File: appup.4

package info (click to toggle)
erlang-manpages 1%3A12.b.3-1
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 4,188 kB
  • ctags: 2
  • sloc: makefile: 68; perl: 30; sh: 15
file content (258 lines) | stat: -rw-r--r-- 11,433 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
.TH appup 4 "sasl  2.1.5.3" "Ericsson AB" "FILES"
.SH NAME
appup \- Application upgrade file\&.
.SH DESCRIPTION
.LP
The \fIapplication upgrade file\fR defines how an application is upgraded or downgraded in a running system\&.
.LP
This file is used by the functions in \fIsystools\fR when generating a release upgrade file \fIrelup\fR\&.

.SH FILE SYNTAX
.LP
The application upgrade file should be called \fIApplication\&.appup\fR where \fIApplication\fR is the name of the application\&. The file should be located in the \fIebin\fR directory for the application\&.
.LP
The \fI\&.appup\fR file contains one single Erlang term, which defines the instructions used to upgrade or downgrade the application\&. The file has the following syntax:

.nf
{Vsn,
  [{UpFromVsn, Instructions}, \&.\&.\&.],
  [{DownToVsn, Instructions}, \&.\&.\&.]}\&.
    
.fi
.RS 2
.TP 2
*
\fIVsn = string()\fR is the current version of the application\&.
.TP 2
*
\fIUpFromVsn = string()\fR is an earlier version of the application to upgrade from\&.
.TP 2
*
\fIDownToVsn = string()\fR is an earlier version of the application to downgrade to\&.
.TP 2
*
\fIInstructions\fR is a list of \fIrelease upgrade instructions\fR, see below\&. It is recommended to use high-level instructions only\&. These are automatically translated to low-level instructions by \fIsystools\fR when creating the \fIrelup\fR file\&.
.RE
.SH RELEASE UPGRADE INSTRUCTIONS
.LP
Release upgrade instructions are interpreted by the release handler when an upgrade or downgrade is made\&. For more information about release handling, refer to \fIOTP Design Principes\fR\&.
.LP
A process is said to \fIuse\fR a module \fIMod\fR, if \fIMod\fR is listed in the \fIModules\fR part of the child specification used to start the process, see \fIsupervisor(3)\fR\&. In the case of gen_event, an event manager process is said to use \fIMod\fR if \fIMod\fR is an installed event handler\&.
.LP
\fIHigh-level instructions\fR

.nf
{update, Mod}
{update, Mod, supervisor}
{update, Mod, Change}
{update, Mod, DepMods}
{update, Mod, Change, DepMods}
{update, Mod, Change, PrePurge, PostPurge, DepMods}
{update, Mod, Timeout, Change, PrePurge, PostPurge, DepMods}
{update, Mod, ModType, Timeout, Change, PrePurge, PostPurge, DepMods}
  Mod = atom()
  ModType = static | dynamic
  Timeout = int()>0 | default | infinity
  Change = soft | {advanced,Extra}
    Extra = term()
  PrePurge = PostPurge = soft_purge | brutal_purge
  DepMods = [Mod]
    
.fi
.LP
Synchronized code replacement of processes using the module \fIMod\fR\&. All those processes are suspended using \fIsys:suspend\fR, the new version of the module is loaded and then the processes are resumed using \fIsys:resume\fR\&.
.LP
\fIChange\fR defaults to \fIsoft\fR and defines the type of code change\&. If it is set to \fI{advanced, Extra}\fR, processes implemented using gen_server, gen_fsm or gen_event will transform their internal state by calling the callback function \fIcode_change\fR\&. Special processes will call the callback function \fIsystem_code_change/4\fR\&. In both cases, the term \fIExtra\fR is passed as an argument to the callback function\&.
.LP
\fIPrePurge\fR defaults to \fIbrutal_purge\fR and controls what action to take with processes that are executing old code before loading the new version of the module\&. If the value is \fIbrutal_purge\fR, the processes are killed\&. If the value is \fIsoft_purge\fR, \fIrelease_handler:install_release/1\fR returns \fI{error, {old_processes, Mod}}\fR\&.
.LP
\fIPostPurge\fR defaults to \fIbrutal_purge\fR and controls what action to take with processes that are executing old code when the new version of the module has been loaded\&. If the value is \fIbrutal_purge\fR, the code is purged when the release is made permanent and the processes are killed\&. If the value is \fIsoft_purge\fR, the release handler will purge the old code when no remaining processes execute the code\&.
.LP
\fIDepMods\fR defaults to [] and defines which other modules \fIMod\fR is dependent on\&. In \fIrelup\fR, instructions for suspending processes using \fIMod\fR will come before instructions for suspending processes using modules in \fIDepMods\fR when upgrading, and vice versa when downgrading\&. In case of circular dependencies, the order of the instructions in the \fIappup\fR script is kept\&.
.LP
\fITimeout\fR defines the timeout when suspending processes\&. If no value or \fIdefault\fR is given, the default value for \fIsys:suspend\fR is used\&.
.LP
\fIModType\fR defaults to \fIdynamic\fR and specifies if the code is "dynamic", that is if a process using the module does spontaneously switch to new code, or if it is "static"\&. When doing an advanced update and upgrading, the new version of a dynamic module is loaded before the process is asked to change code\&. When downgrading, the process is asked to change code before loading the new version\&. For static modules, the new version is loaded before the process is asked to change code, both in the case of upgrading and downgrading\&. Callback modules are dynamic\&.
.LP
\fIupdate\fR with argument \fIsupervisor\fR is used when changing the start specification of a supervisor\&.

.nf
{load_module, Mod}
{load_module, Mod, DepMods}
{load_module, Mod, PrePurge, PostPurge, DepMods}
  Mod = atom()
  PrePurge = PostPurge = soft_purge | brutal_purge
  DepMods = [Mod]
    
.fi
.LP
Simple code replacement of the module \fIMod\fR\&.
.LP
See \fIupdate\fR above for a description of \fIPrePurge\fR and \fIPostPurge\fR\&.
.LP
\fIDepMods\fR defaults to [] and defines which other modules \fIMod\fR is dependent on\&. In \fIrelup\fR, instructions for loading these modules will come before the instruction for loading \fIMod\fR when upgrading, and vice versa when downgrading\&.

.nf
{add_module, Mod}
  Mod = atom()
    
.fi
.LP
Loads a new module \fIMod\fR\&.

.nf
{delete_module, Mod}
  Mod = atom()
    
.fi
.LP
Deletes a module \fIMod\fR using the low-level instructions \fIremove\fR and \fIpurge\fR\&.

.nf
{add_application, Application}
  Application = atom()
    
.fi
.LP
Adding an application means that the modules defined by the \fImodules\fR key in the \fI\&.app\fR file are loaded using \fIadd_module\fR, then the application is started\&.

.nf
{remove_application, Application}
  Application = atom()
    
.fi
.LP
Removing an application means that the application is stopped, the modules are unloaded using \fIdelete_module\fR and then the application specification is unloaded from the application controller\&.

.nf
{restart_application, Application}
  Application = atom()
    
.fi
.LP
Restarting an application means that the application is stopped and then started again similar to using the instructions \fIremove_application\fR and \fIadd_application\fR in sequence\&.
.LP
\fILow-level instructions\fR

.nf
{load_object_code, {App, Vsn, [Mod]}}
  App = Mod = atom()
  Vsn = string()
    
.fi
.LP
Reads each \fIMod\fR from the directory \fIApp-Vsn/ebin\fR as a binary\&. It does not load the modules\&. The instruction should be placed first in the script in order to read all new code from file to make the suspend-load-resume cycle less time consuming\&. After this instruction has been executed, the code server with the new version of \fIApp\fR\&.

.nf
point_of_no_return
    
.fi
.LP
If a crash occurs after this instruction, the system cannot recover and is restarted from the old version of the release\&. The instruction must only occur once in a script\&. It should be placed after all \fIload_object_code\fR instructions\&.

.nf
{load, {Mod, PrePurge, PostPurge}}
  Mod = atom()
  PrePurge = PostPurge = soft_purge | brutal_purge
    
.fi
.LP
Before this instruction occurs, \fIMod\fR must have been loaded using \fIload_object_code\fR\&. This instruction loads the module\&. \fIPrePurge\fR is ignored\&. See the high-level instruction \fIupdate\fR for a description of \fIPostPurge\fR\&.

.nf
{remove, {Mod, PrePurge, PostPurge}}
  Mod = atom()
  PrePurge = PostPurge = soft_purge | brutal_purge
    
.fi
.LP
Makes the current version of \fIMod\fR old\&. \fIPrePurge\fR is ignored\&. See the high-level instruction \fIupdate\fR for a description of \fIPostPurge\fR\&.

.nf
{purge, [Mod]}
  Mod = atom()
    
.fi
.LP
Purges each module \fIMod\fR, that is removes the old code\&. Note that any process executing purged code is killed\&.

.nf
{suspend, [Mod | {Mod, Timeout}]}
  Mod = atom()
  Timeout = int()>0 | default | infinity
    
.fi
.LP
Tries to suspend all processes using a module \fIMod\fR\&. If a process does not respond, it is ignored\&. This may cause the process to die, either because it crashes when it spontaneously switches to new code, or as a result of a purge operation\&. If no \fITimeout\fR is specified or \fIdefault\fR is given, the default value for \fIsys:suspend\fR is used\&.

.nf
{resume, [Mod]}
  Mod = atom()
    
.fi
.LP
Resumes all suspended processes using a module \fIMod\fR\&.

.nf
{code_change, [{Mod, Extra}]}
{code_change, Mode, [{Mod, Extra}]}
  Mod = atom()
  Mode = up | down
  Extra = term()
    
.fi
.LP
\fIMode\fR defaults to \fIup\fR and specifies if it is an upgrade or downgrade\&.
.LP
This instruction sends a \fIcode_change\fR system message to all processes using a module \fIMod\fR by calling the function \fIsys:change_code\fR, passing the term \fIExtra\fR as argument\&.

.nf
{stop, [Mod]}
  Mod = atom()
    
.fi
.LP
Stops all processes using a module \fIMod\fR by calling \fIsupervisor:terminate_child/2\fR\&. The instruction is useful when the simplest way to change code is to stop and restart the processes which run the code\&.

.nf
{start, [Mod]}
  Mod = atom()
    
.fi
.LP
Starts all stopped processes using a module \fIMod\fR by calling \fIsupervisor:restart_child/2\fR\&.

.nf
{sync_nodes, Id, [Node]}
{sync_nodes, Id, {M, F, A}}
  Id = term()
  Node = node()
  M = F = atom()
  A = [term()]
    
.fi
.LP
\fIapply(M, F, A)\fR must return a list of nodes\&.
.LP
The instruction synchronizes the release installation with other nodes\&. Each \fINode\fR must evaluate this command, with the same \fIId\fR\&. The local node waits for all other nodes to evaluate the instruction before execution continues\&. In case a node goes down, it is considered to be an unrecoverable error, and the local node is restarted from the old release\&. There is no timeout for this instruction, which means that it may hang forever\&.

.nf
{apply, {M, F, A}}
  M = F = atom()
  A = [term()]
    
.fi
.LP
Evaluates \fIapply(M, F, A)\fR\&. If the instruction appears before the \fIpoint_of_no_return\fR instruction, a failure is caught\&. \fIrelease_handler:install_release/1\fR then returns \fI{error, {\&'EXIT\&', Reason}}\fR, unless \fI{error, Error}\fR is thrown or returned\&. Then it returns \fI{error, Error}\fR\&.
.LP
If the instruction appears after the \fIpoint_of_no_return\fR instruction, and the function call fails, the system is restarted\&.

.nf
restart_new_emulator
    
.fi
.LP
Shuts down the current emulator and starts a ne one\&. All processes are terminated gracefully\&. The new release must still be made permanent when the new emulator is up and running\&. Otherwise, the old emulator is started in case of a emulator restart\&. This instruction should be used when a new emulator is introduced, or if a complete reboot of the system should be done\&.
.SH SEE ALSO
.LP
relup(4), release_handler(3), supervisor(3), systools(3)