1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
|
.TH zlib 3 "kernel 2.12.3" "Ericsson AB" "ERLANG MODULE DEFINITION"
.SH MODULE
zlib \- Zlib Compression interface\&.
.SH DESCRIPTION
.LP
The zlib module provides an API for the zlib library (http://www\&.zlib\&.org)\&. It is used to compress and decompress data\&. The data format is described by RFCs 1950 to 1952\&.
.LP
A typical (compress) usage looks like:
.nf
Z = zlib:open(),
ok = zlib:deflateInit(Z,default),
Compress = fun(end_of_data, _Cont) -> [];
(Data, Cont) ->
[zlib:deflate(Z, Data)|Cont(Read(),Cont)]
end,
Compressed = Compress(Read(),Compress),
Last = zlib:deflate(Z, [], finish),
ok = zlib:deflateEnd(Z),
zlib:close(Z),
list_to_binary([Compressed|Last])
.fi
.LP
In all functions errors, \fI{\&'EXIT\&', {Reason, Backtrace}}\fR, might be thrown, where \fIReason\fR describes the error\&. Typical reasons are:
.RS 2
.TP 4
.B
\fIbadarg\fR:
Bad argument
.TP 4
.B
\fIdata_error\fR:
The data contains errors
.TP 4
.B
\fIstream_error\fR:
Inconsistent stream state
.TP 4
.B
\fIeinval\fR:
Bad value or wrong function called
.TP 4
.B
\fI{need_dictionary, Adler32}\fR:
See \fIinflate/2\fR
.RE
.SH DATA TYPES
.nf
iodata = iolist() | binary()
iolist = [char() | binary() | iolist()]
a binary is allowed as the tail of the list
zstream = a zlib stream, see open/0
.fi
.SH EXPORTS
.LP
.B
open() -> Z
.br
.RS
.TP
Types
Z = zstream()
.br
.RE
.RS
.LP
Open a zlib stream\&.
.RE
.LP
.B
close(Z) -> ok
.br
.RS
.TP
Types
Z = zstream()
.br
.RE
.RS
.LP
Closes the stream referenced by \fIZ\fR\&.
.RE
.LP
.B
deflateInit(Z) -> ok
.br
.RS
.TP
Types
Z = zstream()
.br
.RE
.RS
.LP
Same as \fIzlib:deflateInit(Z, default)\fR\&.
.RE
.LP
.B
deflateInit(Z, Level) -> ok
.br
.RS
.TP
Types
Z = zstream()
.br
Level = none | default | best_speed | best_compression | 0\&.\&.9
.br
.RE
.RS
.LP
Initialize a zlib stream for compression\&.
.LP
\fILevel\fR decides the compression level to be used, 0 (\fInone\fR), gives no compression at all, 1 (\fIbest_speed\fR) gives best speed and 9 (\fIbest_compression\fR) gives best compression\&.
.RE
.LP
.B
deflateInit(Z, Level, Method, WindowBits, MemLevel, Strategy) -> ok
.br
.RS
.TP
Types
Z = zstream()
.br
Level = none | default | best_speed | best_compression | 0\&.\&.9
.br
Method = deflated
.br
WindowBits = 9\&.\&.15|-9\&.\&.-15
.br
MemLevel = 1\&.\&.9
.br
Strategy = default|filtered|huffman_only
.br
.RE
.RS
.LP
Initiates a zlib stream for compression\&.
.LP
The \fILevel\fR parameter decides the compression level to be used, 0 (\fInone\fR), gives no compression at all, 1 (\fIbest_speed\fR) gives best speed and 9 (\fIbest_compression\fR) gives best compression\&.
.LP
The \fIMethod\fR parameter decides which compression method to use, currently the only supported method is \fIdeflated\fR\&.
.LP
The \fIWindowBits\fR parameter is the base two logarithm of the window size (the size of the history buffer)\&. It should be in the range 9 through 15\&. Larger values of this parameter result in better compression at the expense of memory usage\&. The default value is 15 if \fIdeflateInit/2\fR\&. A negative \fIWindowBits\fR value suppresses the zlib header (and checksum) from the stream\&. Note that the zlib source mentions this only as a undocumented feature\&.
.LP
The \fIMemLevel\fR parameter specifies how much memory should be allocated for the internal compression state\&. \fIMemLevel\fR=1 uses minimum memory but is slow and reduces compression ratio; \fIMemLevel\fR=9 uses maximum memory for optimal speed\&. The default value is 8\&.
.LP
The \fIStrategy\fR parameter is used to tune the compression algorithm\&. Use the value \fIdefault\fR for normal data, \fIfiltered\fR for data produced by a filter (or predictor), or \fIhuffman_only\fR to force Huffman encoding only (no string match)\&. Filtered data consists mostly of small values with a somewhat random distribution\&. In this case, the compression algorithm is tuned to compress them better\&. The effect of \fIfiltered\fRis to force more Huffman coding and less string matching; it is somewhat intermediate between \fIdefault\fR and \fIhuffman_only\fR\&. The \fIStrategy\fR parameter only affects the compression ratio but not the correctness of the compressed output even if it is not set appropriately\&.
.RE
.LP
.B
deflate(Z, Data) -> Compressed
.br
.RS
.TP
Types
Z = zstream()
.br
Data = iodata()
.br
Compressed = iolist()
.br
.RE
.RS
.LP
Same as \fIdeflate(Z, Data, none)\fR\&.
.RE
.LP
.B
deflate(Z, Data, Flush) ->
.br
.RS
.TP
Types
Z = zstream()
.br
Data = iodata()
.br
Flush = none | sync | full | finish
.br
Compressed = iolist()
.br
.RE
.RS
.LP
\fIdeflate/3\fR compresses as much data as possible, and stops when the input buffer becomes empty\&. It may introduce some output latency (reading input without producing any output) except when forced to flush\&.
.LP
If the parameter \fIFlush\fR is set to \fIsync\fR, all pending output is flushed to the output buffer and the output is aligned on a byte boundary, so that the decompressor can get all input data available so far\&. Flushing may degrade compression for some compression algorithms and so it should be used only when necessary\&.
.LP
If \fIFlush\fR is set to \fIfull\fR, all output is flushed as with \fIsync\fR, and the compression state is reset so that decompression can restart from this point if previous compressed data has been damaged or if random access is desired\&. Using \fIfull\fR too often can seriously degrade the compression\&.
.LP
If the parameter \fIFlush\fR is set to \fIfinish\fR, pending input is processed, pending output is flushed and \fIdeflate/3\fR returns\&. Afterwards the only possible operations on the stream are \fIdeflateReset/1\fR or \fIdeflateEnd/1\fR\&.
.LP
\fIFlush\fR can be set to \fIfinish\fR immediately after \fIdeflateInit\fR if all compression is to be done in one step\&.
.nf
zlib:deflateInit(Z),
B1 = zlib:deflate(Z,Data),
B2 = zlib:deflate(Z,<< >>,finish),
zlib:deflateEnd(Z),
list_to_binary([B1,B2])
.fi
.RE
.LP
.B
deflateSetDictionary(Z, Dictionary) -> Adler32
.br
.RS
.TP
Types
Z = zstream()
.br
Dictionary = binary()
.br
Adler32 = integer()
.br
.RE
.RS
.LP
Initializes the compression dictionary from the given byte sequence without producing any compressed output\&. This function must be called immediately after \fIdeflateInit/[1|2|6]\fR or \fIdeflateReset/1\fR, before any call of \fIdeflate/3\fR\&. The compressor and decompressor must use exactly the same dictionary (see \fIinflateSetDictionary/2\fR)\&. The adler checksum of the dictionary is returned\&.
.RE
.LP
.B
deflateReset(Z) -> ok
.br
.RS
.TP
Types
Z = zstream()
.br
.RE
.RS
.LP
This function is equivalent to \fIdeflateEnd/1\fR followed by \fIdeflateInit/[1|2|6]\fR, but does not free and reallocate all the internal compression state\&. The stream will keep the same compression level and any other attributes\&.
.RE
.LP
.B
deflateParams(Z, Level, Strategy) -> ok
.br
.RS
.TP
Types
Z = zstream()
.br
Level = none | default | best_speed | best_compression | 0\&.\&.9
.br
Strategy = default|filtered|huffman_only
.br
.RE
.RS
.LP
Dynamically update the compression level and compression strategy\&. The interpretation of \fILevel\fR and \fIStrategy\fR is as in \fIdeflateInit/6\fR\&. This can be used to switch between compression and straight copy of the input data, or to switch to a different kind of input data requiring a different strategy\&. If the compression level is changed, the input available so far is compressed with the old level (and may be flushed); the new level will take effect only at the next call of \fIdeflate/3\fR\&.
.LP
Before the call of deflateParams, the stream state must be set as for a call of \fIdeflate/3\fR, since the currently available input may have to be compressed and flushed\&.
.RE
.LP
.B
deflateEnd(Z) -> ok
.br
.RS
.TP
Types
Z = zstream()
.br
.RE
.RS
.LP
End the deflate session and cleans all data used\&. Note that this function will throw an \fIdata_error\fR exception if the last call to \fIdeflate/3\fR was not called with \fIFlush\fR set to \fIfinish\fR\&.
.RE
.LP
.B
inflateInit(Z) -> ok
.br
.RS
.TP
Types
Z = zstream()
.br
.RE
.RS
.LP
Initialize a zlib stream for decompression\&.
.RE
.LP
.B
inflateInit(Z, WindowBits) -> ok
.br
.RS
.TP
Types
Z = zstream()
.br
WindowBits = 9\&.\&.15|-9\&.\&.-15
.br
.RE
.RS
.LP
Initialize decompression session on zlib stream\&.
.LP
The \fIWindowBits\fR parameter is the base two logarithm of the maximum window size (the size of the history buffer)\&. It should be in the range 9 through 15\&. The default value is 15 if \fIinflateInit/1\fR is used\&. If a compressed stream with a larger window size is given as input, inflate() will throw the \fIdata_error\fR exception\&. A negative \fIWindowBits\fR value makes zlib ignore the zlib header (and checksum) from the stream\&. Note that the zlib source mentions this only as a undocumented feature\&.
.RE
.LP
.B
inflate(Z, Data) -> DeCompressed
.br
.RS
.TP
Types
Z = zstream()
.br
Data = iodata()
.br
DeCompressed = iolist()
.br
.RE
.RS
.LP
\fIinflate/2\fR decompresses as much data as possible\&. It may some introduce some output latency (reading input without producing any output)\&.
.LP
If a preset dictionary is needed at this point (see \fIinflateSetDictionary\fR below), \fIinflate/2\fR throws a \fI{need_dictionary, Adler}\fR exception where \fIAdler\fR is the adler32 checksum of the dictionary chosen by the compressor\&.
.RE
.LP
.B
inflateSetDictionary(Z, Dictionary) -> ok
.br
.RS
.TP
Types
Z = zstream()
.br
Dictionary = binary()
.br
.RE
.RS
.LP
Initializes the decompression dictionary from the given uncompressed byte sequence\&. This function must be called immediately after a call of \fIinflate/2\fR if this call threw a \fI{need_dictionary, Adler}\fR exception\&. The dictionary chosen by the compressor can be determined from the Adler value thrown by the call to \fIinflate/2\fR\&. The compressor and decompressor must use exactly the same dictionary (see \fIdeflateSetDictionary/2\fR)\&.
.LP
Example:
.nf
unpack(Z, Compressed, Dict) ->
case catch zlib:inflate(Z, Compressed) of
{\&'EXIT\&',{{need_dictionary,DictID},_}} ->
zlib:inflateSetDictionary(Z, Dict),
Uncompressed = zlib:inflate(Z, []);
Uncompressed ->
Uncompressed
end\&.
.fi
.RE
.LP
.B
inflateReset(Z) -> ok
.br
.RS
.TP
Types
Z = zstream()
.br
.RE
.RS
.LP
This function is equivalent to \fIinflateEnd/1\fR followed by \fIinflateInit/1\fR, but does not free and reallocate all the internal decompression state\&. The stream will keep attributes that may have been set by \fIinflateInit/[1|2]\fR\&.
.RE
.LP
.B
inflateEnd(Z) -> ok
.br
.RS
.TP
Types
Z = zstream()
.br
.RE
.RS
.LP
End the inflate session and cleans all data used\&. Note that this function will throw a \fIdata_error\fR exception if no end of stream was found (meaning that not all data has been uncompressed)\&.
.RE
.LP
.B
setBufSize(Z, Size) -> ok
.br
.RS
.TP
Types
Z = zstream()
.br
Size = integer()
.br
.RE
.RS
.LP
Sets the intermediate buffer size\&.
.RE
.LP
.B
getBufSize(Z) -> Size
.br
.RS
.TP
Types
Z = zstream()
.br
Size = integer()
.br
.RE
.RS
.LP
Get the size of intermediate buffer\&.
.RE
.LP
.B
crc32(Z) -> CRC
.br
.RS
.TP
Types
Z = zstream()
.br
CRC = integer()
.br
.RE
.RS
.LP
Get the current calculated CRC checksum\&.
.RE
.LP
.B
crc32(Z, Binary) -> CRC
.br
.RS
.TP
Types
Z = zstream()
.br
Binary = binary()
.br
CRC = integer()
.br
.RE
.RS
.LP
Calculate the CRC checksum for \fIBinary\fR\&.
.RE
.LP
.B
crc32(Z, PrevCRC, Binary) -> CRC
.br
.RS
.TP
Types
Z = zstream()
.br
PrevCRC = integer()
.br
Binary = binary()
.br
CRC = integer()
.br
.RE
.RS
.LP
Update a running CRC checksum for \fIBinary\fR\&. If \fIBinary\fR is the empty binary, this function returns the required initial value for the crc\&.
.nf
Crc = lists:foldl(fun(Bin,Crc0) ->
zlib:crc32(Z, Crc0, Bin),
end, zlib:crc32(Z,<< >>), Bins)
.fi
.RE
.LP
.B
crc32_combine(Z, CRC1, CRC2, Size2) -> CRC
.br
.RS
.TP
Types
Z = zstream()
.br
CRC = integer()
.br
CRC1 = integer()
.br
CRC2 = integer()
.br
Size2 = integer()
.br
.RE
.RS
.LP
Combine two CRC checksums into one\&. For two binaries, \fIBin1\fR and \fIBin2\fR with sizes of \fISize1\fR and \fISize2\fR, with CRC checksums \fICRC1\fR and \fICRC2\fR\&. \fIcrc32_combine/4\fR returns the \fICRC\fR checksum of \fI<<Bin1/binary, Bin2/binary>>\fR, requiring only \fICRC1\fR, \fICRC2\fR, and \fISize2\fR\&.
.RE
.LP
.B
adler32(Z, Binary) -> Checksum
.br
.RS
.TP
Types
Z = zstream()
.br
Binary = binary()
.br
Checksum = integer()
.br
.RE
.RS
.LP
Calculate the Adler-32 checksum for \fIBinary\fR\&.
.RE
.LP
.B
adler32(Z, PrevAdler, Binary) -> Checksum
.br
.RS
.TP
Types
Z = zstream()
.br
PrevAdler = integer()
.br
Binary = binary()
.br
Checksum = integer()
.br
.RE
.RS
.LP
Update a running Adler-32 checksum for \fIBinary\fR\&. If \fIBinary\fR is the empty binary, this function returns the required initial value for the checksum\&.
.nf
Crc = lists:foldl(fun(Bin,Crc0) ->
zlib:adler32(Z, Crc0, Bin),
end, zlib:adler32(Z,<< >>), Bins)
.fi
.RE
.LP
.B
adler32_combine(Z, Adler1, Adler2, Size2) -> Adler
.br
.RS
.TP
Types
Z = zstream()
.br
Adler = integer()
.br
Adler1 = integer()
.br
Adler2 = integer()
.br
Size2 = integer()
.br
.RE
.RS
.LP
Combine two Adler-32 checksums into one\&. For two binaries, \fIBin1\fR and \fIBin2\fR with sizes of \fISize1\fR and \fISize2\fR, with Adler-32 checksums \fIAdler1\fR and \fIAdler2\fR\&. \fIadler32_combine/4\fR returns the \fIAdler\fR checksum of \fI<<Bin1/binary, Bin2/binary>>\fR, requiring only \fIAdler1\fR, \fIAdler2\fR, and \fISize2\fR\&.
.RE
.LP
.B
compress(Binary) -> Compressed
.br
.RS
.TP
Types
Binary = Compressed = binary()
.br
.RE
.RS
.LP
Compress a binary (with zlib headers and checksum)\&.
.RE
.LP
.B
uncompress(Binary) -> Decompressed
.br
.RS
.TP
Types
Binary = Decompressed = binary()
.br
.RE
.RS
.LP
Uncompress a binary (with zlib headers and checksum)\&.
.RE
.LP
.B
zip(Binary) -> Compressed
.br
.RS
.TP
Types
Binary = Compressed = binary()
.br
.RE
.RS
.LP
Compress a binary (without zlib headers and checksum)\&.
.RE
.LP
.B
unzip(Binary) -> Decompressed
.br
.RS
.TP
Types
Binary = Decompressed = binary()
.br
.RE
.RS
.LP
Uncompress a binary (without zlib headers and checksum)\&.
.RE
.LP
.B
gzip(Data) -> Compressed
.br
.RS
.TP
Types
Binary = Compressed = binary()
.br
.RE
.RS
.LP
Compress a binary (with gz headers and checksum)\&.
.RE
.LP
.B
gunzip(Bin) -> Decompressed
.br
.RS
.TP
Types
Binary = Decompressed = binary()
.br
.RE
.RS
.LP
Uncompress a binary (with gz headers and checksum)\&.
.RE
|