File: snmp_index.3

package info (click to toggle)
erlang-manpages 1%3A12.b.3-1
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 4,188 kB
  • ctags: 2
  • sloc: makefile: 68; perl: 30; sh: 15
file content (224 lines) | stat: -rw-r--r-- 6,490 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
.TH snmp_index 3 "snmp  4.11" "Ericsson AB" "ERLANG MODULE DEFINITION"
.SH MODULE
snmp_index \- Abstract Data Type for SNMP Indexing
.SH DESCRIPTION
.LP
The module \fIsnmp_index\fR implements an Abstract Data Type (ADT) for an SNMP index structure for SNMP tables\&. It is implemented as an ets table of the ordered_set data-type, which means that all operations are O(log n)\&. In the table, the key is an ASN\&.1 OBJECT IDENTIFIER\&. 
.LP
This index is used to separate the implementation of the SNMP ordering from the actual implementation of the table\&. The SNMP ordering, that is implementation of GET NEXT, is implemented in this module\&. 
.LP
For example, suppose there is an SNMP table, which is best implemented in Erlang as one process per SNMP table row\&. Suppose further that the INDEX in the SNMP table is an OCTET STRING\&. The index structure would be created as follows: 

.nf
snmp_index:new(string)
    
.fi
.LP
For each new process we create, we insert an item in an \fIsnmp_index\fR structure: 

.nf
new_process(Name, SnmpIndex) ->
  Pid = start_process(),
  NewSnmpIndex = 
    snmp_index:insert(SnmpIndex, Name, Pid),
  <\&.\&.\&.>
    
.fi
.LP
With this structure, we can now map an OBJECT IDENTIFIER in e\&.g\&. a GET NEXT request, to the correct process: 

.nf
get_next_pid(Oid, SnmpIndex) ->
  {ok, {_, Pid}} = snmp_index:get_next(SnmpIndex, Oid),
  Pid\&.
    
.fi

.SH COMMON DATA TYPES
.LP
The following data types are used in the functions below: 
.RS 2
.TP 2
*
\fIindex()\fR
.TP 2
*
\fIoid() = [byte()]\fR
.TP 2
*
\fIkey_types = type_spec() | {type_spec(), type_spec(), \&.\&.\&.}\fR
.TP 2
*
\fItype_spec() = fix_string | string | integer\fR
.TP 2
*
\fIkey() = key_spec() | {key_spec(), key_spec(), \&.\&.\&.}\fR
.TP 2
*
\fIkey_spec() = string() | integer()\fR
.RE
.LP
The \fIindex()\fR type denotes an snmp index structure\&. 
.LP
The \fIoid()\fR type is used to represent an ASN\&.1 OBJECT IDENTIFIER\&. 
.LP
The \fIkey_types()\fR type is used when creating the index structure, and the \fIkey()\fR type is used when inserting and deleting items from the structure\&. 
.LP
The \fIkey_types()\fR type defines the types of the SNMP INDEX columns for the table\&. If the table has one single INDEX column, this type should be a single atom, but if the table has multiple INDEX columns, it should be a tuple with atoms\&. 
.LP
If the INDEX column is of type INTEGER, or derived from INTEGER, the corresponding type should be \fIinteger\fR\&. If it is a variable length type (e\&.g\&. OBJECT IDENTIFIER, OCTET STRING), the corresponding type should be \fIstring\fR\&. Finally, if the type is of variable length, but with a fixed size restriction (e\&.g\&. IpAddress), the corresponding type should be \fIfix_string\fR\&. 
.LP
For example, if the SNMP table has two INDEX columns, the first one an OCTET STRING with size 2, and the second one an OBJECT IDENTIFER, the corresponding \fIkey_types\fR parameter would be \fI{fix_string, string}\fR\&. 
.LP
The \fIkey()\fR type correlates to the \fIkey_types()\fR type\&. If the \fIkey_types()\fR is a single atom, the corresponding \fIkey()\fR is a single type as well, but if the \fIkey_types()\fR is a tuple, \fIkey\fR must be a tuple of the same size\&. 
.LP
In the example above, valid \fIkeys\fR could be \fI{"hi", "mom"}\fR and \fI{"no", "thanks"}\fR, whereas \fI"hi"\fR, \fI{"hi", 42}\fR and \fI{"hello", "there"}\fR would be invalid\&.
.SS Warning:
.LP
All API functions that update the index return a \fINewIndex\fR term\&. This is for backward compatibility with a previous implementation that used a B+ tree written purely in Erlang for the index\&. The \fINewIndex\fR return value can now be ignored\&. The return value is now the unchanged table identifier for the ets table\&.
.LP
The implementation using ets tables introduces a semantic incompatibility with older implementations\&. In those older implementations, using pure Erlang terms, the index was garbage collected like any other Erlang term and did not have to be deleted when discarded\&. An ets table is deleted only when the process creating it explicitly deletes it or when the creating process terminates\&.
.LP
A new interface \fIdelete/1\fR is now added to handle the case when a process wants to discard an index table (i\&.e\&. to build a completely new)\&. Any application using transient snmp indexes has to be modified to handle this\&.
.LP
As an snmp adaption usually keeps the index for the whole of the systems lifetime, this is rarely a problem\&.

.SH EXPORTS
.LP
.B
delete(Index) -> true
.br
.RS
.TP
Types
Index = NewIndex = index()
.br
Key = key()
.br
.RE
.RS
.LP
Deletes a complete index structure (i\&.e\&. the ets table holding the index)\&. The index can no longer be referenced after this call\&. See the warning note above\&.
.RE
.LP
.B
delete(Index, Key) -> NewIndex
.br
.RS
.TP
Types
Index = NewIndex = index()
.br
Key = key()
.br
.RE
.RS
.LP
Deletes a key and its value from the index structure\&. Returns a new structure\&.
.RE
.LP
.B
get(Index, KeyOid) -> {ok, {KeyOid, Value}} | undefined
.br
.RS
.TP
Types
Index = index()
.br
KeyOid = oid()
.br
Value = term()
.br
.RE
.RS
.LP
Gets the item with key \fIKeyOid\fR\&. Could be used from within an SNMP instrumentation function\&.
.RE
.LP
.B
get_last(Index) -> {ok, {KeyOid, Value}} | undefined
.br
.RS
.TP
Types
Index = index()
.br
KeyOid = oid()
.br
Value = term()
.br
.RE
.RS
.LP
Gets the last item in the index structure\&.
.RE
.LP
.B
get_next(Index, KeyOid) -> {ok, {NextKeyOid, Value}} | undefined
.br
.RS
.TP
Types
Index = index()
.br
KeyOid = NextKeyOid = oid()
.br
Value = term()
.br
.RE
.RS
.LP
Gets the next item in the SNMP lexicographic ordering, after \fIKeyOid\fR in the index structure\&. \fIKeyOid\fR does not have to refer to an existing item in the index\&.
.RE
.LP
.B
insert(Index, Key, Value) -> NewIndex
.br
.RS
.TP
Types
Index = NewIndex = index()
.br
Key = key()
.br
Value = term()
.br
.RE
.RS
.LP
Inserts a new key value tuple into the index structure\&. If an item with the same key already exists, the new \fIValue\fR overwrites the old value\&.
.RE
.LP
.B
key_to_oid(Index, Key) -> KeyOid
.br
.RS
.TP
Types
Index = index()
.br
Key = key()
.br
KeyOid = NextKeyOid = oid()
.br
.RE
.RS
.LP
Converts \fIKey\fR to an OBJECT IDENTIFIER\&.
.RE
.LP
.B
new(KeyTypes) -> Index
.br
.RS
.TP
Types
KeyTypes = key_types()
.br
Index = index()
.br
.RE
.RS
.LP
Creates a new snmp index structure\&. The \fIkey_types()\fR type is described above\&.
.RE