1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
|
.TH xref 3 "tools 2.6.1" "Ericsson AB" "ERLANG MODULE DEFINITION"
.SH MODULE
xref \- A Cross Reference Tool for analyzing dependencies between functions, modules, applications and releases\&.
.SH DESCRIPTION
.LP
Xref is a cross reference tool that can be used for finding dependencies between functions, modules, applications and releases\&.
.LP
Calls between functions are either \fIlocal calls\fR like \fIf()\fR, or \fIexternal calls\fR like \fIm:f()\fR\&. \fIModule data\fR, which are extracted from BEAM files, include local functions, exported functions, local calls and external calls\&. By default, calls to built-in functions ( BIF ) are ignored, but if the option \fIbuiltins\fR, accepted by some of this module\&'s functions, is set to \fItrue\fR, calls to BIFs are included as well\&. It is the analyzing OTP version that decides what functions are BIFs\&. Functional objects are assumed to be called where they are created (and nowhere else)\&. \fIUnresolved calls\fR are calls to \fIapply\fR or \fIspawn\fR with variable module, variable function, or variable arguments\&. Examples are \fIM:F(a)\fR, \fIapply(M, f, [a])\fR, and \fIspawn(m, f(), Args)\fR\&. Unresolved calls are represented by calls where variable modules have been replaced with the atom \fI\&'$M_EXPR\&'\fR, variable functions have been replaced with the atom \fI\&'$F_EXPR\&'\fR, and variable number of arguments have been replaced with the number \fI-1\fR\&. The above mentioned examples are represented by calls to \fI\&'$M_EXPR\&':\&'$F_EXPR\&'/1\fR, \fI\&'$M_EXPR\&':f/1\fR, and \fIm:\&'$F_EXPR\&'/-1\fR\&. The unresolved calls are a subset of the external calls\&.
.SS Warning:
.LP
Unresolved calls make module data incomplete, which implies that the results of analyses may be invalid\&.
.LP
\fIApplications\fR are collections of modules\&. The modules\&' BEAM files are located in the \fIebin\fR subdirectory of the application directory\&. The name of the application directory determines the name and version of the application\&. \fIReleases\fR are collections of applications located in the \fIlib\fR subdirectory of the release directory\&. There is more to read about applications and releases in the Design Principles book\&.
.LP
\fIXref servers\fR are identified by names, supplied when creating new servers\&. Each Xref server holds a set of releases, a set of applications, and a set of modules with module data\&. Xref servers are independent of each other, and all analyses are evaluated in the context of one single Xref server (exceptions are the functions \fIm/1\fR and \fId/1\fR which do not use servers at all)\&. The \fImode\fR of an Xref server determines what module data are extracted from BEAM files as modules are added to the server\&. Starting with R7, BEAM files compiled with the option \fIdebug_info\fR contain so called debug information, which is an abstract representation of the code\&. In \fIfunctions\fR mode, which is the default mode, function calls and line numbers are extracted from debug information\&. In \fImodules\fR mode, debug information is ignored if present, but dependencies between modules are extracted from other parts of the BEAM files\&. The \fImodules\fR mode is significantly less time and space consuming than the \fIfunctions\fR mode, but the analyses that can be done are limited\&.
.LP
An \fIanalyzed module\fR is a module that has been added to an Xref server together with its module data\&. A \fIlibrary module\fR is a module located in some directory mentioned in the \fIlibrary path\fR\&. A library module is said to be used if some of its exported functions are used by some analyzed module\&. An \fIunknown module\fR is a module that is neither an analyzed module nor a library module, but whose exported functions are used by some analyzed module\&. An \fIunknown function\fR is a used function that is neither local or exported by any analyzed module nor exported by any library module\&. An \fIundefined function\fR is an externally used function that is not exported by any analyzed module or library module\&. With this notion, a local function can be an undefined function, namely if it is externally used from some module\&. All unknown functions are also undefined functions; there is a figure in the User\&'s Guide that illustrates this relationship\&.
.LP
Starting with R9C, the module attribute tag \fIdeprecated\fR can be used to inform Xref about \fIdeprecated functions\fR and optionally when functions are planned to be removed\&. A few examples show the idea:
.RS 2
.TP 4
.B
-deprecated({f,1})\&.:
The exported function \fIf/1\fR is deprecated\&. Nothing is said whether \fIf/1\fR will be removed or not\&.
.TP 4
.B
-deprecated({f,\&'_\&'})\&.:
All exported functions \fIf/0\fR, \fIf/1\fR and so on are deprecated\&.
.TP 4
.B
-deprecated(module)\&.:
All exported functions in the module are deprecated\&. Equivalent to \fI-deprecated({\&'_\&', \&'_\&'})\&.\fR\&.
.TP 4
.B
-deprecated([{g,1,next_version}])\&.:
The function \fIg/1\fR is deprecated and will be removed in next version\&.
.TP 4
.B
-deprecated([{g,2,next_major_release}])\&.:
The function \fIg/2\fR is deprecated and will be removed in next major release\&.
.TP 4
.B
-deprecated([{g,3,eventually}])\&.:
The function \fIg/3\fR is deprecated and will eventually be removed\&.
.TP 4
.B
-deprecated({\&'_\&',\&'_\&',eventually})\&.:
All exported functions in the module are deprecated and will eventually be removed\&.
.RE
.LP
Before any analysis can take place, module data must be \fIset up\fR\&. For instance, the cross reference and the unknown functions are computed when all module data are known\&. The functions that need complete data (\fIanalyze\fR, \fIq\fR, \fIvariables\fR) take care of setting up data automatically\&. Module data need to be set up (again) after calls to any of the \fIadd\fR, \fIreplace\fR, \fIremove\fR, \fIset_library_path\fR or \fIupdate\fR functions\&.
.LP
The result of setting up module data is the \fICall Graph\fR\&. A (directed) graph consists of a set of vertices and a set of (directed) edges\&. The edges represent \fIcalls\fR (From,To) between functions, modules, applications or releases\&. From is said to call To, and To is said to be used by From\&. The vertices of the Call Graph are the functions of all module data: local and exported functions of analyzed modules; used BIFs; used exported functions of library modules; and unknown functions\&. The functions \fImodule_info/0, 1\fR added by the compiler are included among the exported functions, but only when called from some module\&. The edges are the function calls of all module data\&. A consequence of the edges being a set is that there is only one edge if a function is locally or externally used several times on one and the same line of code\&.
.LP
The Call Graph is represented by Erlang terms (the sets are lists), which is suitable for many analyses\&. But for analyses that look at chains of calls, a list representation is much too slow\&. Instead the representation offered by the \fIdigraph\fR module is used\&. The translation of the list representation of the Call Graph - or a subgraph thereof - to the \fIdigraph\fR representation does not come for free, so the language used for expressing queries to be described below has a special operator for this task and a possibility to save the \fIdigraph\fR representation for subsequent analyses\&.
.LP
In addition to the Call Graph there is a graph called the \fIInter Call Graph\fR\&. This is a graph of calls (From,To) such that there is a chain of calls from From to To in the Call Graph, and every From and To is an exported function or an unused local function\&. The vertices are the same as for the Call Graph\&.
.LP
Calls between modules, applications and releases are also directed graphs\&. The \fItypes\fR of the vertices and edges of these graphs are (ranging from the most special to the most general): \fIFun\fR for functions; \fIMod\fR for modules; \fIApp\fR for applications; and \fIRel\fR for releases\&. The following paragraphs will describe the different constructs of the language used for selecting and analyzing parts of the graphs, beginning with the \fIconstants\fR:
.RS 2
.TP 2
*
Expression ::= Constants
.TP 2
*
Constants ::= Consts | Consts \fI:\fR Type | RegExpr
.TP 2
*
Consts ::= Constant | \fI[\fRConstant\fI, \fR\&.\&.\&.\fI]\fR | \fI{\fRConstant\fI, \fR\&.\&.\&.\fI}\fR
.TP 2
*
Constant ::= Call | Const
.TP 2
*
Call ::= FunSpec\fI->\fRFunSpec | \fI{\fRMFA\fI, \fRMFA\fI}\fR | AtomConst\fI->\fRAtomConst | \fI{\fRAtomConst\fI, \fRAtomConst\fI}\fR
.TP 2
*
Const ::= AtomConst | FunSpec | MFA
.TP 2
*
AtomConst ::= Application | Module | Release
.TP 2
*
FunSpec ::= Module \fI:\fR Function \fI/\fR Arity
.TP 2
*
MFA ::= \fI{\fRModule\fI, \fRFunction\fI, \fRArity\fI}\fR
.TP 2
*
RegExpr ::= RegString \fI:\fR Type | RegFunc | RegFunc \fI:\fR Type
.TP 2
*
RegFunc ::= RegModule \fI:\fR RegFunction \fI/\fR RegArity
.TP 2
*
RegModule ::= RegAtom
.TP 2
*
RegFunction ::= RegAtom
.TP 2
*
RegArity ::= RegString | Number | \fI_\fR | \fI-1\fR
.TP 2
*
RegAtom ::= RegString | Atom | \fI_\fR
.TP 2
*
RegString ::= - a regular expression, as described in the \fIregexp\fR module, enclosed in double quotes -
.TP 2
*
Type ::= \fIFun\fR | \fIMod\fR | \fIApp\fR | \fIRel\fR
.TP 2
*
Function ::= Atom
.TP 2
*
Application ::= Atom
.TP 2
*
Module ::= Atom
.TP 2
*
Release ::= Atom
.TP 2
*
Arity ::= Number | \fI-1\fR
.TP 2
*
Atom ::= - same as Erlang atoms -
.TP 2
*
Number ::= - same as non-negative Erlang integers -
.RE
.LP
Examples of constants are: \fIkernel\fR, \fIkernel->stdlib\fR, \fI[kernel, sasl]\fR, \fI[pg -> mnesia, {tv, mnesia}] : Mod\fR\&. It is an error if an instance of \fIConst\fR does not match any vertex of any graph\&. If there are more than one vertex matching an untyped instance of \fIAtomConst\fR, then the one of the most general type is chosen\&. A list of constants is interpreted as a set of constants, all of the same type\&. A tuple of constants constitute a chain of calls (which may, but does not have to, correspond to an actual chain of calls of some graph)\&. Assigning a type to a list or tuple of \fIConstant\fR is equivalent to assigning the type to each \fIConstant\fR\&.
.LP
\fIRegular expressions\fR are used as a means to select some of the vertices of a graph\&. A \fIRegExpr\fR consisting of a \fIRegString\fR and a type - an example is \fI"xref_\&.*" : Mod\fR - is interpreted as those modules (or applications or releases, depending on the type) that match the expression\&. Similarly, a \fIRegFunc\fR is interpreted as those vertices of the Call Graph that match the expression\&. An example is \fI"xref_\&.*":"add_\&.*"/"(2|3)"\fR, which matches all \fIadd\fR functions of arity two or three of any of the xref modules\&. Another example, one that matches all functions of arity 10 or more: \fI_:_/"[1-9]\&.+"\fR\&. Here \fI_\fR is an abbreviation for \fI"\&.*"\fR, that is, the regular expression that matches anything\&.
.LP
The syntax of \fIvariables\fR is simple:
.RS 2
.TP 2
*
Expression ::= Variable
.TP 2
*
Variable ::= - same as Erlang variables -
.RE
.LP
There are two kinds of variables: predefined variables and user variables\&. \fIPredefined variables\fR hold set up module data, and cannot be assigned to but only used in queries\&. \fIUser variables\fR on the other hand can be assigned to, and are typically used for temporary results while evaluating a query, and for keeping results of queries for use in subsequent queries\&. The predefined variables are (variables marked with (*) are available in \fIfunctions\fR mode only):
.RS 2
.TP 4
.B
\fIE\fR:
Call Graph Edges (*)\&.
.TP 4
.B
\fIV\fR:
Call Graph Vertices (*)\&.
.TP 4
.B
\fIM\fR:
Modules\&. All modules: analyzed modules, used library modules, and unknown modules\&.
.TP 4
.B
\fIA\fR:
Applications\&.
.TP 4
.B
\fIR\fR:
Releases\&.
.TP 4
.B
\fIME\fR:
Module Edges\&. All module calls\&.
.TP 4
.B
\fIAE\fR:
Application Edges\&. All application calls\&.
.TP 4
.B
\fIRE\fR:
Release Edges\&. All release calls\&.
.TP 4
.B
\fIL\fR:
Local Functions (*)\&. All local functions of analyzed modules\&.
.TP 4
.B
\fIX\fR:
Exported Functions\&. All exported functions of analyzed modules and all used exported functions of library modules\&.
.TP 4
.B
\fIF\fR:
Functions (*)\&.
.TP 4
.B
\fIB\fR:
Used BIFs\&. \fIB\fR is empty if \fIbuiltins\fR is \fIfalse\fR for all analyzed modules\&.
.TP 4
.B
\fIU\fR:
Unknown Functions\&.
.TP 4
.B
\fIUU\fR:
Unused Functions (*)\&. All local and exported functions of analyzed modules that have not been used\&.
.TP 4
.B
\fIXU\fR:
Externally Used Functions\&. Functions of all modules - including local functions - that have been used in some external call\&.
.TP 4
.B
\fILU\fR:
Locally Used Functions (*)\&. Functions of all modules that have been used in some local call\&.
.TP 4
.B
\fILC\fR:
Local Calls (*)\&.
.TP 4
.B
\fIXC\fR:
External Calls (*)\&.
.TP 4
.B
\fIAM\fR:
Analyzed Modules\&.
.TP 4
.B
\fIUM\fR:
Unknown Modules\&.
.TP 4
.B
\fILM\fR:
Used Library Modules\&.
.TP 4
.B
\fIUC\fR:
Unresolved Calls\&. Empty in \fImodules\fR mode\&.
.TP 4
.B
\fIEE\fR:
Inter Call Graph Edges (*)\&.
.TP 4
.B
\fIDF\fR:
Deprecated Functions\&. All deprecated exported functions and all used deprecated BIFs\&.
.TP 4
.B
\fIDF_1\fR:
Deprecated Functions\&. All deprecated functions to be removed in next version\&.
.TP 4
.B
\fIDF_2\fR:
Deprecated Functions\&. All deprecated functions to be removed in next version or next major release\&.
.TP 4
.B
\fIDF_3\fR:
Deprecated Functions\&. All deprecated functions to be removed in next version, next major release, or later\&.
.RE
.LP
These are a few facts about the predefined variables (the set operators \fI+\fR (union) and \fI-\fR (difference) as well as the cast operator \fI(\fRType\fI)\fR are described below):
.RS 2
.TP 2
*
\fIF\fR is equal to \fIL + X\fR\&.
.TP 2
*
\fIV\fR is equal to \fIX + L + B + U\fR, where \fIX\fR, \fIL\fR, \fIB\fR and \fIU\fR are pairwise disjoint (that is, have no elements in common)\&.
.TP 2
*
\fIUU\fR is equal to \fIV - (XU + LU)\fR, where \fILU\fR and \fIXU\fR may have elements in common\&. Put in another way:
.TP 2
*
\fIV\fR is equal to \fIUU + XU + LU\fR\&.
.TP 2
*
\fIE\fR is equal to \fILC + XC\fR\&. Note that \fILC\fR and \fIXC\fR may have elements in common, namely if some function is locally and externally used from one and the same function\&.
.TP 2
*
\fIU\fR is a subset of \fIXU\fR\&.
.TP 2
*
\fIB\fR is a subset of \fIXU\fR\&.
.TP 2
*
\fILU\fR is equal to \fIrange LC\fR\&.
.TP 2
*
\fIXU\fR is equal to \fIrange XC\fR\&.
.TP 2
*
\fILU\fR is a subset of \fIF\fR\&.
.TP 2
*
\fIUU\fR is a subset of \fIF\fR\&.
.TP 2
*
\fIrange UC\fR is a subset of \fIU\fR\&.
.TP 2
*
\fIM\fR is equal to \fIAM + LM + UM\fR, where \fIAM\fR, \fILM\fR and \fIUM\fR are pairwise disjoint\&.
.TP 2
*
\fIME\fR is equal to \fI(Mod) E\fR\&.
.TP 2
*
\fIAE\fR is equal to \fI(App) E\fR\&.
.TP 2
*
\fIRE\fR is equal to \fI(Rel) E\fR\&.
.TP 2
*
\fI(Mod) V\fR is a subset of \fIM\fR\&. Equality holds if all analyzed modules have some local, exported, or unknown function\&.
.TP 2
*
\fI(App) M\fR is a subset of \fIA\fR\&. Equality holds if all applications have some module\&.
.TP 2
*
\fI(Rel) A\fR is a subset of \fIR\fR\&. Equality holds if all releases have some application\&.
.TP 2
*
\fIDF_1\fR is a subset of \fIDF_2\fR\&.
.TP 2
*
\fIDF_2\fR is a subset of \fIDF_3\fR\&.
.TP 2
*
\fIDF_3\fR is a subset of \fIDF\fR\&.
.TP 2
*
\fIDF\fR is a subset of \fIX + B\fR\&.
.RE
.LP
An important notion is that of \fIconversion\fR of expressions\&. The syntax of a cast expression is:
.RS 2
.TP 2
*
Expression ::= \fI(\fR Type \fI)\fR Expression
.RE
.LP
The interpretation of the cast operator depends on the named type \fIType\fR, the type of \fIExpression\fR, and the structure of the elements of the interpretation of \fIExpression\fR\&. If the named type is equal to the expression type, no conversion is done\&. Otherwise, the conversion is done one step at a time; \fI(Fun)(App)RE\fR, for instance, is equivalent to \fI(Fun)(Mod)(App)RE\fR\&. Now assume that the interpretation of \fIExpression\fR is a set of constants (functions, modules, applications or releases)\&. If the named type is more general than the expression type, say \fIMod\fR and \fIFun\fR respectively, then the interpretation of the cast expression is the set of modules that have at least one of their functions mentioned in the interpretation of the expression\&. If the named type is more special than the expression type, say \fIFun\fR and \fIMod\fR, then the interpretation is the set of all the functions of the modules (in \fImodules\fR mode, the conversion is partial since the local functions are not known)\&. The conversions to and from applications and releases work analogously\&. For instance, \fI(App) "xref_\&.*" : Mod\fR returns all applications containing at least one module such that \fIxref_\fR is a prefix of the module name\&.
.LP
Now assume that the interpretation of \fIExpression\fR is a set of calls\&. If the named type is more general than the expression type, say \fIMod\fR and \fIFun\fR respectively, then the interpretation of the cast expression is the set of calls (M1,M2) such that the interpretation of the expression contains a call from some function of M1 to some function of M2\&. If the named type is more special than the expression type, say \fIFun\fR and \fIMod\fR, then the interpretation is the set of all function calls (F1,F2) such that the interpretation of the expression contains a call (M1,M2) and F1 is a function of M1 and F2 is a function of M2 (in \fImodules\fR mode, there are no functions calls, so a cast to \fIFun\fR always yields an empty set)\&. Again, the conversions to and from applications and releases work analogously\&.
.LP
The interpretation of constants and variables are sets, and those sets can be used as the basis for forming new sets by the application of \fIset operators\fR\&. The syntax:
.RS 2
.TP 2
*
Expression ::= Expression BinarySetOp Expression
.TP 2
*
BinarySetOp ::= \fI+\fR | \fI*\fR | \fI-\fR
.RE
.LP
\fI+\fR, \fI*\fR and \fI-\fR are interpreted as union, intersection and difference respectively: the union of two sets contains the elements of both sets; the intersection of two sets contains the elements common to both sets; and the difference of two sets contains the elements of the first set that are not members of the second set\&. The elements of the two sets must be of the same structure; for instance, a function call cannot be combined with a function\&. But if a cast operator can make the elements compatible, then the more general elements are converted to the less general element type\&. For instance, \fIM+F\fR is equivalent to \fI(Fun)M+F\fR, and \fIE-AE\fR is equivalent to \fIE-(Fun)AE\fR\&. One more example: \fIX * xref : Mod\fR is interpreted as the set of functions exported by the module \fIxref\fR; \fIxref : Mod\fR is converted to the more special type of \fIX\fR (\fIFun\fR, that is) yielding all functions of \fIxref\fR, and the intersection with \fIX\fR (all functions exported by analyzed modules and library modules) is interpreted as those functions that are exported by some module \fIand\fR functions of \fIxref\fR\&.
.LP
There are also unary set operators:
.RS 2
.TP 2
*
Expression ::= UnarySetOp Expression
.TP 2
*
UnarySetOp ::= \fIdomain\fR | \fIrange\fR | \fIstrict\fR
.RE
.LP
Recall that a call is a pair (From,To)\&. \fIdomain\fR applied to a set of calls is interpreted as the set of all vertices From, and \fIrange\fR as the set of all vertices To\&. The interpretation of the \fIstrict\fR operator is the operand with all calls on the form (A,A) removed\&.
.LP
The interpretation of the \fIrestriction operators\fR is a subset of the first operand, a set of calls\&. The second operand, a set of vertices, is converted to the type of the first operand\&. The syntax of the restriction operators:
.RS 2
.TP 2
*
Expression ::= Expression RestrOp Expression
.TP 2
*
RestrOp ::= \fI|\fR
.TP 2
*
RestrOp ::= \fI||\fR
.TP 2
*
RestrOp ::= \fI|||\fR
.RE
.LP
The interpretation in some detail for the three operators:
.RS 2
.TP 4
.B
\fI|\fR:
The subset of calls from any of the vertices\&.
.TP 4
.B
\fI||\fR:
The subset of calls to any of the vertices\&.
.TP 4
.B
\fI|||\fR:
The subset of calls to and from any of the vertices\&. For all sets of calls \fICS\fR and all sets of vertices \fIVS\fR, \fICS|||VS\fR is equivalent to \fICS|VS*CS||VS\fR\&.
.RE
.LP
Two functions (modules, applications, releases) belong to the same strongly connected component if they call each other (in)directly\&. The interpretation of the \fIcomponents\fR operator is the set of strongly connected components of a set of calls\&. The \fIcondensation\fR of a set of calls is a new set of calls between the strongly connected components such that there is an edge between two components if there is some constant of the first component that calls some constant of the second component\&.
.LP
The interpretation of the \fIof\fR operator is a chain of calls of the second operand (a set of calls) that passes throw all of the vertices of the first operand (a tuple of constants), in the given order\&. The second operand is converted to the type of the first operand\&. For instance, the \fIof\fR operator can be used for finding out whether a function calls another function indirectly, and the chain of calls demonstrates how\&. The syntax of the graph analyzing operators:
.RS 2
.TP 2
*
Expression ::= Expression GraphOp Expression
.TP 2
*
GraphOp ::= \fIcomponents\fR | \fIcondensation\fR | \fIof\fR
.RE
.LP
As was mentioned before, the graph analyses operate on the \fIdigraph\fR representation of graphs\&. By default, the \fIdigraph\fR representation is created when needed (and deleted when no longer used), but it can also be created explicitly by use of the \fIclosure\fR operator:
.RS 2
.TP 2
*
Expression ::= ClosureOp Expression
.TP 2
*
ClosureOp ::= \fIclosure\fR
.RE
.LP
The interpretation of the \fIclosure\fR operator is the transitive closure of the operand\&.
.LP
The restriction operators are defined for closures as well; \fIclosureE|xref:Mod\fR is interpreted as the direct or indirect function calls from the \fIxref\fR module, while the interpretation of \fIE|xref:Mod\fR is the set of direct calls from \fIxref\fR\&. If some graph is to be used in several graph analyses, it saves time to assign the \fIdigraph\fR representation of the graph to a user variable, and then make sure that every graph analysis operates on that variable instead of the list representation of the graph\&.
.LP
The lines where functions are defined (more precisely: where the first clause begins) and the lines where functions are used are available in \fIfunctions\fR mode\&. The line numbers refer to the files where the functions are defined\&. This holds also for files included with the \fI-include\fR and \fI-include_lib\fR directives, which may result in functions defined apparently in the same line\&. The \fIline operators\fR are used for assigning line numbers to functions and for assigning sets of line numbers to function calls\&. The syntax is similar to the one of the cast operator:
.RS 2
.TP 2
*
Expression ::= \fI(\fR LineOp\fI)\fR Expression
.TP 2
*
Expression ::= \fI(\fR XLineOp\fI)\fR Expression
.TP 2
*
LineOp ::= \fILin\fR | \fIELin\fR | \fILLin\fR | \fIXLin\fR
.TP 2
*
XLineOp ::= \fIXXL\fR
.RE
.LP
The interpretation of the \fILin\fR operator applied to a set of functions assigns to each function the line number where the function is defined\&. Unknown functions and functions of library modules are assigned the number 0\&.
.LP
The interpretation of some LineOp operator applied to a set of function calls assigns to each call the set of line numbers where the first function calls the second function\&. Not all calls are assigned line numbers by all operators:
.RS 2
.TP 2
*
the \fILin\fR operator is defined for Call Graph Edges;
.TP 2
*
the \fILLin\fR operator is defined for Local Calls\&.
.TP 2
*
the \fIXLin\fR operator is defined for External Calls\&.
.TP 2
*
the \fIELin\fR operator is defined for Inter Call Graph Edges\&.
.RE
.LP
The \fILin\fR (\fILLin\fR, \fIXLin\fR) operator assigns the lines where calls (local calls, external calls) are made\&. The \fIELin\fR operator assigns to each call (From,To), for which it is defined, every line L such that there is a chain of calls from From to To beginning with a call on line L\&.
.LP
The \fIXXL\fR operator is defined for the interpretation of any of the LineOp operators applied to a set of function calls\&. The result is that of replacing the function call with a line numbered function call, that is, each of the two functions of the call is replaced by a pair of the function and the line where the function is defined\&. The effect of the \fIXXL\fR operator can be undone by the LineOp operators\&. For instance, \fI(Lin)(XXL)(Lin)E\fR is equivalent to \fI(Lin)E\fR\&.
.LP
The \fI+\fR, \fI-\fR, \fI*\fR and \fI#\fR operators are defined for line number expressions, provided the operands are compatible\&. The LineOp operators are also defined for modules, applications, and releases; the operand is implicitly converted to functions\&. Similarly, the cast operator is defined for the interpretation of the LineOp operators\&.
.LP
The interpretation of the \fIcounting operator\fR is the number of elements of a set\&. The operator is undefined for closures\&. The \fI+\fR, \fI-\fR and \fI*\fR operators are interpreted as the obvious arithmetical operators when applied to numbers\&. The syntax of the counting operator:
.RS 2
.TP 2
*
Expression ::= CountOp Expression
.TP 2
*
CountOp ::= \fI#\fR
.RE
.LP
All binary operators are left associative; for instance, \fIA|B ||C\fR is equivalent to \fI(A|B)||C\fR\&. The following is a list of all operators, in increasing order of \fIprecedence\fR:
.RS 2
.TP 2
*
\fI+\fR, \fI-\fR
.TP 2
*
\fI*\fR
.TP 2
*
\fI#\fR
.TP 2
*
\fI|\fR, \fI||\fR, \fI|||\fR
.TP 2
*
\fIof\fR
.TP 2
*
\fI(\fRType\fI)\fR
.TP 2
*
\fIclosure\fR, \fIcomponents\fR, \fIcondensation\fR, \fIdomain\fR, \fIrange\fR, \fIstrict\fR
.RE
.LP
Parentheses are used for grouping, either to make an expression more readable or to override the default precedence of operators:
.RS 2
.TP 2
*
Expression ::= \fI(\fR Expression \fI)\fR
.RE
.LP
A \fIquery\fR is a non-empty sequence of statements\&. A statement is either an assignment of a user variable or an expression\&. The value of an assignment is the value of the right hand side expression\&. It makes no sense to put a plain expression anywhere else but last in queries\&. The syntax of queries is summarized by these productions:
.RS 2
.TP 2
*
Query ::= Statement\fI, \fR\&.\&.\&.
.TP 2
*
Statement ::= Assignment | Expression
.TP 2
*
Assignment ::= Variable \fI:=\fR Expression | Variable \fI=\fR Expression
.RE
.LP
A variable cannot be assigned a new value unless first removed\&. Variables assigned to by the \fI=\fR operator are removed at the end of the query, while variables assigned to by the \fI:=\fR operator can only be removed by calls to \fIforget\fR\&. There are no user variables when module data need to be set up again; if any of the functions that make it necessary to set up module data again is called, all user variables are forgotten\&.
.LP
\fITypes\fR
.nf
application() = atom()
arity() = int() | -1
bool() = true | false
call() = {atom(), atom()} | funcall()
constant() = mfa() | module() | application() | release()
directory() = string()
file() = string()
funcall() = {mfa(), mfa()}
function() = atom()
int() = integer() >= 0
library() = atom()
library_path() = path() | code_path
mfa() = {module(), function(), arity()}
mode() = functions | modules
module() = atom()
release() = atom()
string_position() = int() | at_end
variable() = atom()
xref() = atom()
.fi
.SH EXPORTS
.LP
.B
add_application(Xref, Directory [, Options]) -> {ok, application()} | Error
.br
.RS
.TP
Types
Directory = directory()
.br
Error = {error, module(), Reason}
.br
Options = [Option] | Option
.br
Option = {builtins, bool()} | {name, application()} | {verbose, bool()} | {warnings, bool()}
.br
Reason = {application_clash, {application(), directory(), directory()}} | {file_error, file(), error()} | {invalid_filename, term()} | {invalid_options, term()} | -seealsoadd_directory-
.br
Xref = xref()
.br
.RE
.RS
.LP
Adds an application, the modules of the application and module data of the modules to an Xref server\&. The modules will be members of the application\&. The default is to use the base name of the directory with the version removed as application name, but this can be overridden by the \fIname\fR option\&. Returns the name of the application\&.
.LP
If the given directory has a subdirectory named \fIebin\fR, modules (BEAM files) are searched for in that directory, otherwise modules are searched for in the given directory\&.
.LP
If the mode of the Xref server is \fIfunctions\fR, BEAM files that contain no debug information are ignored\&.
.RE
.LP
.B
add_directory(Xref, Directory [, Options]) -> {ok, Modules} | Error
.br
.RS
.TP
Types
Directory = directory()
.br
Error = {error, module(), Reason}
.br
Modules = [module()]
.br
Options = [Option] | Option
.br
Option = {builtins, bool()} | {recurse, bool()} | {verbose, bool()} | {warnings, bool()}
.br
Reason = {file_error, file(), error()} | {invalid_filename, term()} | {invalid_options, term()} | {unrecognized_file, file()} | -error from beam_lib:chunks/2-
.br
Xref = xref()
.br
.RE
.RS
.LP
Adds the modules found in the given directory and the modules\&' data to an Xref server\&. The default is not to examine subdirectories, but if the option \fIrecurse\fR has the value \fItrue\fR, modules are searched for in subdirectories on all levels as well as in the given directory\&. Returns a sorted list of the names of the added modules\&.
.LP
The modules added will not be members of any applications\&.
.LP
If the mode of the Xref server is \fIfunctions\fR, BEAM files that contain no debug information are ignored\&.
.RE
.LP
.B
add_module(Xref, File [, Options]) -> {ok, module()} | Error
.br
.RS
.TP
Types
Error = {error, module(), Reason}
.br
File = file()
.br
Options = [Option] | Option
.br
Option = {builtins, bool()} | {verbose, bool()} | {warnings, bool()}
.br
Reason = {file_error, file(), error()} | {invalid_filename, term()} | {invalid_options, term()} | {module_clash, {module(), file(), file()}} | {no_debug_info, file()} | -error from beam_lib:chunks/2-
.br
Xref = xref()
.br
.RE
.RS
.LP
Adds a module and its module data to an Xref server\&. The module will not be member of any application\&. Returns the name of the module\&.
.LP
If the mode of the Xref server is \fIfunctions\fR, and the BEAM file contains no debug information, the error message \fIno_debug_info\fR is returned\&.
.RE
.LP
.B
add_release(Xref, Directory [, Options]) -> {ok, release()} | Error
.br
.RS
.TP
Types
Directory = directory()
.br
Error = {error, module(), Reason}
.br
Options = [Option] | Option
.br
Option = {builtins, bool()} | {name, release()} | {verbose, bool()} | {warnings, bool()}
.br
Reason = {application_clash, {application(), directory(), directory()}} | {file_error, file(), error()} | {invalid_filename, term()} | {invalid_options, term()} | {release_clash, {release(), directory(), directory()}} | -seealsoadd_directory-
.br
Xref = xref()
.br
.RE
.RS
.LP
Adds a release, the applications of the release, the modules of the applications, and module data of the modules to an Xref server\&. The applications will be members of the release, and the modules will be members of the applications\&. The default is to use the base name of the directory as release name, but this can be overridden by the \fIname\fR option\&. Returns the name of the release\&.
.LP
If the given directory has a subdirectory named \fIlib\fR, the directories in that directory are assumed to be application directories, otherwise all subdirectories of the given directory are assumed to be application directories\&. If there are several versions of some application, the one with the highest version is chosen\&.
.LP
If the mode of the Xref server is \fIfunctions\fR, BEAM files that contain no debug information are ignored\&.
.RE
.LP
.B
analyze(Xref, Analysis [, Options]) -> {ok, Answer} | Error
.br
.RS
.TP
Types
Analysis = undefined_function_calls | undefined_functions | locals_not_used | exports_not_used | deprecated_function_calls | {deprecated_function_calls, DeprFlag} | deprecated_functions | {deprecated_functions, DeprFlag} | {call, FuncSpec} | {use, FuncSpec} | {module_call, ModSpec} | {module_use, ModSpec} | {application_call, AppSpec} | {application_use, AppSpec} | {release_call, RelSpec} | {release_use, RelSpec}
.br
Answer = [term()]
.br
AppSpec = application() | [application()]
.br
DeprFlag = next_version | next_major_release | eventually
.br
Error = {error, module(), Reason}
.br
FuncSpec = mfa() | [mfa()]
.br
ModSpec = module() | [module()]
.br
Options = [Option] | Option
.br
Option = {verbose, bool()}
.br
RelSpec = release() | [release()]
.br
Reason = {invalid_options, term()} | {parse_error, string_position(), term()} | {unavailable_analysis, term()} | {unknown_analysis, term()} | {unknown_constant, string()} | {unknown_variable, variable()}
.br
Xref = xref()
.br
.RE
.RS
.LP
Evaluates a predefined analysis\&. Returns a sorted list without duplicates of \fIcall()\fR or \fIconstant()\fR, depending on the chosen analysis\&. The predefined analyses, which operate on all analyzed modules, are (analyses marked with (*) are available in \fIfunctions\fRmode only):
.RS 2
.TP 4
.B
\fIundefined_function_calls\fR(*):
Returns a list of calls to undefined functions\&.
.TP 4
.B
\fIundefined_functions\fR:
Returns a list of undefined functions\&.
.TP 4
.B
\fIlocals_not_used\fR(*):
Returns a list of local functions that have not been locally used\&.
.TP 4
.B
\fIexports_not_used\fR:
Returns a list of exported functions that have not been externally used\&.
.TP 4
.B
\fIdeprecated_function_calls\fR(*):
Returns a list of external calls to deprecated functions\&.
.TP 4
.B
\fI{deprecated_function_calls, DeprFlag}\fR(*):
Returns a list of external calls to deprecated functions\&. If \fIDeprFlag\fR is equal to \fInext_version\fR, calls to functions to be removed in next version are returned\&. If \fIDeprFlag\fR is equal to \fInext_major_release\fR, calls to functions to be removed in next major release are returned as well as calls to functions to be removed in next version\&. Finally, if \fIDeprFlag\fR is equal to \fIeventually\fR, all calls to functions to be removed are returned, including calls to functions to be removed in next version or next major release\&.
.TP 4
.B
\fIdeprecated_functions\fR:
Returns a list of externally used deprecated functions\&.
.TP 4
.B
\fI{deprecated_functions, DeprFlag}\fR:
Returns a list of externally used deprecated functions\&. If \fIDeprFlag\fR is equal to \fInext_version\fR, functions to be removed in next version are returned\&. If \fIDeprFlag\fR is equal to \fInext_major_release\fR, functions to be removed in next major release are returned as well as functions to be removed in next version\&. Finally, if \fIDeprFlag\fR is equal to \fIeventually\fR, all functions to be removed are returned, including functions to be removed in next version or next major release\&.
.TP 4
.B
\fI{call, FuncSpec}\fR(*):
Returns a list of functions called by some of the given functions\&.
.TP 4
.B
\fI{use, FuncSpec}\fR(*):
Returns a list of functions that use some of the given functions\&.
.TP 4
.B
\fI{module_call, ModSpec}\fR:
Returns a list of modules called by some of the given modules\&.
.TP 4
.B
\fI{module_use, ModSpec}\fR:
Returns a list of modules that use some of the given modules\&.
.TP 4
.B
\fI{application_call, AppSpec}\fR:
Returns a list of applications called by some of the given applications\&.
.TP 4
.B
\fI{application_use, AppSpec}\fR:
Returns a list of applications that use some of the given applications\&.
.TP 4
.B
\fI{release_call, RelSpec}\fR:
Returns a list of releases called by some of the given releases\&.
.TP 4
.B
\fI{release_use, RelSpec}\fR:
Returns a list of releases that use some of the given releases\&.
.RE
.RE
.LP
.B
d(Directory) -> [DebugInfoResult] | [NoDebugInfoResult] | Error
.br
.RS
.TP
Types
Directory = directory()
.br
DebugInfoResult = {deprecated, [funcall()]} | {undefined, [funcall()]} | {unused, [mfa()]}
.br
Error = {error, module(), Reason}
.br
NoDebugInfoResult = {deprecated, [mfa()]} | {undefined, [mfa()]}
.br
Reason = {file_error, file(), error()} | {invalid_filename, term()} | {unrecognized_file, file()} | -error from beam_lib:chunks/2-
.br
.RE
.RS
.LP
The modules found in the given directory are checked for calls to deprecated functions, calls to undefined functions, and for unused local functions\&. The code path is used as library path\&.
.LP
If some of the found BEAM files contain debug information, then those modules are checked and a list of tuples is returned\&. The first element of each tuple is one of:
.RS 2
.TP 2
*
\fIdeprecated\fR, the second element is a sorted list of calls to deprecated functions;
.TP 2
*
\fIundefined\fR, the second element is a sorted list of calls to undefined functions;
.TP 2
*
\fIunused\fR, the second element is a sorted list of unused local functions\&.
.RE
.LP
If no BEAM file contains debug information, then a list of tuples is returned\&. The first element of each tuple is one of:
.RS 2
.TP 2
*
\fIdeprecated\fR, the second element is a sorted list of externally used deprecated functions;
.TP 2
*
\fIundefined\fR, the second element is a sorted list of undefined functions\&.
.RE
.RE
.LP
.B
forget(Xref) -> ok
.br
.B
forget(Xref, Variables) -> ok | Error
.br
.RS
.TP
Types
Error = {error, module(), Reason}
.br
Reason = {not_user_variable, term()}
.br
Variables = [variable()] | variable()
.br
Xref = xref()
.br
.RE
.RS
.LP
\fIforget/1\fR and \fIforget/2\fR remove all or some of the user variables of an xref server\&.
.RE
.LP
.B
format_error(Error) -> Chars
.br
.RS
.TP
Types
Error = {error, module(), term()}
.br
Chars = [char() | Chars]
.br
.RE
.RS
.LP
Given the error returned by any function of this module, the function \fIformat_error\fR returns a descriptive string of the error in English\&. For file errors, the function \fIformat_error/1\fR in the \fIfile\fR module is called\&.
.RE
.LP
.B
get_default(Xref) -> [{Option, Value}]
.br
.B
get_default(Xref, Option) -> {ok, Value} | Error
.br
.RS
.TP
Types
Error = {error, module(), Reason}
.br
Option = builtins | recurse | verbose | warnings
.br
Reason = {invalid_options, term()}
.br
Value = bool()
.br
Xref = xref()
.br
.RE
.RS
.LP
Returns the default values of one or more options\&.
.RE
.LP
.B
get_library_path(Xref) -> {ok, LibraryPath}
.br
.RS
.TP
Types
LibraryPath = library_path()
.br
Xref = xref()
.br
.RE
.RS
.LP
Returns the library path\&.
.RE
.LP
.B
info(Xref) -> [Info]
.br
.B
info(Xref, Category) -> [{Item, [Info]}]
.br
.B
info(Xref, Category, Items) -> [{Item, [Info]}]
.br
.RS
.TP
Types
Application = [] | [application()]
.br
Category = modules | applications | releases | libraries
.br
Info = {application, Application} | {builtins, bool()} | {directory, directory()} | {library_path, library_path()} | {mode, mode()} | {no_analyzed_modules, int()} | {no_applications, int()} | {no_calls, {NoResolved, NoUnresolved}} | {no_function_calls, {NoLocal, NoResolvedExternal, NoUnresolved}} | {no_functions, {NoLocal, NoExternal}} | {no_inter_function_calls, int()} | {no_releases, int()} | {release, Release} | {version, Version}
.br
Item = module() | application() | release() | library()
.br
Items = Item | [Item]
.br
NoLocal = NoExternal = NoResolvedExternal, NoResolved = NoUnresolved = int()
.br
Release = [] | [release()]
.br
Version = [int()]
.br
Xref = xref()
.br
.RE
.RS
.LP
The \fIinfo\fR functions return information as a list of pairs {Tag,term()} in some order about the state and the module data of an Xref server\&.
.LP
\fIinfo/1\fR returns information with the following tags (tags marked with (*) are available in \fIfunctions\fR mode only):
.RS 2
.TP 2
*
\fIlibrary_path\fR, the library path;
.TP 2
*
\fImode\fR, the mode;
.TP 2
*
\fIno_releases\fR, number of releases;
.TP 2
*
\fIno_applications\fR, total number of applications (of all releases);
.TP 2
*
\fIno_analyzed_modules\fR, total number of analyzed modules;
.TP 2
*
\fIno_calls\fR (*), total number of calls (in all modules), regarding instances of one function call in different lines as separate calls;
.TP 2
*
\fIno_function_calls\fR (*), total number of local calls, resolved external calls and unresolved calls;
.TP 2
*
\fIno_functions\fR (*), total number of local and exported functions;
.TP 2
*
\fIno_inter_function_calls\fR (*), total number of calls of the Inter Call Graph\&.
.RE
.LP
\fIinfo/2\fR and \fIinfo/3\fR return information about all or some of the analyzed modules, applications, releases or library modules of an Xref server\&. The following information is returned for every analyzed module:
.RS 2
.TP 2
*
\fIapplication\fR, an empty list if the module does not belong to any application, otherwise a list of the application name;
.TP 2
*
\fIbuiltins\fR, whether calls to BIFs are included in the module\&'s data;
.TP 2
*
\fIdirectory\fR, the directory where the module\&'s BEAM file is located;
.TP 2
*
\fIno_calls\fR (*), number of calls, regarding instances of one function call in different lines as separate calls;
.TP 2
*
\fIno_function_calls\fR (*), number of local calls, resolved external calls and unresolved calls;
.TP 2
*
\fIno_functions\fR (*), number of local and exported functions;
.TP 2
*
\fIno_inter_function_calls\fR (*), number of calls of the Inter Call Graph;
.RE
.LP
The following information is returned for every application:
.RS 2
.TP 2
*
\fIdirectory\fR, the directory where the modules\&' BEAM files are located;
.TP 2
*
\fIno_analyzed_modules\fR, number of analyzed modules;
.TP 2
*
\fIno_calls\fR (*), number of calls of the application\&'s modules, regarding instances of one function call in different lines as separate calls;
.TP 2
*
\fIno_function_calls\fR (*), number of local calls, resolved external calls and unresolved calls of the application\&'s modules;
.TP 2
*
\fIno_functions\fR (*), number of local and exported functions of the application\&'s modules;
.TP 2
*
\fIno_inter_function_calls\fR (*), number of calls of the Inter Call Graph of the application\&'s modules;
.TP 2
*
\fIrelease\fR, an empty list if the application does not belong to any release, otherwise a list of the release name;
.TP 2
*
\fIversion\fR, the application\&'s version as a list of numbers\&. For instance, the directory "kernel-2\&.6" results in the application name \fIkernel\fR and the application version [2,6]; "kernel" yields the name \fIkernel\fR and the version []\&.
.RE
.LP
The following information is returned for every release:
.RS 2
.TP 2
*
\fIdirectory\fR, the release directory;
.TP 2
*
\fIno_analyzed_modules\fR, number of analyzed modules;
.TP 2
*
\fIno_applications\fR, number of applications;
.TP 2
*
\fIno_calls\fR (*), number of calls of the release\&'s modules, regarding instances of one function call in different lines as separate calls;
.TP 2
*
\fIno_function_calls\fR (*), number of local calls, resolved external calls and unresolved calls of the release\&'s modules;
.TP 2
*
\fIno_functions\fR (*), number of local and exported functions of the release\&'s modules;
.TP 2
*
\fIno_inter_function_calls\fR (*), number of calls of the Inter Call Graph of the release\&'s modules\&.
.RE
.LP
The following information is returned for every library module:
.RS 2
.TP 2
*
\fIdirectory\fR, the directory where the library module\&'s BEAM file is located\&.
.RE
.LP
For every number of calls, functions etc\&. returned by the \fIno_\fR tags, there is a query returning the same number\&. Listed below are examples of such queries\&. Some of the queries return the sum of a two or more of the \fIno_\fR tags numbers\&. \fImod\fR (\fIapp\fR, \fIrel\fR) refers to any module (application, release)\&.
.RS 2
.TP 2
*
\fIno_analyzed_modules\fR
.RS 2
.LP
.RS 2
.TP 2
-
\fI"# AM"\fR (info/1)
.TP 2
-
\fI"# (Mod) app:App"\fR (application)
.TP 2
-
\fI"# (Mod) rel:Rel"\fR (release)
.RE
.RE
.TP 2
*
\fIno_applications\fR
.RS 2
.LP
.RS 2
.TP 2
-
\fI"# A"\fR (info/1)
.RE
.RE
.TP 2
*
\fIno_calls\fR\&. The sum of the number of resolved and unresolved calls:
.RS 2
.LP
.RS 2
.TP 2
-
\fI"# (XLin) E + # (LLin) E"\fR (info/1)
.TP 2
-
\fI"T = E | mod:Mod, # (LLin) T + # (XLin) T"\fR (module)
.TP 2
-
\fI"T = E | app:App, # (LLin) T + # (XLin) T"\fR (application)
.TP 2
-
\fI"T = E | rel:Rel, # (LLin) T + # (XLin) T"\fR (release)
.RE
.RE
.TP 2
*
\fIno_functions\fR\&. Functions in library modules and the functions \fImodule_info/0, 1\fR are not counted by \fIinfo\fR\&. Assuming that \fI"Extra := _:module_info/\e"(0|1)\e" + LM"\fR has been evaluated, the sum of the number of local and exported functions are:
.RS 2
.LP
.RS 2
.TP 2
-
\fI"# (F - Extra)"\fR (info/1)
.TP 2
-
\fI"# (F * mod:Mod - Extra)"\fR (module)
.TP 2
-
\fI"# (F * app:App - Extra)"\fR (application)
.TP 2
-
\fI"# (F * rel:Rel - Extra)"\fR (release)
.RE
.RE
.TP 2
*
\fIno_function_calls\fR\&. The sum of the number of local calls, resolved external calls and unresolved calls:
.RS 2
.LP
.RS 2
.TP 2
-
\fI"# LC + # XC"\fR (info/1)
.TP 2
-
\fI"# LC | mod:Mod + # XC | mod:Mod"\fR (module)
.TP 2
-
\fI"# LC | app:App + # XC | app:App"\fR (application)
.TP 2
-
\fI"# LC | rel:Rel + # XC | mod:Rel"\fR (release)
.RE
.RE
.TP 2
*
\fIno_inter_function_calls\fR
.RS 2
.LP
.RS 2
.TP 2
-
\fI"# EE"\fR (info/1)
.TP 2
-
\fI"# EE | mod:Mod"\fR (module)
.TP 2
-
\fI"# EE | app:App"\fR (application)
.TP 2
-
\fI"# EE | rel:Rel"\fR (release)
.RE
.RE
.TP 2
*
\fIno_releases\fR
.RS 2
.LP
.RS 2
.TP 2
-
\fI"# R"\fR (info/1)
.RE
.RE
.RE
.RE
.LP
.B
m(Module) -> [DebugInfoResult] | [NoDebugInfoResult] | Error
.br
.B
m(File) -> [DebugInfoResult] | [NoDebugInfoResult] | Error
.br
.RS
.TP
Types
DebugInfoResult = {deprecated, [funcall()]} | {undefined, [funcall()]} | {unused, [mfa()]}
.br
Error = {error, module(), Reason}
.br
File = file()
.br
Module = module()
.br
NoDebugInfoResult = {deprecated, [mfa()]} | {undefined, [mfa()]}
.br
Reason = {file_error, file(), error()} | {interpreted, module()} | {invalid_filename, term()} | {cover_compiled, module()} | {no_such_module, module()} | -error from beam_lib:chunks/2-
.br
.RE
.RS
.LP
The given BEAM file (with or without the \fI\&.beam\fR extension) or the file found by calling \fIcode:which(Module)\fR is checked for calls to deprecated functions, calls to undefined functions, and for unused local functions\&. The code path is used as library path\&.
.LP
If the BEAM file contains debug information, then a list of tuples is returned\&. The first element of each tuple is one of:
.RS 2
.TP 2
*
\fIdeprecated\fR, the second element is a sorted list of calls to deprecated functions;
.TP 2
*
\fIundefined\fR, the second element is a sorted list of calls to undefined functions;
.TP 2
*
\fIunused\fR, the second element is a sorted list of unused local functions\&.
.RE
.LP
If the BEAM file does not contain debug information, then a list of tuples is returned\&. The first element of each tuple is one of:
.RS 2
.TP 2
*
\fIdeprecated\fR, the second element is a sorted list of externally used deprecated functions;
.TP 2
*
\fIundefined\fR, the second element is a sorted list of undefined functions\&.
.RE
.RE
.LP
.B
q(Xref, Query [, Options]) -> {ok, Answer} | Error
.br
.RS
.TP
Types
Answer = false | [constant()] | [Call] | [Component] | int() | [DefineAt] | [CallAt] | [AllLines]
.br
Call = call() | ComponentCall
.br
ComponentCall = {Component, Component}
.br
Component = [constant()]
.br
DefineAt = {mfa(), LineNumber}
.br
CallAt = {funcall(), LineNumbers}
.br
AllLines = {{DefineAt, DefineAt}, LineNumbers}
.br
Error = {error, module(), Reason}
.br
LineNumbers = [LineNumber]
.br
LineNumber = int()
.br
Options = [Option] | Option
.br
Option = {verbose, bool()}
.br
Query = string() | atom()
.br
Reason = {invalid_options, term()} | {parse_error, string_position(), term()} | {type_error, string()} | {type_mismatch, string(), string()} | {unknown_analysis, term()} | {unknown_constant, string()} | {unknown_variable, variable()} | {variable_reassigned, string()}
.br
Xref = xref()
.br
.RE
.RS
.LP
Evaluates a query in the context of an Xref server, and returns the value of the last statement\&. The syntax of the value depends on the expression:
.RS 2
.TP 2
*
A set of calls is represented by a sorted list without duplicates of \fIcall()\fR\&.
.TP 2
*
A set of constants is represented by a sorted list without duplicates of \fIconstant()\fR\&.
.TP 2
*
A set of strongly connected components is a sorted list without duplicates of \fIComponent\fR\&.
.TP 2
*
A set of calls between strongly connected components is a sorted list without duplicates of \fIComponentCall\fR\&.
.TP 2
*
A chain of calls is represented by a list of \fIconstant()\fR\&. The list contains the From vertex of every call and the To vertex of the last call\&.
.TP 2
*
The \fIof\fR operator returns \fIfalse\fR if no chain of calls between the given constants can be found\&.
.TP 2
*
The value of the \fIclosure\fR operator (the \fIdigraph\fR representation) is represented by the atom \fI\&'closure()\&'\fR\&.
.TP 2
*
A set of line numbered functions is represented by a sorted list without duplicates of \fIDefineAt\fR\&.
.TP 2
*
A set of line numbered function calls is represented by a sorted list without duplicates of \fICallAt\fR\&.
.TP 2
*
A set of line numbered functions and function calls is represented by a sorted list without duplicates of \fIAllLines\fR\&.
.RE
.LP
For both \fICallAt\fR and \fIAllLines\fR it holds that for no list element is \fILineNumbers\fR an empty list; such elements have been removed\&. The constants of \fIcomponent\fR and the integers of \fILineNumbers\fR are sorted and without duplicates\&.
.RE
.LP
.B
remove_application(Xref, Applications) -> ok | Error
.br
.RS
.TP
Types
Applications = application() | [application()]
.br
Error = {error, module(), Reason}
.br
Reason = {no_such_application, application()}
.br
Xref = xref()
.br
.RE
.RS
.LP
Removes applications and their modules and module data from an Xref server\&.
.RE
.LP
.B
remove_module(Xref, Modules) -> ok | Error
.br
.RS
.TP
Types
Error = {error, module(), Reason}
.br
Modules = module() | [module()]
.br
Reason = {no_such_module, module()}
.br
Xref = xref()
.br
.RE
.RS
.LP
Removes analyzed modules and module data from an Xref server\&.
.RE
.LP
.B
remove_release(Xref, Releases) -> ok | Error
.br
.RS
.TP
Types
Error = {error, module(), Reason}
.br
Reason = {no_such_release, release()}
.br
Releases = release() | [release()]
.br
Xref = xref()
.br
.RE
.RS
.LP
Removes releases and their applications, modules and module data from an Xref server\&.
.RE
.LP
.B
replace_application(Xref, Application, Directory [, Options]) -> {ok, application()} | Error
.br
.RS
.TP
Types
Application = application()
.br
Directory = directory()
.br
Error = {error, module(), Reason}
.br
Options = [Option] | Option
.br
Option = {builtins, bool()} | {verbose, bool()} | {warnings, bool()}
.br
Reason = {no_such_application, application()} | -seealsoadd_application-
.br
Xref = xref()
.br
.RE
.RS
.LP
Replaces the modules of an application with other modules read from an application directory\&. Release membership of the application is retained\&. Note that the name of the application is kept; the name of the given directory is not used\&.
.RE
.LP
.B
replace_module(Xref, Module, File [, Options]) -> {ok, module()} | Error
.br
.RS
.TP
Types
Error = {error, module(), Reason}
.br
File = file()
.br
Module = module()
.br
Options = [Option] | Option
.br
Option = {verbose, bool()} | {warnings, bool()}
.br
ReadModule = module()
.br
Reason = {module_mismatch, module(), ReadModule} | {no_such_module, module()} | -seealsoadd_module-
.br
Xref = xref()
.br
.RE
.RS
.LP
Replaces module data of an analyzed module with data read from a BEAM file\&. Application membership of the module is retained, and so is the value of the \fIbuiltins\fR option of the module\&. An error is returned if the name of the read module differs from the given module\&.
.LP
The \fIupdate\fR function is an alternative for updating module data of recompiled modules\&.
.RE
.LP
.B
set_default(Xref, Option, Value) -> {ok, OldValue} | Error
.br
.B
set_default(Xref, OptionValues) -> ok | Error
.br
.RS
.TP
Types
Error = {error, module(), Reason}
.br
OptionValues = [OptionValue] | OptionValue
.br
OptionValue = {Option, Value}
.br
Option = builtins | recurse | verbose | warnings
.br
Reason = {invalid_options, term()}
.br
Value = bool()
.br
Xref = xref()
.br
.RE
.RS
.LP
Sets the default value of one or more options\&. The options that can be set this way are:
.RS 2
.TP 2
*
\fIbuiltins\fR, with initial default value \fIfalse\fR;
.TP 2
*
\fIrecurse\fR, with initial default value \fIfalse\fR;
.TP 2
*
\fIverbose\fR, with initial default value \fIfalse\fR;
.TP 2
*
\fIwarnings\fR, with initial default value \fItrue\fR\&.
.RE
.LP
The initial default values are set when creating an Xref server\&.
.RE
.LP
.B
set_library_path(Xref, LibraryPath [, Options]) -> ok | Error
.br
.RS
.TP
Types
Error = {error, module(), Reason}
.br
LibraryPath = library_path()
.br
Options = [Option] | Option
.br
Option = {verbose, bool()}
.br
Reason = {invalid_options, term()} | {invalid_path, term()}
.br
Xref = xref()
.br
.RE
.RS
.LP
Sets the library path\&. If the given path is a list of directories, the set of library modules is determined by choosing the first module encountered while traversing the directories in the given order, for those modules that occur in more than one directory\&. By default, the library path is an empty list\&.
.LP
The library path \fIcode_path\fR is used by the functions \fIm/1\fR and \fId/1\fR, but can also be set explicitly\&. Note however that the code path will be traversed once for each used library module while setting up module data\&. On the other hand, if there are only a few modules that are used by not analyzed, using \fIcode_path\fR may be faster than setting the library path to \fIcode:get_path()\fR\&.
.LP
If the library path is set to \fIcode_path\fR, the set of library modules is not determined, and the \fIinfo\fR functions will return empty lists of library modules\&.
.RE
.LP
.B
start(Xref [, Options]) -> Return
.br
.RS
.TP
Types
Options = [Option] | Option
.br
Option = {xref_mode, mode()} | term()
.br
Return = {ok, pid()} | {error, {already_started, pid()}}
.br
Xref = xref()
.br
.RE
.RS
.LP
Creates an Xref server\&. The default mode is \fIfunctions\fR\&. Options that are not recognized by Xref are passed on to \fIgen_server:start/4\fR\&.
.RE
.LP
.B
stop(Xref)
.br
.RS
.TP
Types
Xref = xref()
.br
.RE
.RS
.LP
Stops an Xref server\&.
.RE
.LP
.B
update(Xref [, Options]) -> {ok, Modules} | Error
.br
.RS
.TP
Types
Error = {error, module(), Reason}
.br
Modules = [module()]
.br
Options = [Option] | Option
.br
Option = {verbose, bool()} | {warnings, bool()}
.br
Reason = {invalid_options, term()} | {module_mismatch, module(), ReadModule} | -seealsoadd_module-
.br
Xref = xref()
.br
.RE
.RS
.LP
Replaces the module data of all analyzed modules the BEAM files of which have been modified since last read by an \fIadd\fR function or \fIupdate\fR\&. Application membership of the modules is retained, and so is the value of the \fIbuiltins\fR option\&. Returns a sorted list of the names of the replaced modules\&.
.RE
.LP
.B
variables(Xref [, Options]) -> {ok, [VariableInfo]}
.br
.RS
.TP
Types
Options = [Option] | Option
.br
Option = predefined | user | {verbose, bool()}
.br
Reason = {invalid_options, term()}
.br
VariableInfo = {predefined, [variable()]} | {user, [variable()]}
.br
Xref = xref()
.br
.RE
.RS
.LP
Returns a sorted lists of the names of the variables of an Xref server\&. The default is to return the user variables only\&.
.RE
.SH SEE ALSO
.LP
beam_lib(3), digraph(3), digraph_utils(3), regexp(3), TOOLS User\&'s Guide
|