 = gb_tree()
.br
.RE
.RS
.LP
Inserts \fIKey\fR with value \fIVal\fR into \fITree1\fR if the key is not present in the tree, otherwise updates \fIKey\fR to value \fIVal\fR in \fITree1\fR\&. Returns the new tree\&.
.RE
.LP
.B
from_orddict(List) -> Tree
.br
.RS
.TP
Types
List = [{Key, Val}]
.br
Key = Val = term()
.br
Tree = gb_tree()
.br
.RE
.RS
.LP
Turns an ordered list \fIList\fR of key-value tuples into a tree\&. The list must not contain duplicate keys\&.
.RE
.LP
.B
get(Key, Tree) -> Val
.br
.RS
.TP
Types
Key = Val = term()
.br
Tree = gb_tree()
.br
.RE
.RS
.LP
Retrieves the value stored with \fIKey\fR in \fITree\fR\&. Assumes that the key is present in the tree, crashes otherwise\&.
.RE
.LP
.B
lookup(Key, Tree) -> {value, Val} | none
.br
.RS
.TP
Types
Key = Val = term()
.br
Tree = gb_tree()
.br
.RE
.RS
.LP
Looks up \fIKey\fR in \fITree\fR; returns \fI{value, Val}\fR, or \fInone\fR if \fIKey\fR is not present\&.
.RE
.LP
.B
insert(Key, Val, Tree1) -> Tree2
.br
.RS
.TP
Types
Key = Val = term()
.br
Tree1 = Tree2 = gb_tree()
.br
.RE
.RS
.LP
Inserts \fIKey\fR with value \fIVal\fR into \fITree1\fR; returns the new tree\&. Assumes that the key is not present in the tree, crashes otherwise\&.
.RE
.LP
.B
is_defined(Key, Tree) -> bool()
.br
.RS
.TP
Types
Tree = gb_tree()
.br
.RE
.RS
.LP
Returns \fItrue\fR if \fIKey\fR is present in \fITree\fR, otherwise \fIfalse\fR\&.
.RE
.LP
.B
is_empty(Tree) -> bool()
.br
.RS
.TP
Types
Tree = gb_tree()
.br
.RE
.RS
.LP
Returns \fItrue\fR if \fITree\fR is an empty tree, and \fIfalse\fR otherwise\&.
.RE
.LP
.B
iterator(Tree) -> Iter
.br
.RS
.TP
Types
Tree = gb_tree()
.br
Iter = term()
.br
.RE
.RS
.LP
Returns an iterator that can be used for traversing the entries of \fITree\fR; see \fInext/1\fR\&. The implementation of this is very efficient; traversing the whole tree using \fInext/1\fR is only slightly slower than getting the list of all elements using \fIto_list/1\fR and traversing that\&. The main advantage of the iterator approach is that it does not require the complete list of all elements to be built in memory at one time\&.
.RE
.LP
.B
keys(Tree) -> [Key]
.br
.RS
.TP
Types
Tree = gb_tree()
.br
Key = term()
.br
.RE
.RS
.LP
Returns the keys in \fITree\fR as an ordered list\&.
.RE
.LP
.B
largest(Tree) -> {Key, Val}
.br
.RS
.TP
Types
Tree = gb_tree()
.br
Key = Val = term()
.br
.RE
.RS
.LP
Returns \fI{Key, Val}\fR, where \fIKey\fR is the largest key in \fITree\fR, and \fIVal\fR is the value associated with this key\&. Assumes that the tree is nonempty\&.
.RE
.LP
.B
next(Iter1) -> {Key, Val, Iter2} | none
.br
.RS
.TP
Types
Iter1 = Iter2 = Key = Val = term()
.br
.RE
.RS
.LP
Returns \fI{Key, Val, Iter2}\fR where \fIKey\fR is the smallest key referred to by the iterator \fIIter1\fR, and \fIIter2\fR is the new iterator to be used for traversing the remaining nodes, or the atom \fInone\fR if no nodes remain\&.
.RE
.LP
.B
size(Tree) -> int()
.br
.RS
.TP
Types
Tree = gb_tree()
.br
.RE
.RS
.LP
Returns the number of nodes in \fITree\fR\&.
.RE
.LP
.B
smallest(Tree) -> {Key, Val}
.br
.RS
.TP
Types
Tree = gb_tree()
.br
Key = Val = term()
.br
.RE
.RS
.LP
Returns \fI{Key, Val}\fR, where \fIKey\fR is the smallest key in \fITree\fR, and \fIVal\fR is the value associated with this key\&. Assumes that the tree is nonempty\&.
.RE
.LP
.B
take_largest(Tree1) -> {Key, Val, Tree2}
.br
.RS
.TP
Types
Tree1 = Tree2 = gb_tree()
.br
Key = Val = term()
.br
.RE
.RS
.LP
Returns \fI{Key, Val, Tree2}\fR, where \fIKey\fR is the largest key in \fITree1\fR, \fIVal\fR is the value associated with this key, and \fITree2\fR is this tree with the corresponding node deleted\&. Assumes that the tree is nonempty\&.
.RE
.LP
.B
take_smallest(Tree1) -> {Key, Val, Tree2}
.br
.RS
.TP
Types
Tree1 = Tree2 = gb_tree()
.br
Key = Val = term()
.br
.RE
.RS
.LP
Returns \fI{Key, Val, Tree2}\fR, where \fIKey\fR is the smallest key in \fITree1\fR, \fIVal\fR is the value associated with this key, and \fITree2\fR is this tree with the corresponding node deleted\&. Assumes that the tree is nonempty\&.
.RE
.LP
.B
to_list(Tree) -> [{Key, Val}]
.br
.RS
.TP
Types
Tree = gb_tree()
.br
Key = Val = term()
.br
.RE
.RS
.LP
Converts a tree into an ordered list of key-value tuples\&.
.RE
.LP
.B
update(Key, Val, Tree1) -> Tree2
.br
.RS
.TP
Types
Key = Val = term()
.br
Tree1 = Tree2 = gb_tree()
.br
.RE
.RS
.LP
Updates \fIKey\fR to value \fIVal\fR in \fITree1\fR; returns the new tree\&. Assumes that the key is present in the tree\&.
.RE
.LP
.B
values(Tree) -> [Val]
.br
.RS
.TP
Types
Tree = gb_tree()
.br
Val = term()
.br
.RE
.RS
.LP
Returns the values in \fITree\fR as an ordered list, sorted by their corresponding keys\&. Duplicates are not removed\&.
.RE
.SH SEE ALSO
.LP
gb_sets(3), dict(3)
|