File: sofs.3

package info (click to toggle)
erlang-manpages 1%3A12.b.3-1
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 4,188 kB
  • ctags: 2
  • sloc: makefile: 68; perl: 30; sh: 15
file content (1908 lines) | stat: -rw-r--r-- 47,100 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
.TH sofs 3 "stdlib  1.15.3" "Ericsson AB" "ERLANG MODULE DEFINITION"
.SH MODULE
sofs \- Functions for Manipulating Sets of Sets
.SH DESCRIPTION
.LP
The \fIsofs\fR module implements operations on finite sets and relations represented as sets\&. Intuitively, a set is a collection of elements; every element belongs to the set, and the set contains every element\&.
.LP
Given a set A and a sentence S(x), where x is a free variable, a new set B whose elements are exactly those elements of A for which S(x) holds can be formed, this is denoted B= {xinA: S(x)}\&. Sentences are expressed using the logical operators "for some" (or "there exists"), "for all", "and", "or", "not"\&. If the existence of a set containing all the specified elements is known (as will always be the case in this module), we write B= {x: S(x)}\&. 
.LP
The \fIunordered set\fR containing the elements a, b and c is denoted {a,b,c}\&. This notation is not to be confused with tuples\&. The \fIordered pair\fR of a and b, with first \fIcoordinate\fR a and second coordinate b, is denoted (a,b)\&. An ordered pair is an \fIordered set\fR of two elements\&. In this module ordered sets can contain one, two or more elements, and parentheses are used to enclose the elements\&. Unordered sets and ordered sets are orthogonal, again in this module; there is no unordered set equal to any ordered set\&.
.LP
The set that contains no elements is called the \fIempty set\fR\&. If two sets A and B contain the same elements, then A is \fIequal\fR to B, denoted A=B\&. Two ordered sets are equal if they contain the same number of elements and have equal elements at each coordinate\&. If a set A contains all elements that B contains, then B is a \fIsubset\fR of A\&. The \fIunion\fR of two sets A and B is the smallest set that contains all elements of A and all elements of B\&. The \fIintersection\fR of two sets A and B is the set that contains all elements of A that belong to B\&. Two sets are \fIdisjoint\fR if their intersection is the empty set\&. The \fIdifference\fR of two sets A and B is the set that contains all elements of A that do not belong to B\&. The \fIsymmetric difference\fR of two sets is the set that contains those element that belong to either of the two sets, but not both\&. The \fIunion\fR of a collection of sets is the smallest set that contains all the elements that belong to at least one set of the collection\&. The \fIintersection\fR of a non-empty collection of sets is the set that contains all elements that belong to every set of the collection\&.
.LP
The \fICartesian product\fR of two sets X and Y, denoted XxY, is the set {a: a= (x,y) for some xinX and for some yinY}\&. A \fIrelation\fR is a subset of XxY\&. Let R be a relation\&. The fact that (x,y) belongs to R is written as xRy\&. Since relations are sets, the definitions of the last paragraph (subset, union, and so on) apply to relations as well\&. The \fIdomain\fR of R is the set {x: xRy for some yinY}\&. The \fIrange\fR of R is the set {y: xRy for some xinX}\&. The \fIconverse\fR of R is the set {a: a= (y,x) for some (x,y)inR}\&. If A is a subset of X, then the \fIimage\fR of A under R is the set {y: xRy for some xinA}, and if B is a subset of Y, then the \fIinverse image\fR of B is the set {x: xRy for some yinB}\&. If R is a relation from X to Y and S is a relation from Y to Z, then the \fIrelative product\fR of R and S is the relation T from X to Z defined so that xTz if and only if there exists an element y in Y such that xRy and ySz\&. The \fIrestriction\fR of R to A is the set S defined so that xSy if and only if there exists an element x in A such that xRy\&. If S is a restriction of R to A, then R is an \fIextension\fR of S to X\&. If X=Y then we call R a relation \fIin\fR X\&. The \fIfield\fR of a relation R in X is the union of the domain of R and the range of R\&. If R is a relation in X, and if S is defined so that xSy if xRy and not x=y, then S is the \fIstrict\fR relation corresponding to R, and vice versa, if S is a relation in X, and if R is defined so that xRy if xSy or x=y, then R is the \fIweak\fR relation corresponding to S\&. A relation R in X is \fIreflexive\fR if xRx for every element x of X; it is \fIsymmetric\fR if xRy implies that yRx; and it is \fItransitive\fR if xRy and yRz imply that xRz\&.
.LP
A \fIfunction\fR F is a relation, a subset of XxY, such that the domain of F is equal to X and such that for every x in X there is a unique element y in Y with (x,y) in F\&. The latter condition can be formulated as follows: if xFy and xFz then y=z\&. In this module, it will not be required that the domain of F be equal to X for a relation to be considered a function\&. Instead of writing (x,y)inF or xFy, we write F(x)=y when F is a function, and say that F maps x onto y, or that the value of F at x is y\&. Since functions are relations, the definitions of the last paragraph (domain, range, and so on) apply to functions as well\&. If the converse of a function F is a function F\&', then F\&' is called the \fIinverse\fR of F\&. The relative product of two functions F1 and F2 is called the \fIcomposite\fR of F1 and F2 if the range of F1 is a subset of the domain of F2\&. 
.LP
Sometimes, when the range of a function is more important than the function itself, the function is called a \fIfamily\fR\&. The domain of a family is called the \fIindex set\fR, and the range is called the \fIindexed set\fR\&. If x is a family from I to X, then x[i] denotes the value of the function at index i\&. The notation "a family in X" is used for such a family\&. When the indexed set is a set of subsets of a set X, then we call x a \fIfamily of subsets\fR of X\&. If x is a family of subsets of X, then the union of the range of x is called the \fIunion of the family\fR x\&. If x is non-empty (the index set is non-empty), the \fIintersection of the family\fR x is the intersection of the range of x\&. In this module, the only families that will be considered are families of subsets of some set X; in the following the word "family" will be used for such families of subsets\&.
.LP
A \fIpartition\fR of a set X is a collection S of non-empty subsets of X whose union is X and whose elements are pairwise disjoint\&. A relation in a set is an \fIequivalence relation\fR if it is reflexive, symmetric and transitive\&. If R is an equivalence relation in X, and x is an element of X, the \fIequivalence class\fR of x with respect to R is the set of all those elements y of X for which xRy holds\&. The equivalence classes constitute a partitioning of X\&. Conversely, if C is a partition of X, then the relation that holds for any two elements of X if they belong to the same equivalence class, is an equivalence relation induced by the partition C\&. If R is an equivalence relation in X, then the \fIcanonical map\fR is the function that maps every element of X onto its equivalence class\&. 
.LP
Relations as defined above (as sets of ordered pairs) will from now on be referred to as \fIbinary relations\fR\&. We call a set of ordered sets (x[1],\&.\&.\&.,x[n]) an \fI(n-ary) relation\fR, and say that the relation is a subset of the Cartesian product X[1]x\&.\&.\&.xX[n] where x[i] is an element of X[i], 1<=i<=n\&. The \fIprojection\fR of an n-ary relation R onto coordinate i is the set {x[i]: (x[1],\&.\&.\&.,x[i],\&.\&.\&.,x[n]) in R for some x[j]inX[j], 1<=j<=n and not i=j}\&. The projections of a binary relation R onto the first and second coordinates are the domain and the range of R respectively\&. The relative product of binary relations can be generalized to n-ary relations as follows\&. Let TR be an ordered set (R[1],\&.\&.\&.,R[n]) of binary relations from X to Y[i] and S a binary relation from (Y[1]x\&.\&.\&.xY[n]) to Z\&. The \fIrelative product\fR of TR and S is the binary relation T from X to Z defined so that xTz if and only if there exists an element y[i] in Y[i] for each 1<=i<=n such that xR[i]y[i] and (y[1],\&.\&.\&.,y[n])Sz\&. Now let TR be a an ordered set (R[1],\&.\&.\&.,R[n]) of binary relations from X[i] to Y[i] and S a subset of X[1]x\&.\&.\&.xX[n]\&. The \fImultiple relative product\fR of TR and and S is defined to be the set {z: z= ((x[1],\&.\&.\&.,x[n]), (y[1],\&.\&.\&.,y[n])) for some (x[1],\&.\&.\&.,x[n])inS and for some (x[i],y[i]) in R[i], 1<=i<=n}\&. The \fInatural join\fR of an n-ary relation R and an m-ary relation S on coordinate i and j is defined to be the set {z: z= (x[1],\&.\&.\&.,x[n], y[1],\&.\&.\&.,y[j-1],y[j+1],\&.\&.\&.,y[m]) for some (x[1],\&.\&.\&.,x[n])inR and for some (y[1],\&.\&.\&.,y[m])inS such that x[i]=y[j]}\&.
.LP
The sets recognized by this module will be represented by elements of the relation Sets, defined as the smallest set such that:
.RS 2
.TP 2
*
for every atom T except \&'_\&' and for every term X, (T,X) belongs to Sets (\fIatomic sets\fR);
.TP 2
*
([\&'_\&'],[]) belongs to Sets (the \fIuntyped empty set\fR);
.TP 2
*
for every tuple T= {T[1],\&.\&.\&.,T[n]} and for every tuple X= {X[1],\&.\&.\&.,X[n]}, if (T[i],X[i]) belongs to Sets for every 1<=i<=n then (T,X) belongs to Sets (\fIordered sets\fR);
.TP 2
*
for every term T, if X is the empty list or a non-empty sorted list [X[1],\&.\&.\&.,X[n]] without duplicates such that (T,X[i]) belongs to Sets for every 1<=i<=n, then ([T],X) belongs to Sets (\fItyped unordered sets\fR)\&.
.RE
.LP
An \fIexternal set\fR is an element of the range of Sets\&. A \fItype\fR is an element of the domain of Sets\&. If S is an element (T,X) of Sets, then T is a \fIvalid type\fR of X, T is the type of S, and X is the external set of S\&. from_term/2 creates a set from a type and an Erlang term turned into an external set\&.
.LP
The actual sets represented by Sets are the elements of the range of the function Set from Sets to Erlang terms and sets of Erlang terms:
.RS 2
.TP 2
*
Set(T,Term)= Term, where T is an atom;
.TP 2
*
Set({T[1],\&.\&.\&.,T[n]},{X[1],\&.\&.\&.,X[n]}) = (Set(T[1],X[1]),\&.\&.\&.,Set(T[n],X[n]));
.TP 2
*
Set([T],[X[1],\&.\&.\&.,X[n]]) = {Set(T,X[1]),\&.\&.\&.,Set(T,X[n])};
.TP 2
*
Set([T],[])= {}\&.
.RE
.LP
When there is no risk of confusion, elements of Sets will be identified with the sets they represent\&. For instance, if U is the result of calling \fIunion/2\fR with S1 and S2 as arguments, then U is said to be the union of S1 and S2\&. A more precise formulation would be that Set(U) is the union of Set(S1) and Set(S2)\&.
.LP
The types are used to implement the various conditions that sets need to fulfill\&. As an example, consider the relative product of two sets R and S, and recall that the relative product of R and S is defined if R is a binary relation to Y and S is a binary relation from Y\&. The function that implements the relative product, relative_product/2, checks that the arguments represent binary relations by matching [{A,B}] against the type of the first argument (Arg1 say), and [{C,D}] against the type of the second argument (Arg2 say)\&. The fact that [{A,B}] matches the type of Arg1 is to be interpreted as Arg1 representing a binary relation from X to Y, where X is defined as all sets Set(x) for some element x in Sets the type of which is A, and similarly for Y\&. In the same way Arg2 is interpreted as representing a binary relation from W to Z\&. Finally it is checked that B matches C, which is sufficient to ensure that W is equal to Y\&. The untyped empty set is handled separately: its type, [\&'_\&'], matches the type of any unordered set\&.
.LP
A few functions of this module (\fIdrestriction/3\fR, \fIfamily_projection/2\fR, \fIpartition/2\fR, \fIpartition_family/2\fR, \fIprojection/2\fR, \fIrestriction/3\fR, \fIsubstitution/2\fR) accept an Erlang function as a means to modify each element of a given unordered set\&. Such a function, called SetFun in the following, can be specified as a functional object (fun), a tuple \fI{external, Fun}\fR, or an integer\&. If SetFun is specified as a fun, the fun is applied to each element of the given set and the return value is assumed to be a set\&. If SetFun is specified as a tuple \fI{external, Fun}\fR, Fun is applied to the external set of each element of the given set and the return value is assumed to be an external set\&. Selecting the elements of an unordered set as external sets and assembling a new unordered set from a list of external sets is in the present implementation more efficient than modifying each element as a set\&. However, this optimization can only be utilized when the elements of the unordered set are atomic or ordered sets\&. It must also be the case that the type of the elements matches some clause of Fun (the type of the created set is the result of applying Fun to the type of the given set), and that Fun does nothing but selecting, duplicating or rearranging parts of the elements\&. Specifying a SetFun as an integer I is equivalent to specifying \fI{external, fun(X)-> element(I, X)}\fR, but is to be preferred since it makes it possible to handle this case even more efficiently\&. Examples of SetFuns:

.nf
{sofs, union}
fun(S) -> sofs:partition(1, S) end
{external, fun(A) -> A end}
{external, fun({A,_,C}) -> {C,A} end}
{external, fun({_,{_,C}}) -> C end}
{external, fun({_,{_,{_,E}=C}}) -> {E,{E,C}} end}
2
.fi
.LP
The order in which a SetFun is applied to the elements of an unordered set is not specified, and may change in future versions of sofs\&.
.LP
The execution time of the functions of this module is dominated by the time it takes to sort lists\&. When no sorting is needed, the execution time is in the worst case proportional to the sum of the sizes of the input arguments and the returned value\&. A few functions execute in constant time: \fIfrom_external\fR, \fIis_empty_set\fR, \fIis_set\fR, \fIis_sofs_set\fR, \fIto_external\fR, \fItype\fR\&.
.LP
The functions of this module exit the process with a \fIbadarg\fR, \fIbad_function\fR, or \fItype_mismatch\fR message when given badly formed arguments or sets the types of which are not compatible\&.
.LP
\fITypes\fR

.nf
anyset() = -an unordered, ordered or atomic set-
binary_relation() = -a binary relation-
bool() = true | false
external_set() = -an external set-
family() = -a family (of subsets)-
function() = -a function-
ordset() = -an ordered set-
relation() = -an n-ary relation-
set() = -an unordered set-
set_of_sets() = -an unordered set of set()-
set_fun() = integer() >= 1
          | {external, fun(external_set()) -> external_set()}
          | fun(anyset()) -> anyset()
spec_fun() = {external, fun(external_set()) -> bool()}
           | fun(anyset()) -> bool()
type() = -a type- 
.fi

.SH EXPORTS
.LP
.B
a_function(Tuples [, Type]) -> Function
.br
.RS
.TP
Types
Function = function()
.br
Tuples = [tuple()]
.br
Type = type()
.br
.RE
.RS
.LP
Creates a function\&. \fIa_function(F, T)\fR is equivalent to \fIfrom_term(F, T)\fR, if the result is a function\&. If no type is explicitly given, \fI[{atom, atom}]\fR is used as type of the function\&.
.RE
.LP
.B
canonical_relation(SetOfSets) -> BinRel
.br
.RS
.TP
Types
BinRel = binary_relation()
.br
SetOfSets = set_of_sets()
.br
.RE
.RS
.LP
Returns the binary relation containing the elements (E,Set) such that Set belongs to SetOfSets and E belongs to Set\&. If SetOfSets is a partition of a set X and R is the equivalence relation in X induced by SetOfSets, then the returned relation is the canonical map from X onto the equivalence classes with respect to R\&.

.nf
1> Ss = sofs:from_term([[a,b],[b,c]]),

CR = sofs:canonical_relation(Ss),

sofs:to_external(CR)\&.

[{a,[a,b]},{b,[a,b]},{b,[b,c]},{c,[b,c]}]
.fi
.RE
.LP
.B
composite(Function1, Function2) -> Function3
.br
.RS
.TP
Types
Function1 = Function2 = Function3 = function()
.br
.RE
.RS
.LP
Returns the composite of the functions Function1 and Function2\&.

.nf
1> F1 = sofs:a_function([{a,1},{b,2},{c,2}]),

F2 = sofs:a_function([{1,x},{2,y},{3,z}]),

F = sofs:composite(F1, F2),

sofs:to_external(F)\&.

[{a,x},{b,y},{c,y}]
.fi
.RE
.LP
.B
constant_function(Set, AnySet) -> Function
.br
.RS
.TP
Types
AnySet = anyset()
.br
Function = function()
.br
Set = set()
.br
.RE
.RS
.LP
Creates the function that maps each element of the set Set onto AnySet\&.

.nf
1> S = sofs:set([a,b]),

E = sofs:from_term(1),

R = sofs:constant_function(S, E),

sofs:to_external(R)\&.

[{a,1},{b,1}]
.fi
.RE
.LP
.B
converse(BinRel1) -> BinRel2
.br
.RS
.TP
Types
BinRel1 = BinRel2 = binary_relation()
.br
.RE
.RS
.LP
Returns the converse of the binary relation BinRel1\&.

.nf
1> R1 = sofs:relation([{1,a},{2,b},{3,a}]),

R2 = sofs:converse(R1),

sofs:to_external(R2)\&.

[{a,1},{a,3},{b,2}]
.fi
.RE
.LP
.B
difference(Set1, Set2) -> Set3
.br
.RS
.TP
Types
Set1 = Set2 = Set3 = set()
.br
.RE
.RS
.LP
Returns the difference of the sets Set1 and Set2\&.
.RE
.LP
.B
digraph_to_family(Graph [, Type]) -> Family
.br
.RS
.TP
Types
Graph = digraph() -see digraph(3)-
.br
Family = family()
.br
Type = type()
.br
.RE
.RS
.LP
Creates a family from the directed graph Graph\&. Each vertex a of Graph is represented by a pair (a,{b[1],\&.\&.\&.,b[n]}) where the b[i]\&'s are the out-neighbours of a\&. If no type is explicitly given, [{atom,[atom]}] is used as type of the family\&. It is assumed that Type is a valid type of the external set of the family\&.
.LP
If G is a directed graph, it holds that the vertices and edges of G are the same as the vertices and edges of \fIfamily_to_digraph(digraph_to_family(G))\fR\&.
.RE
.LP
.B
domain(BinRel) -> Set
.br
.RS
.TP
Types
BinRel = binary_relation()
.br
Set = set()
.br
.RE
.RS
.LP
Returns the domain of the binary relation BinRel\&.

.nf
1> R = sofs:relation([{1,a},{1,b},{2,b},{2,c}]),

S = sofs:domain(R),

sofs:to_external(S)\&.

[1,2]
.fi
.RE
.LP
.B
drestriction(BinRel1, Set) -> BinRel2
.br
.RS
.TP
Types
BinRel1 = BinRel2 = binary_relation()
.br
Set = set()
.br
.RE
.RS
.LP
Returns the difference between the binary relation BinRel1 and the restriction of BinRel1 to Set\&.

.nf
1> R1 = sofs:relation([{1,a},{2,b},{3,c}]),

S = sofs:set([2,4,6]),

R2 = sofs:drestriction(R1, S),

sofs:to_external(R2)\&.

[{1,a},{3,c}]
.fi
.LP
\fIdrestriction(R, S)\fR is equivalent to \fIdifference(R, restriction(R, S))\fR\&.
.RE
.LP
.B
drestriction(SetFun, Set1, Set2) -> Set3
.br
.RS
.TP
Types
SetFun = set_fun()
.br
Set1 = Set2 = Set3 = set()
.br
.RE
.RS
.LP
Returns a subset of Set1 containing those elements that do not yield an element in Set2 as the result of applying SetFun\&.

.nf
1> SetFun = {external, fun({_A,B,C}) -> {B,C} end},

R1 = sofs:relation([{a,aa,1},{b,bb,2},{c,cc,3}]),

R2 = sofs:relation([{bb,2},{cc,3},{dd,4}]),

R3 = sofs:drestriction(SetFun, R1, R2),

sofs:to_external(R3)\&.

[{a,aa,1}]
.fi
.LP
\fIdrestriction(F, S1, S2)\fR is equivalent to \fIdifference(S1, restriction(F, S1, S2))\fR\&.
.RE
.LP
.B
empty_set() -> Set
.br
.RS
.TP
Types
Set = set()
.br
.RE
.RS
.LP
Returns the untyped empty set\&. \fIempty_set()\fR is equivalent to \fIfrom_term([], [\&'_\&'])\fR\&.
.RE
.LP
.B
extension(BinRel1, Set, AnySet) -> BinRel2
.br
.RS
.TP
Types
AnySet = anyset()
.br
BinRel1 = BinRel2 = binary_relation()
.br
Set = set()
.br
.RE
.RS
.LP
Returns the extension of BinRel1 such that for each element E in Set that does not belong to the domain of BinRel1, BinRel2 contains the pair (E,AnySet)\&.

.nf
1> S = sofs:set([b,c]),

A = sofs:empty_set(),

R = sofs:family([{a,[1,2]},{b,[3]}]),

X = sofs:extension(R, S, A),

sofs:to_external(X)\&.

[{a,[1,2]},{b,[3]},{c,[]}]
.fi
.RE
.LP
.B
family(Tuples [, Type]) -> Family
.br
.RS
.TP
Types
Family = family()
.br
Tuples = [tuple()]
.br
Type = type()
.br
.RE
.RS
.LP
Creates a family of subsets\&. \fIfamily(F, T)\fR is equivalent to \fIfrom_term(F, T)\fR, if the result is a family\&. If no type is explicitly given, \fI[{atom, [atom]}]\fR is used as type of the family\&.
.RE
.LP
.B
family_difference(Family1, Family2) -> Family3
.br
.RS
.TP
Types
Family1 = Family2 = Family3 = family()
.br
.RE
.RS
.LP
If Family1 and Family2 are families, then Family3 is the family such that the index set is equal to the index set of Family1, and Family3[i] is the difference between Family1[i] and Family2[i] if Family2 maps i, Family1[i] otherwise\&.

.nf
1> F1 = sofs:family([{a,[1,2]},{b,[3,4]}]),

F2 = sofs:family([{b,[4,5]},{c,[6,7]}]),

F3 = sofs:family_difference(F1, F2),

sofs:to_external(F3)\&.

[{a,[1,2]},{b,[3]}]
.fi
.RE
.LP
.B
family_domain(Family1) -> Family2
.br
.RS
.TP
Types
Family1 = Family2 = family()
.br
.RE
.RS
.LP
If Family1 is a family and Family1[i] is a binary relation for every i in the index set of Family1, then Family2 is the family with the same index set as Family1 such that Family2[i] is the domain of Family1[i]\&.

.nf
1> FR = sofs:from_term([{a,[{1,a},{2,b},{3,c}]},{b,[]},{c,[{4,d},{5,e}]}]),

F = sofs:family_domain(FR),

sofs:to_external(F)\&.

[{a,[1,2,3]},{b,[]},{c,[4,5]}]
.fi
.RE
.LP
.B
family_field(Family1) -> Family2
.br
.RS
.TP
Types
Family1 = Family2 = family()
.br
.RE
.RS
.LP
If Family1 is a family and Family1[i] is a binary relation for every i in the index set of Family1, then Family2 is the family with the same index set as Family1 such that Family2[i] is the field of Family1[i]\&.

.nf
1> FR = sofs:from_term([{a,[{1,a},{2,b},{3,c}]},{b,[]},{c,[{4,d},{5,e}]}]),

F = sofs:family_field(FR),

sofs:to_external(F)\&.

[{a,[1,2,3,a,b,c]},{b,[]},{c,[4,5,d,e]}]
.fi
.LP
\fIfamily_field(Family1)\fR is equivalent to \fIfamily_union(family_domain(Family1), family_range(Family1))\fR\&.
.RE
.LP
.B
family_intersection(Family1) -> Family2
.br
.RS
.TP
Types
Family1 = Family2 = family()
.br
.RE
.RS
.LP
If Family1 is a family and Family1[i] is a set of sets for every i in the index set of Family1, then Family2 is the family with the same index set as Family1 such that Family2[i] is the intersection of Family1[i]\&.
.LP
If Family1[i] is an empty set for some i, then the process exits with a \fIbadarg\fR message\&.

.nf
1> F1 = sofs:from_term([{a,[[1,2,3],[2,3,4]]},{b,[[x,y,z],[x,y]]}]),

F2 = sofs:family_intersection(F1),

sofs:to_external(F2)\&.

[{a,[2,3]},{b,[x,y]}]
.fi
.RE
.LP
.B
family_intersection(Family1, Family2) -> Family3
.br
.RS
.TP
Types
Family1 = Family2 = Family3 = family()
.br
.RE
.RS
.LP
If Family1 and Family2 are families, then Family3 is the family such that the index set is the intersection of Family1\&'s and Family2\&'s index sets, and Family3[i] is the intersection of Family1[i] and Family2[i]\&.

.nf
1> F1 = sofs:family([{a,[1,2]},{b,[3,4]},{c,[5,6]}]),

F2 = sofs:family([{b,[4,5]},{c,[7,8]},{d,[9,10]}]),

F3 = sofs:family_intersection(F1, F2),

sofs:to_external(F3)\&.

[{b,[4]},{c,[]}]
.fi
.RE
.LP
.B
family_projection(SetFun, Family1) -> Family2
.br
.RS
.TP
Types
SetFun = set_fun()
.br
Family1 = Family2 = family()
.br
Set = set()
.br
.RE
.RS
.LP
If Family1 is a family then Family2 is the family with the same index set as Family1 such that Family2[i] is the result of calling SetFun with Family1[i] as argument\&.

.nf
1> F1 = sofs:from_term([{a,[[1,2],[2,3]]},{b,[[]]}]),

F2 = sofs:family_projection({sofs, union}, F1),

sofs:to_external(F2)\&.

[{a,[1,2,3]},{b,[]}]
.fi
.RE
.LP
.B
family_range(Family1) -> Family2
.br
.RS
.TP
Types
Family1 = Family2 = family()
.br
.RE
.RS
.LP
If Family1 is a family and Family1[i] is a binary relation for every i in the index set of Family1, then Family2 is the family with the same index set as Family1 such that Family2[i] is the range of Family1[i]\&.

.nf
1> FR = sofs:from_term([{a,[{1,a},{2,b},{3,c}]},{b,[]},{c,[{4,d},{5,e}]}]),

F = sofs:family_range(FR),

sofs:to_external(F)\&.

[{a,[a,b,c]},{b,[]},{c,[d,e]}]
.fi
.RE
.LP
.B
family_specification(Fun, Family1) -> Family2
.br
.RS
.TP
Types
Fun = spec_fun()
.br
Family1 = Family2 = family()
.br
.RE
.RS
.LP
If Family1 is a family, then Family2 is the restriction of Family1 to those elements i of the index set for which Fun applied to Family1[i] returns \fItrue\fR\&. If Fun is a tuple \fI{external, Fun2}\fR, Fun2 is applied to the external set of Family1[i], otherwise Fun is applied to Family1[i]\&.

.nf
1> F1 = sofs:family([{a,[1,2,3]},{b,[1,2]},{c,[1]}]),

SpecFun = fun(S) -> sofs:no_elements(S) =:= 2 end,

F2 = sofs:family_specification(SpecFun, F1),

sofs:to_external(F2)\&.

[{b,[1,2]}]
.fi
.RE
.LP
.B
family_to_digraph(Family [, GraphType]) -> Graph
.br
.RS
.TP
Types
Graph = digraph()
.br
Family = family()
.br
GraphType = -see digraph(3)-
.br
.RE
.RS
.LP
Creates a directed graph from the family Family\&. For each pair (a,{b[1],\&.\&.\&.,b[n]}) of Family, the vertex a as well the edges (a,b[i]) for 1<=i<=n are added to a newly created directed graph\&.
.LP
If no graph type is given, \fIdigraph:new/1\fR is used for creating the directed graph, otherwise the GraphType argument is passed on as second argument to \fIdigraph:new/2\fR\&.
.LP
It F is a family, it holds that F is a subset of \fIdigraph_to_family(family_to_digraph(F), type(F))\fR\&. Equality holds if \fIunion_of_family(F)\fR is a subset of \fIdomain(F)\fR\&.
.LP
Creating a cycle in an acyclic graph exits the process with a \fIcyclic\fR message\&.
.RE
.LP
.B
family_to_relation(Family) -> BinRel
.br
.RS
.TP
Types
Family = family()
.br
BinRel = binary_relation()
.br
.RE
.RS
.LP
If Family is a family, then BinRel is the binary relation containing all pairs (i,x) such that i belongs to the index set of Family and x belongs to Family[i]\&.

.nf
1> F = sofs:family([{a,[]}, {b,[1]}, {c,[2,3]}]),

R = sofs:family_to_relation(F),

sofs:to_external(R)\&.

[{b,1},{c,2},{c,3}]
.fi
.RE
.LP
.B
family_union(Family1) -> Family2
.br
.RS
.TP
Types
Family1 = Family2 = family()
.br
.RE
.RS
.LP
If Family1 is a family and Family1[i] is a set of sets for each i in the index set of Family1, then Family2 is the family with the same index set as Family1 such that Family2[i] is the union of Family1[i]\&.

.nf
1> F1 = sofs:from_term([{a,[[1,2],[2,3]]},{b,[[]]}]),

F2 = sofs:family_union(F1),

sofs:to_external(F2)\&.

[{a,[1,2,3]},{b,[]}]
.fi
.LP
\fIfamily_union(F)\fR is equivalent to \fIfamily_projection({sofs, union}, F)\fR\&.
.RE
.LP
.B
family_union(Family1, Family2) -> Family3
.br
.RS
.TP
Types
Family1 = Family2 = Family3 = family()
.br
.RE
.RS
.LP
If Family1 and Family2 are families, then Family3 is the family such that the index set is the union of Family1\&'s and Family2\&'s index sets, and Family3[i] is the union of Family1[i] and Family2[i] if both maps i, Family1[i] or Family2[i] otherwise\&.

.nf
1> F1 = sofs:family([{a,[1,2]},{b,[3,4]},{c,[5,6]}]),

F2 = sofs:family([{b,[4,5]},{c,[7,8]},{d,[9,10]}]),

F3 = sofs:family_union(F1, F2),

sofs:to_external(F3)\&.

[{a,[1,2]},{b,[3,4,5]},{c,[5,6,7,8]},{d,[9,10]}]
.fi
.RE
.LP
.B
field(BinRel) -> Set
.br
.RS
.TP
Types
BinRel = binary_relation()
.br
Set = set()
.br
.RE
.RS
.LP
Returns the field of the binary relation BinRel\&.

.nf
1> R = sofs:relation([{1,a},{1,b},{2,b},{2,c}]),

S = sofs:field(R),

sofs:to_external(S)\&.

[1,2,a,b,c]
.fi
.LP
\fIfield(R)\fR is equivalent to \fIunion(domain(R), range(R))\fR\&.
.RE
.LP
.B
from_external(ExternalSet, Type) -> AnySet
.br
.RS
.TP
Types
ExternalSet = external_set()
.br
AnySet = anyset()
.br
Type = type()
.br
.RE
.RS
.LP
Creates a set from the external set ExternalSet and the type Type\&. It is assumed that Type is a valid type of ExternalSet\&.
.RE
.LP
.B
from_sets(ListOfSets) -> Set
.br
.RS
.TP
Types
Set = set()
.br
ListOfSets = [anyset()]
.br
.RE
.RS
.LP
Returns the unordered set containing the sets of the list ListOfSets\&.

.nf
1> S1 = sofs:relation([{a,1},{b,2}]),

S2 = sofs:relation([{x,3},{y,4}]),

S = sofs:from_sets([S1,S2]),

sofs:to_external(S)\&.

[[{a,1},{b,2}],[{x,3},{y,4}]]
.fi
.RE
.LP
.B
from_sets(TupleOfSets) -> Ordset
.br
.RS
.TP
Types
Ordset = ordset()
.br
TupleOfSets = tuple-of(anyset())
.br
.RE
.RS
.LP
Returns the ordered set containing the sets of the non-empty tuple TupleOfSets\&.
.RE
.LP
.B
from_term(Term [, Type]) -> AnySet
.br
.RS
.TP
Types
AnySet = anyset()
.br
Term = term()
.br
Type = type()
.br
.RE
.RS
.LP
Creates an element of Sets by traversing the term Term, sorting lists, removing duplicates and deriving or verifying a valid type for the so obtained external set\&. An explicitly given type Type can be used to limit the depth of the traversal; an atomic type stops the traversal, as demonstrated by this example where "foo" and {"foo"} are left unmodified:

.nf
1> S = sofs:from_term([{{"foo"},[1,1]},{"foo",[2,2]}], [{atom,[atom]}]),

sofs:to_external(S)\&.

[{{"foo"},[1]},{"foo",[2]}]
.fi
.LP
\fIfrom_term\fR can be used for creating atomic or ordered sets\&. The only purpose of such a set is that of later building unordered sets since all functions in this module that \fIdo\fR anything operate on unordered sets\&. Creating unordered sets from a collection of ordered sets may be the way to go if the ordered sets are big and one does not want to waste heap by rebuilding the elements of the unordered set\&. An example showing that a set can be built "layer by layer":

.nf
1> A = sofs:from_term(a),

S = sofs:set([1,2,3]),

P1 = sofs:from_sets({A,S}),

P2 = sofs:from_term({b,[6,5,4]}),

Ss = sofs:from_sets([P1,P2]),

sofs:to_external(Ss)\&.

[{a,[1,2,3]},{b,[4,5,6]}]
.fi
.LP
Other functions that create sets are \fIfrom_external/2\fR and \fIfrom_sets/1\fR\&. Special cases of \fIfrom_term/2\fR are \fIa_function/1, 2\fR, \fIempty_set/0\fR, \fIfamily/1, 2\fR, \fIrelation/1, 2\fR, and \fIset/1, 2\fR\&.
.RE
.LP
.B
image(BinRel, Set1) -> Set2
.br
.RS
.TP
Types
BinRel = binary_relation()
.br
Set1 = Set2 = set()
.br
.RE
.RS
.LP
Returns the image of the set Set1 under the binary relation BinRel\&.

.nf
1> R = sofs:relation([{1,a},{2,b},{2,c},{3,d}]),

S1 = sofs:set([1,2]),

S2 = sofs:image(R, S1),

sofs:to_external(S2)\&.

[a,b,c]
.fi
.RE
.LP
.B
intersection(SetOfSets) -> Set
.br
.RS
.TP
Types
Set = set()
.br
SetOfSets = set_of_sets()
.br
.RE
.RS
.LP
Returns the intersection of the set of sets SetOfSets\&.
.LP
Intersecting an empty set of sets exits the process with a \fIbadarg\fR message\&.
.RE
.LP
.B
intersection(Set1, Set2) -> Set3
.br
.RS
.TP
Types
Set1 = Set2 = Set3 = set()
.br
.RE
.RS
.LP
Returns the intersection of Set1 and Set2\&.
.RE
.LP
.B
intersection_of_family(Family) -> Set
.br
.RS
.TP
Types
Family = family()
.br
Set = set()
.br
.RE
.RS
.LP
Returns the intersection of the family Family\&.
.LP
Intersecting an empty family exits the process with a \fIbadarg\fR message\&.

.nf
1> F = sofs:family([{a,[0,2,4]},{b,[0,1,2]},{c,[2,3]}]),

S = sofs:intersection_of_family(F),

sofs:to_external(S)\&.

[2]
.fi
.RE
.LP
.B
inverse(Function1) -> Function2
.br
.RS
.TP
Types
Function1 = Function2 = function()
.br
.RE
.RS
.LP
Returns the inverse of the function Function1\&.

.nf
1> R1 = sofs:relation([{1,a},{2,b},{3,c}]),

R2 = sofs:inverse(R1),

sofs:to_external(R2)\&.

[{a,1},{b,2},{c,3}]
.fi
.RE
.LP
.B
inverse_image(BinRel, Set1) -> Set2
.br
.RS
.TP
Types
BinRel = binary_relation()
.br
Set1 = Set2 = set()
.br
.RE
.RS
.LP
Returns the inverse image of Set1 under the binary relation BinRel\&.

.nf
1> R = sofs:relation([{1,a},{2,b},{2,c},{3,d}]),

S1 = sofs:set([c,d,e]),

S2 = sofs:inverse_image(R, S1),

sofs:to_external(S2)\&.

[2,3]
.fi
.RE
.LP
.B
is_a_function(BinRel) -> Bool
.br
.RS
.TP
Types
Bool = bool()
.br
BinRel = binary_relation()
.br
.RE
.RS
.LP
Returns \fItrue\fR if the binary relation BinRel is a function or the untyped empty set, \fIfalse\fR otherwise\&.
.RE
.LP
.B
is_disjoint(Set1, Set2) -> Bool
.br
.RS
.TP
Types
Bool = bool()
.br
Set1 = Set2 = set()
.br
.RE
.RS
.LP
Returns \fItrue\fR if Set1 and Set2 are disjoint, \fIfalse\fR otherwise\&.
.RE
.LP
.B
is_empty_set(AnySet) -> Bool
.br
.RS
.TP
Types
AnySet = anyset()
.br
Bool = bool()
.br
.RE
.RS
.LP
Returns \fItrue\fR if Set is an empty unordered set, \fIfalse\fR otherwise\&.
.RE
.LP
.B
is_equal(AnySet1, AnySet2) -> Bool
.br
.RS
.TP
Types
AnySet1 = AnySet2 = anyset()
.br
Bool = bool()
.br
.RE
.RS
.LP
Returns \fItrue\fR if the AnySet1 and AnySet2 are equal, \fIfalse\fR otherwise\&.
.RE
.LP
.B
is_set(AnySet) -> Bool
.br
.RS
.TP
Types
AnySet = anyset()
.br
Bool = bool()
.br
.RE
.RS
.LP
Returns \fItrue\fR if AnySet is an unordered set, and \fIfalse\fR if AnySet is an ordered set or an atomic set\&.
.RE
.LP
.B
is_sofs_set(Term) -> Bool
.br
.RS
.TP
Types
Bool = bool()
.br
Term = term()
.br
.RE
.RS
.LP
Returns \fItrue\fR if Term is an unordered set, an ordered set or an atomic set, \fIfalse\fR otherwise\&.
.RE
.LP
.B
is_subset(Set1, Set2) -> Bool
.br
.RS
.TP
Types
Bool = bool()
.br
Set1 = Set2 = set()
.br
.RE
.RS
.LP
Returns \fItrue\fR if Set1 is a subset of Set2, \fIfalse\fR otherwise\&.
.RE
.LP
.B
is_type(Term) -> Bool
.br
.RS
.TP
Types
Bool = bool()
.br
Term = term()
.br
.RE
.RS
.LP
Returns \fItrue\fR if the term Term is a type\&.
.RE
.LP
.B
join(Relation1, I, Relation2, J) -> Relation3
.br
.RS
.TP
Types
Relation1 = Relation2 = Relation3 = relation()
.br
I = J = integer() > 0
.br
.RE
.RS
.LP
Returns the natural join of the relations Relation1 and Relation2 on coordinates I and J\&.

.nf
1> R1 = sofs:relation([{a,x,1},{b,y,2}]),

R2 = sofs:relation([{1,f,g},{1,h,i},{2,3,4}]),

J = sofs:join(R1, 3, R2, 1),

sofs:to_external(J)\&.

[{a,x,1,f,g},{a,x,1,h,i},{b,y,2,3,4}]
.fi
.RE
.LP
.B
multiple_relative_product(TupleOfBinRels, BinRel1) -> BinRel2
.br
.RS
.TP
Types
TupleOfBinRels = tuple-of(BinRel)
.br
BinRel = BinRel1 = BinRel2 = binary_relation()
.br
.RE
.RS
.LP
If TupleOfBinRels is a non-empty tuple {R[1],\&.\&.\&.,R[n]} of binary relations and BinRel1 is a binary relation, then BinRel2 is the multiple relative product of the ordered set (R[i],\&.\&.\&.,R[n]) and BinRel1\&.

.nf
1> Ri = sofs:relation([{a,1},{b,2},{c,3}]),

R = sofs:relation([{a,b},{b,c},{c,a}]),

MP = sofs:multiple_relative_product({Ri, Ri}, R),

sofs:to_external(sofs:range(MP))\&.

[{1,2},{2,3},{3,1}]
.fi
.RE
.LP
.B
no_elements(ASet) -> NoElements
.br
.RS
.TP
Types
ASet = set() | ordset()
.br
NoElements = integer() >= 0 
.br
.RE
.RS
.LP
Returns the number of elements of the ordered or unordered set ASet\&.
.RE
.LP
.B
partition(SetOfSets) -> Partition
.br
.RS
.TP
Types
SetOfSets = set_of_sets()
.br
Partition = set()
.br
.RE
.RS
.LP
Returns the partition of the union of the set of sets SetOfSets such that two elements are considered equal if they belong to the same elements of SetOfSets\&.

.nf
1> Sets1 = sofs:from_term([[a,b,c],[d,e,f],[g,h,i]]),

Sets2 = sofs:from_term([[b,c,d],[e,f,g],[h,i,j]]),

P = sofs:partition(sofs:union(Sets1, Sets2)),

sofs:to_external(P)\&.

[[a],[b,c],[d],[e,f],[g],[h,i],[j]]
.fi
.RE
.LP
.B
partition(SetFun, Set) -> Partition
.br
.RS
.TP
Types
SetFun = set_fun()
.br
Partition = set()
.br
Set = set()
.br
.RE
.RS
.LP
Returns the partition of Set such that two elements are considered equal if the results of applying SetFun are equal\&.

.nf
1> Ss = sofs:from_term([[a],[b],[c,d],[e,f]]),

SetFun = fun(S) -> sofs:from_term(sofs:no_elements(S)) end,

P = sofs:partition(SetFun, Ss),

sofs:to_external(P)\&.

[[[a],[b]],[[c,d],[e,f]]]
.fi
.RE
.LP
.B
partition(SetFun, Set1, Set2) -> {Set3, Set4}
.br
.RS
.TP
Types
SetFun = set_fun()
.br
Set1 = Set2 = Set3 = Set4 = set()
.br
.RE
.RS
.LP
Returns a pair of sets that, regarded as constituting a set, forms a partition of Set1\&. If the result of applying SetFun to an element of Set1 yields an element in Set2, the element belongs to Set3, otherwise the element belongs to Set4\&.

.nf
1> R1 = sofs:relation([{1,a},{2,b},{3,c}]),

S = sofs:set([2,4,6]),

{R2,R3} = sofs:partition(1, R1, S),

{sofs:to_external(R2),sofs:to_external(R3)}\&.

{[{2,b}],[{1,a},{3,c}]}
.fi
.LP
\fIpartition(F, S1, S2)\fR is equivalent to \fI{restriction(F, S1, S2), drestriction(F, S1, S2)}\fR\&.
.RE
.LP
.B
partition_family(SetFun, Set) -> Family
.br
.RS
.TP
Types
Family = family()
.br
SetFun = set_fun()
.br
Set = set()
.br
.RE
.RS
.LP
Returns the family Family where the indexed set is a partition of Set such that two elements are considered equal if the results of applying SetFun are the same value i\&. This i is the index that Family maps onto the equivalence class\&.

.nf
1> S = sofs:relation([{a,a,a,a},{a,a,b,b},{a,b,b,b}]),

SetFun = {external, fun({A,_,C,_}) -> {A,C} end},

F = sofs:partition_family(SetFun, S),

sofs:to_external(F)\&.

[{{a,a},[{a,a,a,a}]},{{a,b},[{a,a,b,b},{a,b,b,b}]}]
.fi
.RE
.LP
.B
product(TupleOfSets) -> Relation
.br
.RS
.TP
Types
Relation = relation()
.br
TupleOfSets = tuple-of(set())
.br
.RE
.RS
.LP
Returns the Cartesian product of the non-empty tuple of sets TupleOfSets\&. If (x[1],\&.\&.\&.,x[n]) is an element of the n-ary relation Relation, then x[i] is drawn from element i of TupleOfSets\&.

.nf
1> S1 = sofs:set([a,b]),

S2 = sofs:set([1,2]),

S3 = sofs:set([x,y]),

P3 = sofs:product({S1,S2,S3}),

sofs:to_external(P3)\&.

[{a,1,x},{a,1,y},{a,2,x},{a,2,y},{b,1,x},{b,1,y},{b,2,x},{b,2,y}]
.fi
.RE
.LP
.B
product(Set1, Set2) -> BinRel
.br
.RS
.TP
Types
BinRel = binary_relation()
.br
Set1 = Set2 = set()
.br
.RE
.RS
.LP
Returns the Cartesian product of Set1 and Set2\&.

.nf
1> S1 = sofs:set([1,2]),

S2 = sofs:set([a,b]),

R = sofs:product(S1, S2),

sofs:to_external(R)\&.

[{1,a},{1,b},{2,a},{2,b}]
.fi
.LP
\fIproduct(S1, S2)\fR is equivalent to \fIproduct({S1, S2})\fR\&.
.RE
.LP
.B
projection(SetFun, Set1) -> Set2
.br
.RS
.TP
Types
SetFun = set_fun()
.br
Set1 = Set2 = set()
.br
.RE
.RS
.LP
Returns the set created by substituting each element of Set1 by the result of applying SetFun to the element\&.
.LP
If SetFun is a number i>=1 and Set1 is a relation, then the returned set is the projection of Set1 onto coordinate i\&.

.nf
1> S1 = sofs:from_term([{1,a},{2,b},{3,a}]),

S2 = sofs:projection(2, S1),

sofs:to_external(S2)\&.

[a,b]
.fi
.RE
.LP
.B
range(BinRel) -> Set
.br
.RS
.TP
Types
BinRel = binary_relation()
.br
Set = set()
.br
.RE
.RS
.LP
Returns the range of the binary relation BinRel\&.

.nf
1> R = sofs:relation([{1,a},{1,b},{2,b},{2,c}]),

S = sofs:range(R),

sofs:to_external(S)\&.

[a,b,c]
.fi
.RE
.LP
.B
relation(Tuples [, Type]) -> Relation
.br
.RS
.TP
Types
N = integer()
.br
Type = N | type()
.br
Relation = relation()
.br
Tuples = [tuple()]
.br
.RE
.RS
.LP
Creates a relation\&. \fIrelation(R, T)\fR is equivalent to \fIfrom_term(R, T)\fR, if T is a type and the result is a relation\&. If Type is an integer N, then \fI[{atom, \&.\&.\&., atom}])\fR, where the size of the tuple is N, is used as type of the relation\&. If no type is explicitly given, the size of the first tuple of Tuples is used if there is such a tuple\&. \fIrelation([])\fR is equivalent to \fIrelation([], 2)\fR\&.
.RE
.LP
.B
relation_to_family(BinRel) -> Family
.br
.RS
.TP
Types
Family = family()
.br
BinRel = binary_relation()
.br
.RE
.RS
.LP
Returns the family Family such that the index set is equal to the domain of the binary relation BinRel, and Family[i] is the image of the set of i under BinRel\&.

.nf
1> R = sofs:relation([{b,1},{c,2},{c,3}]),

F = sofs:relation_to_family(R),

sofs:to_external(F)\&.

[{b,[1]},{c,[2,3]}]
.fi
.RE
.LP
.B
relative_product(TupleOfBinRels [, BinRel1]) -> BinRel2
.br
.RS
.TP
Types
TupleOfBinRels = tuple-of(BinRel)
.br
BinRel = BinRel1 = BinRel2 = binary_relation()
.br
.RE
.RS
.LP
If TupleOfBinRels is a non-empty tuple {R[1],\&.\&.\&.,R[n]} of binary relations and BinRel1 is a binary relation, then BinRel2 is the relative product of the ordered set (R[i],\&.\&.\&.,R[n]) and BinRel1\&.
.LP
If BinRel1 is omitted, the relation of equality between the elements of the Cartesian product of the ranges of R[i], rangeR[1]x\&.\&.\&.xrangeR[n], is used instead (intuitively, nothing is "lost")\&.

.nf
1> TR = sofs:relation([{1,a},{1,aa},{2,b}]),

R1 = sofs:relation([{1,u},{2,v},{3,c}]),

R2 = sofs:relative_product({TR, R1}),

sofs:to_external(R2)\&.

[{1,{a,u}},{1,{aa,u}},{2,{b,v}}]
.fi
.LP
Note that \fIrelative_product({R1}, R2)\fR is different from \fIrelative_product(R1, R2)\fR; the tuple of one element is not identified with the element itself\&.
.RE
.LP
.B
relative_product(BinRel1, BinRel2) -> BinRel3
.br
.RS
.TP
Types
BinRel1 = BinRel2 = BinRel3 = binary_relation()
.br
.RE
.RS
.LP
Returns the relative product of the binary relations BinRel1 and BinRel2\&.
.RE
.LP
.B
relative_product1(BinRel1, BinRel2) -> BinRel3
.br
.RS
.TP
Types
BinRel1 = BinRel2 = BinRel3 = binary_relation()
.br
.RE
.RS
.LP
Returns the relative product of the converse of the binary relation BinRel1 and the binary relation BinRel2\&.

.nf
1> R1 = sofs:relation([{1,a},{1,aa},{2,b}]),

R2 = sofs:relation([{1,u},{2,v},{3,c}]),

R3 = sofs:relative_product1(R1, R2),

sofs:to_external(R3)\&.

[{a,u},{aa,u},{b,v}]
.fi
.LP
\fIrelative_product1(R1, R2)\fR is equivalent to \fIrelative_product(converse(R1), R2)\fR\&.
.RE
.LP
.B
restriction(BinRel1, Set) -> BinRel2
.br
.RS
.TP
Types
BinRel1 = BinRel2 = binary_relation()
.br
Set = set()
.br
.RE
.RS
.LP
Returns the restriction of the binary relation BinRel1 to Set\&.

.nf
1> R1 = sofs:relation([{1,a},{2,b},{3,c}]),

S = sofs:set([1,2,4]),

R2 = sofs:restriction(R1, S),

sofs:to_external(R2)\&.

[{1,a},{2,b}]
.fi
.RE
.LP
.B
restriction(SetFun, Set1, Set2) -> Set3
.br
.RS
.TP
Types
SetFun = set_fun()
.br
Set1 = Set2 = Set3 = set()
.br
.RE
.RS
.LP
Returns a subset of Set1 containing those elements that yield an element in Set2 as the result of applying SetFun\&.

.nf
1> S1 = sofs:relation([{1,a},{2,b},{3,c}]),

S2 = sofs:set([b,c,d]),

S3 = sofs:restriction(2, S1, S2),

sofs:to_external(S3)\&.

[{2,b},{3,c}]
.fi
.RE
.LP
.B
set(Terms [, Type]) -> Set
.br
.RS
.TP
Types
Set = set()
.br
Terms = [term()]
.br
Type = type()
.br
.RE
.RS
.LP
Creates an unordered set\&. \fIset(L, T)\fR is equivalent to \fIfrom_term(L, T)\fR, if the result is an unordered set\&. If no type is explicitly given, \fI[atom]\fR is used as type of the set\&.
.RE
.LP
.B
specification(Fun, Set1) -> Set2
.br
.RS
.TP
Types
Fun = spec_fun()
.br
Set1 = Set2 = set()
.br
.RE
.RS
.LP
Returns the set containing every element of Set1 for which Fun returns \fItrue\fR\&. If Fun is a tuple \fI{external, Fun2}\fR, Fun2 is applied to the external set of each element, otherwise Fun is applied to each element\&.

.nf
1> R1 = sofs:relation([{a,1},{b,2}]),

R2 = sofs:relation([{x,1},{x,2},{y,3}]),

S1 = sofs:from_sets([R1,R2]),

S2 = sofs:specification({sofs,is_a_function}, S1),

sofs:to_external(S2)\&.

[[{a,1},{b,2}]]
.fi
.RE
.LP
.B
strict_relation(BinRel1) -> BinRel2
.br
.RS
.TP
Types
BinRel1 = BinRel2 = binary_relation()
.br
.RE
.RS
.LP
Returns the strict relation corresponding to the binary relation BinRel1\&.

.nf
1> R1 = sofs:relation([{1,1},{1,2},{2,1},{2,2}]),

R2 = sofs:strict_relation(R1),

sofs:to_external(R2)\&.

[{1,2},{2,1}]
.fi
.RE
.LP
.B
substitution(SetFun, Set1) -> Set2
.br
.RS
.TP
Types
SetFun = set_fun()
.br
Set1 = Set2 = set()
.br
.RE
.RS
.LP
Returns a function, the domain of which is Set1\&. The value of an element of the domain is the result of applying SetFun to the element\&.

.nf
1> L = [{a,1},{b,2}]\&.

[{a,1},{b,2}]
2> sofs:to_external(sofs:projection(1,sofs:relation(L)))\&.

[a,b]
3> sofs:to_external(sofs:substitution(1,sofs:relation(L)))\&.

[{{a,1},a},{{b,2},b}]
4> SetFun = {external, fun({A,_}=E) -> {E,A} end},

sofs:to_external(sofs:projection(SetFun,sofs:relation(L)))\&.

[{{a,1},a},{{b,2},b}]
.fi
.LP
The relation of equality between the elements of {a,b,c}:

.nf
1> I = sofs:substitution(fun(A) -> A end, sofs:set([a,b,c])),

sofs:to_external(I)\&.

[{a,a},{b,b},{c,c}]
.fi
.LP
Let SetOfSets be a set of sets and BinRel a binary relation\&. The function that maps each element Set of SetOfSets onto the image of Set under BinRel is returned by this function:

.nf
images(SetOfSets, BinRel) ->
   Fun = fun(Set) -> sofs:image(BinRel, Set) end,
   sofs:substitution(Fun, SetOfSets)\&.
.fi
.LP
Here might be the place to reveal something that was more or less stated before, namely that external unordered sets are represented as sorted lists\&. As a consequence, creating the image of a set under a relation R may traverse all elements of R (to that comes the sorting of results, the image)\&. In \fIimages/2\fR, BinRel will be traversed once for each element of SetOfSets, which may take too long\&. The following efficient function could be used instead under the assumption that the image of each element of SetOfSets under BinRel is non-empty:

.nf
images2(SetOfSets, BinRel) ->
   CR = sofs:canonical_relation(SetOfSets),
   R = sofs:relative_product1(CR, BinRel),
   sofs:relation_to_family(R)\&.
.fi
.RE
.LP
.B
symdiff(Set1, Set2) -> Set3
.br
.RS
.TP
Types
Set1 = Set2 = Set3 = set()
.br
.RE
.RS
.LP
Returns the symmetric difference (or the Boolean sum) of Set1 and Set2\&.

.nf
1> S1 = sofs:set([1,2,3]),

S2 = sofs:set([2,3,4]),

P = sofs:symdiff(S1, S2),

sofs:to_external(P)\&.

[1,4]
.fi
.RE
.LP
.B
symmetric_partition(Set1, Set2) -> {Set3, Set4, Set5}
.br
.RS
.TP
Types
Set1 = Set2 = Set3 = Set4 = Set5 = set()
.br
.RE
.RS
.LP
Returns a triple of sets: Set3 contains the elements of Set1 that do not belong to Set2; Set4 contains the elements of Set1 that belong to Set2; Set5 contains the elements of Set2 that do not belong to Set1\&.
.RE
.LP
.B
to_external(AnySet) -> ExternalSet
.br
.RS
.TP
Types
ExternalSet = external_set()
.br
AnySet = anyset()
.br
.RE
.RS
.LP
Returns the external set of an atomic, ordered or unordered set\&.
.RE
.LP
.B
to_sets(ASet) -> Sets
.br
.RS
.TP
Types
ASet = set() | ordset()
.br
Sets = tuple_of(AnySet) | [AnySet]
.br
.RE
.RS
.LP
Returns the elements of the ordered set ASet as a tuple of sets, and the elements of the unordered set ASet as a sorted list of sets without duplicates\&.
.RE
.LP
.B
type(AnySet) -> Type
.br
.RS
.TP
Types
AnySet = anyset()
.br
Type = type()
.br
.RE
.RS
.LP
Returns the type of an atomic, ordered or unordered set\&.
.RE
.LP
.B
union(SetOfSets) -> Set
.br
.RS
.TP
Types
Set = set()
.br
SetOfSets = set_of_sets()
.br
.RE
.RS
.LP
Returns the union of the set of sets SetOfSets\&.
.RE
.LP
.B
union(Set1, Set2) -> Set3
.br
.RS
.TP
Types
Set1 = Set2 = Set3 = set()
.br
.RE
.RS
.LP
Returns the union of Set1 and Set2\&.
.RE
.LP
.B
union_of_family(Family) -> Set
.br
.RS
.TP
Types
Family = family()
.br
Set = set()
.br
.RE
.RS
.LP
Returns the union of the family Family\&.

.nf
1> F = sofs:family([{a,[0,2,4]},{b,[0,1,2]},{c,[2,3]}]),

S = sofs:union_of_family(F),

sofs:to_external(S)\&.

[0,1,2,3,4]
.fi
.RE
.LP
.B
weak_relation(BinRel1) -> BinRel2
.br
.RS
.TP
Types
BinRel1 = BinRel2 = binary_relation()
.br
.RE
.RS
.LP
Returns a subset S of the weak relation W corresponding to the binary relation BinRel1\&. Let F be the field of BinRel1\&. The subset S is defined so that x S y if x W y for some x in F and for some y in F\&.

.nf
1> R1 = sofs:relation([{1,1},{1,2},{3,1}]),

R2 = sofs:weak_relation(R1),

sofs:to_external(R2)\&.

[{1,1},{1,2},{2,2},{3,1},{3,3}]
.fi
.RE
.SH SEE ALSO
.LP
dict(3), digraph(3), orddict(3), ordsets(3), sets(3)