1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
|
.TH queue 3 "stdlib 1.15.3" "Ericsson AB" "ERLANG MODULE DEFINITION"
.SH MODULE
queue \- Abstract Data Type for FIFO Queues
.SH DESCRIPTION
.LP
This module implements (double ended) FIFO queues in an efficient manner\&.
.LP
All functions fail with reason \fIbadarg\fR if arguments are of wrong type, for example queue arguments are not queues, indexes are not integers, list arguments are not lists\&. Improper lists cause internal crashes\&. An index out of range for a queue also causes a failure with reason \fIbadarg\fR\&.
.LP
Some functions, where noted, fail with reason \fIempty\fR for an empty queue\&.
.LP
All operations has an amortized O(1) running time, except \fIlen/1\fR, \fIjoin/2\fR, \fIsplit/2\fR and \fIfilter/2\fR that are O(n)\&. To minimize the size of a queue minimizing the amount of garbage built by queue operations, the queues do not contain explicit length information, and that is why \fIlen/1\fR is O(n)\&. If better performance for this particular operation is essential, it is easy for the caller to keep track of the length\&.
.LP
Queues are double ended\&. The mental picture of a queue is a line of people (items) waiting for their turn\&. The queue front is the end with the item that has waited the longest\&. The queue rear is the end an item enters when it starts to wait\&. If instead using the mental picture of a list, the front is called head and the rear is called tail\&.
.LP
Entering at the front and exiting at the rear are reverse operations on the queue\&.
.LP
The module has several sets of interface functions\&. The "Original API", the "Extended API" and the "Okasaki API"\&.
.LP
The "Original API" and the "Extended API" both use the mental picture of a waiting line of items\&. Both also have reverse operations suffixed "_r"\&.
.LP
The "Original API" item removal functions return compound terms with both the removed item and the resulting queue\&. The "Extended API" contain alternative functions that build less garbage as well as functions for just inspecting the queue ends\&. Also the "Okasaki API" functions build less garbage\&.
.LP
The "Okasaki API" is inspired by "Purely Functional Data structures" by Chris Okasaki\&. It regards queues as lists\&. The API is by many regarded as strange and avoidable\&. For example many reverse operations have lexically reversed names, some with more readable but perhaps less understandable aliases\&.
.SH ORIGINAL API
.SH EXPORTS
.LP
.B
new() -> Q
.br
.RS
.TP
Types
Q = queue()
.br
.RE
.RS
.LP
Returns an empty queue\&.
.RE
.LP
.B
is_queue(Term) -> true | false
.br
.RS
.TP
Types
Term = term()
.br
.RE
.RS
.LP
Tests if \fIQ\fR is a queue and returns \fItrue\fR if so and \fIfalse\fR otherwise\&.
.RE
.LP
.B
is_empty(Q) -> true | false
.br
.RS
.TP
Types
Q = queue()
.br
.RE
.RS
.LP
Tests if \fIQ\fR is empty and returns \fItrue\fR if so and \fIfalse\fR otherwise\&.
.RE
.LP
.B
len(Q) -> N
.br
.RS
.TP
Types
Q = queue()
.br
N = integer()
.br
.RE
.RS
.LP
Calculates and returns the length of queue \fIQ\fR\&.
.RE
.LP
.B
in(Item, Q1) -> Q2
.br
.RS
.TP
Types
Item = term()
.br
Q1 = Q2 = queue()
.br
.RE
.RS
.LP
Inserts \fIItem\fR at the rear of queue \fIQ1\fR\&. Returns the resulting queue \fIQ2\fR\&.
.RE
.LP
.B
in_r(Item, Q1) -> Q2
.br
.RS
.TP
Types
Item = term()
.br
Q1 = Q2 = queue()
.br
.RE
.RS
.LP
Inserts \fIItem\fR at the front of queue \fIQ1\fR\&. Returns the resulting queue \fIQ2\fR\&.
.RE
.LP
.B
out(Q1) -> Result
.br
.RS
.TP
Types
Result = {{value, Item}, Q2} | {empty, Q1}
.br
Q1 = Q2 = queue()
.br
.RE
.RS
.LP
Removes the item at the front of queue \fIQ1\fR\&. Returns the tuple \fI{{value, Item}, Q2}\fR, where \fIItem\fR is the item removed and \fIQ2\fR is the resulting queue\&. If \fIQ1\fR is empty, the tuple \fI{empty, Q1}\fR is returned\&.
.RE
.LP
.B
out_r(Q1) -> Result
.br
.RS
.TP
Types
Result = {{value, Item}, Q2} | {empty, Q1}
.br
Q1 = Q2 = queue()
.br
.RE
.RS
.LP
Removes the item at the rear of the queue \fIQ1\fR\&. Returns the tuple \fI{{value, Item}, Q2}\fR, where \fIItem\fR is the item removed and \fIQ2\fR is the new queue\&. If \fIQ1\fR is empty, the tuple \fI{empty, Q1}\fR is returned\&.
.RE
.LP
.B
from_list(L) -> queue()
.br
.RS
.TP
Types
L = list()
.br
.RE
.RS
.LP
Returns a queue containing the items in \fIL\fR in the same order; the head item of the list will become the front item of the queue\&.
.RE
.LP
.B
to_list(Q) -> list()
.br
.RS
.TP
Types
Q = queue()
.br
.RE
.RS
.LP
Returns a list of the items in the queue in the same order; the front item of the queue will become the head of the list\&.
.RE
.LP
.B
reverse(Q1) -> Q2
.br
.RS
.TP
Types
Q1 = Q2 = queue()
.br
.RE
.RS
.LP
Returns a queue \fIQ2\fR that contains the items of \fIQ1\fR in the reverse order\&.
.RE
.LP
.B
split(N, Q1) -> {Q2,Q3}
.br
.RS
.TP
Types
N = integer()
.br
Q1 = Q2 = Q3 = queue()
.br
.RE
.RS
.LP
Splits \fIQ1\fR in two\&. The \fIN\fR front items are put in \fIQ2\fR and the rest in \fIQ3\fR
.RE
.LP
.B
join(Q1, Q2) -> Q3
.br
.RS
.TP
Types
Q1 = Q2 = Q3 = queue()
.br
.RE
.RS
.LP
Returns a queue \fIQ3\fR that is the result of joining \fIQ1\fR and \fIQ2\fR with \fIQ1\fR in front of \fIQ2\fR\&.
.RE
.LP
.B
filter(Fun, Q1) -> Q2
.br
.RS
.TP
Types
Fun = fun(Item) -> bool() | list()
.br
Q1 = Q2 = queue()
.br
.RE
.RS
.LP
Returns a queue \fIQ2\fR that is the result of calling \fIFun(Item)\fR on all items in \fIQ1\fR, in order from front to rear\&.
.LP
If \fIFun(Item)\fR returns \fItrue\fR, \fIItem\fR is copied to the result queue\&. If it returns \fIfalse\fR, \fIItem\fR is not copied\&. If it returns a list the list elements are inserted instead of \fIItem\fR in the result queue\&.
.LP
So, \fIFun(Item)\fR returning \fI[Item]\fR is thereby semantically equivalent to returning \fItrue\fR, just as returning \fI[]\fR is semantically equivalent to returning \fIfalse\fR\&. But returning a list builds more garbage than returning an atom\&.
.RE
.SH EXTENDED API
.SH EXPORTS
.LP
.B
get(Q) -> Item
.br
.RS
.TP
Types
Item = term()
.br
Q = queue()
.br
.RE
.RS
.LP
Returns \fIItem\fR at the front of queue \fIQ\fR\&.
.LP
Fails with reason \fIempty\fR if \fIQ\fR is empty\&.
.RE
.LP
.B
get_r(Q) -> Item
.br
.RS
.TP
Types
Item = term()
.br
Q = queue()
.br
.RE
.RS
.LP
Returns \fIItem\fR at the rear of queue \fIQ\fR\&.
.LP
Fails with reason \fIempty\fR if \fIQ\fR is empty\&.
.RE
.LP
.B
drop(Q1) -> Q2
.br
.RS
.TP
Types
Item = term()
.br
Q1 = Q2 = queue()
.br
.RE
.RS
.LP
Returns a queue \fIQ2\fR that is the result of removing the front item from \fIQ1\fR\&.
.LP
Fails with reason \fIempty\fR if \fIQ1\fR is empty\&.
.RE
.LP
.B
drop_r(Q1) -> Q2
.br
.RS
.TP
Types
Item = term()
.br
Q1 = Q2 = queue()
.br
.RE
.RS
.LP
Returns a queue \fIQ2\fR that is the result of removing the rear item from \fIQ1\fR\&.
.LP
Fails with reason \fIempty\fR if \fIQ1\fR is empty\&.
.RE
.LP
.B
peek(Q) -> {value,Item} | empty
.br
.RS
.TP
Types
Item = term()
.br
Q = queue()
.br
.RE
.RS
.LP
Returns the tuple \fI{value, Item}\fR where \fIItem\fR is the front item of \fIQ\fR, or \fIempty\fR if \fIQ1\fR is empty\&.
.RE
.LP
.B
peek_r(Q) -> {value,Item} | empty
.br
.RS
.TP
Types
Item = term()
.br
Q = queue()
.br
.RE
.RS
.LP
Returns the tuple \fI{value, Item}\fR where \fIItem\fR is the rear item of \fIQ\fR, or \fIempty\fR if \fIQ1\fR is empty\&.
.RE
.SH OKASAKI API
.SH EXPORTS
.LP
.B
cons(Item, Q1) -> Q2
.br
.RS
.TP
Types
Item = term()
.br
Q1 = Q2 = queue()
.br
.RE
.RS
.LP
Inserts \fIItem\fR at the head of queue \fIQ1\fR\&. Returns the new queue \fIQ2\fR\&.
.RE
.LP
.B
head(Q) -> Item
.br
.RS
.TP
Types
Item = term()
.br
Q = queue()
.br
.RE
.RS
.LP
Returns \fIItem\fR from the head of queue \fIQ\fR\&.
.LP
Fails with reason \fIempty\fR if \fIQ\fR is empty\&.
.RE
.LP
.B
tail(Q1) -> Q2
.br
.RS
.TP
Types
Item = term()
.br
Q1 = Q2 = queue()
.br
.RE
.RS
.LP
Returns a queue \fIQ2\fR that is the result of removing the head item from \fIQ1\fR\&.
.LP
Fails with reason \fIempty\fR if \fIQ1\fR is empty\&.
.RE
.LP
.B
snoc(Q1, Item) -> Q2
.br
.RS
.TP
Types
Item = term()
.br
Q1 = Q2 = queue()
.br
.RE
.RS
.LP
Inserts \fIItem\fR as the tail item of queue \fIQ1\fR\&. Returns the new queue \fIQ2\fR\&.
.RE
.LP
.B
daeh(Q) -> Item
.br
.B
last(Q) -> Item
.br
.RS
.TP
Types
Item = term()
.br
Q = queue()
.br
.RE
.RS
.LP
Returns the tail item of queue \fIQ\fR\&.
.LP
Fails with reason \fIempty\fR if \fIQ\fR is empty\&.
.RE
.LP
.B
liat(Q1) -> Q2
.br
.B
init(Q1) -> Q2
.br
.B
lait(Q1) -> Q2
.br
.RS
.TP
Types
Item = term()
.br
Q1 = Q2 = queue()
.br
.RE
.RS
.LP
Returns a queue \fIQ2\fR that is the result of removing the tail item from \fIQ1\fR\&.
.LP
Fails with reason \fIempty\fR if \fIQ1\fR is empty\&.
.LP
The name \fIlait/1\fR is a misspelling - do not use it anymore\&.
.RE
|