1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
|
.TH sets 3 "stdlib 1.15.3" "Ericsson AB" "ERLANG MODULE DEFINITION"
.SH MODULE
sets \- Functions for Set Manipulation
.SH DESCRIPTION
.LP
Sets are collections of elements with no duplicate elements\&. The representation of a set is not defined\&.
.LP
This module provides exactly the same interface as the module \fIordsets\fR but with a defined representation\&. One difference is that while this module considers two elements as different if they do not match (\fI=:=\fR), \fIordsets\fR considers two elements as different if and only if they do not compare equal (\fI==\fR)\&.
.SH DATA TYPES
.nf
set()
as returned by new/0
.fi
.SH EXPORTS
.LP
.B
new() -> Set
.br
.RS
.TP
Types
Set = set()
.br
.RE
.RS
.LP
Returns a new empty set\&.
.RE
.LP
.B
is_set(Set) -> bool()
.br
.RS
.TP
Types
Set = term()
.br
.RE
.RS
.LP
Returns \fItrue\fR if \fISet\fR is a set of elements, otherwise \fIfalse\fR\&.
.RE
.LP
.B
size(Set) -> int()
.br
.RS
.TP
Types
Set = term()
.br
.RE
.RS
.LP
Returns the number of elements in \fISet\fR\&.
.RE
.LP
.B
to_list(Set) -> List
.br
.RS
.TP
Types
Set = set()
.br
List = [term()]
.br
.RE
.RS
.LP
Returns the elements of \fISet\fR as a list\&.
.RE
.LP
.B
from_list(List) -> Set
.br
.RS
.TP
Types
List = [term()]
.br
Set = set()
.br
.RE
.RS
.LP
Returns an set of the elements in \fIList\fR\&.
.RE
.LP
.B
is_element(Element, Set) -> bool()
.br
.RS
.TP
Types
Element = term()
.br
Set = set()
.br
.RE
.RS
.LP
Returns \fItrue\fR if \fIElement\fR is an element of \fISet\fR, otherwise \fIfalse\fR\&.
.RE
.LP
.B
add_element(Element, Set1) -> Set2
.br
.RS
.TP
Types
Element = term()
.br
Set1 = Set2 = set()
.br
.RE
.RS
.LP
Returns a new set formed from \fISet1\fR with \fIElement\fR inserted\&.
.RE
.LP
.B
del_element(Element, Set1) -> Set2
.br
.RS
.TP
Types
Element = term()
.br
Set1 = Set2 = set()
.br
.RE
.RS
.LP
Returns \fISet1\fR, but with \fIElement\fR removed\&.
.RE
.LP
.B
union(Set1, Set2) -> Set3
.br
.RS
.TP
Types
Set1 = Set2 = Set3 = set()
.br
.RE
.RS
.LP
Returns the merged (union) set of \fISet1\fR and \fISet2\fR\&.
.RE
.LP
.B
union(SetList) -> Set
.br
.RS
.TP
Types
SetList = [set()]
.br
Set = set()
.br
.RE
.RS
.LP
Returns the merged (union) set of the list of sets\&.
.RE
.LP
.B
intersection(Set1, Set2) -> Set3
.br
.RS
.TP
Types
Set1 = Set2 = Set3 = set()
.br
.RE
.RS
.LP
Returns the intersection of \fISet1\fR and \fISet2\fR\&.
.RE
.LP
.B
intersection(SetList) -> Set
.br
.RS
.TP
Types
SetList = [set()]
.br
Set = set()
.br
.RE
.RS
.LP
Returns the intersection of the non-empty list of sets\&.
.RE
.LP
.B
subtract(Set1, Set2) -> Set3
.br
.RS
.TP
Types
Set1 = Set2 = Set3 = set()
.br
.RE
.RS
.LP
Returns only the elements of \fISet1\fR which are not also elements of \fISet2\fR\&.
.RE
.LP
.B
is_subset(Set1, Set2) -> bool()
.br
.RS
.TP
Types
Set1 = Set2 = set()
.br
.RE
.RS
.LP
Returns \fItrue\fR when every element of \fISet\fR1 is also a member of \fISet2\fR, otherwise \fIfalse\fR\&.
.RE
.LP
.B
fold(Function, Acc0, Set) -> Acc1
.br
.RS
.TP
Types
Function = fun (E, AccIn) -> AccOut
.br
Acc0 = Acc1 = AccIn = AccOut = term()
.br
Set = set()
.br
.RE
.RS
.LP
Fold \fIFunction\fR over every element in \fISet\fR returning the final value of the accumulator\&.
.RE
.LP
.B
filter(Pred, Set1) -> Set2
.br
.RS
.TP
Types
Pred = fun (E) -> bool()
.br
Set1 = Set2 = set()
.br
.RE
.RS
.LP
Filter elements in \fISet1\fR with boolean function \fIFun\fR\&.
.RE
.SH SEE ALSO
.LP
ordsets(3), gb_sets(3)
|