1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
|
%% -*- erlang-indent-level: 2 -*-
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Copyright (c) 2001 by Erik Johansson. All Rights Reserved
%% ====================================================================
%% Filename : hipe_rtl_mk_switch.erl
%% Module : hipe_rtl_mk_switch
%% Purpose : Implements switching on Erlang values.
%% Notes : Only fixnums are supported well,
%% atoms work with table search,
%% the inline search of atoms might have some bugs.
%% Should be extended to handle bignums and floats.
%%
%% History : * 2001-02-28 Erik Johansson (happi@csd.uu.se):
%% Created.
%% * 2001-04-01 Erik Trulsson (ertr1013@csd.uu.se):
%% Stefan Lindstrm (stli3993@csd.uu.se):
%% Added clustering and inlined binary search trees.
%% * 2001-07-30 EJ (happi@csd.uu.se):
%% Fixed some bugs and started cleanup.
%% CVS :
%% $Author: kostis $
%% $Date: 2006/07/24 16:34:36 $
%% $Revision: 1.21 $
%% ====================================================================
%% Exports :
%% gen_switch_val(I, VarMap, ConstTab, Options)
%% gen_switch_tuple(I, Map, ConstTab, Options)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-module(hipe_rtl_mk_switch).
-export([gen_switch_val/4,gen_switch_tuple/4]).
%%-------------------------------------------------------------------------
-include("../main/hipe.hrl").
%%-------------------------------------------------------------------------
-define(MINFORJUMPTABLE,9).
% Minimum number of integers needed to use something else than an inline search.
-define(MINFORINTSEARCHTREE,65). % Must be at least 3
% Minimum number of integer elements needed to use a non-inline binary search.
-define(MININLINEATOMSEARCH,8).
% Minimum number of atoms needed to use an inline binary search instead
% of a fast linear search.
-define(MINFORATOMSEARCHTREE,20). % Must be at least 3
% Minimum number of atoms needed to use a non-inline binary search instead
% of a linear search.
-define(MAXINLINEATOMSEARCH,64). % Must be at least 3
% The cutoff point between inlined and non-inlined binary search for atoms
-define(WORDSIZE, hipe_rtl_arch:word_size()).
-define(MINDENSITY, 0.5).
% Minimum density required to use a jumptable instead of a binary search.
%% The reason why MINFORINTSEARCHTREE and MINFORATOMSEARCHTREE must be
%% at least 3 is that the function tab/5 will enter an infinite loop
%% and hang when faced with a switch of size 1 or 2.
%% Options used by this module:
%%
%% [no_]use_indexing
%% Determines if any indexing be should be done at all. Turned on
%% by default at optimization level o2 and higher.
%%
%% [no_]use_clusters
%% Controls whether we attempt to divide sparse integer switches
%% into smaller dense clusters for which jumptables are practical.
%% Turned off by default since it can increase compilation time
%% considerably and most programs will gain little benefit from it.
%%
%% [no_]use_inline_atom_search
%% Controls whether we use an inline binary search for small number
%% of atoms. Turned off by default since this is currently only
%% supported on SPARC (and not on x86) and probably needs a bit
%% more testing before it can be turned on by default.
gen_switch_val(I, VarMap, ConstTab, Options) ->
case proplists:get_bool(use_indexing, Options) of
false -> gen_slow_switch_val(I, VarMap, ConstTab, Options);
true -> gen_fast_switch_val(I, VarMap, ConstTab, Options)
end.
gen_fast_switch_val(I, VarMap, ConstTab, Options) ->
{Arg, VarMap0} =
hipe_rtl_varmap:icode_var2rtl_var(hipe_icode:switch_val_arg(I), VarMap),
IcodeFail = hipe_icode:switch_val_fail_label(I),
{Fail, VarMap1} = hipe_rtl_varmap:icode_label2rtl_label(IcodeFail, VarMap0),
%% Important that the list of cases is sorted when handling integers.
UnsortedCases = hipe_icode:switch_val_cases(I),
Cases = lists:sort(UnsortedCases),
check_duplicates(Cases),
%% This check is currently not really necessary. The checking
%% happens at an earlier phase of the compilation.
{Types, InitCode} = split_types(Cases, Arg),
handle_types(Types, InitCode, VarMap1, ConstTab, Arg, {I, Fail, Options}).
handle_types([{Type,Lbl,Cases}|Types], Code, VarMap, ConstTab, Arg, Info) ->
{Code1,VarMap1,ConstTab1} = gen_fast_switch_on(Type, Cases,
VarMap,
ConstTab, Arg, Info),
handle_types(Types, [Code,Lbl,Code1], VarMap1, ConstTab1, Arg, Info);
handle_types([], Code, VarMap, ConstTab, _, _) ->
{Code, VarMap, ConstTab}.
gen_fast_switch_on(integer, Cases, VarMap, ConstTab, Arg, {I, Fail, Options}) ->
{First,_} = hd(Cases),
Min = hipe_icode:const_value(First),
if length(Cases) < ?MINFORJUMPTABLE ->
gen_small_switch_val(Arg,Cases,Fail,VarMap,ConstTab,Options);
true ->
case proplists:get_bool(use_clusters, Options) of
false ->
M = list_to_tuple(Cases),
D = density(M,1,size(M)),
if
D >= ?MINDENSITY ->
gen_jump_table(Arg,Fail,hipe_icode:switch_val_fail_label(I),VarMap,ConstTab,Cases,Min);
true ->
gen_search_switch_val(Arg, Cases, Fail, VarMap, ConstTab, Options)
end;
true ->
MC = minclusters(Cases),
Cl = cluster_split(Cases,MC),
CM = cluster_merge(Cl),
find_cluster(CM,VarMap,ConstTab,Options,Arg,Fail,hipe_icode:switch_val_fail_label(I))
end
end;
gen_fast_switch_on(atom, Cases, VarMap, ConstTab, Arg, {_I, Fail, Options}) ->
case proplists:get_bool(use_inline_atom_search, Options) of
true ->
if
length(Cases) < ?MININLINEATOMSEARCH ->
gen_linear_switch_val(Arg, Cases, Fail, VarMap, ConstTab, Options);
length(Cases) > ?MAXINLINEATOMSEARCH ->
gen_search_switch_val(Arg, Cases, Fail, VarMap, ConstTab, Options);
true ->
gen_atom_switch_val(Arg,Cases,Fail,VarMap,ConstTab,Options)
end;
false ->
if length(Cases) < ?MINFORATOMSEARCHTREE ->
gen_linear_switch_val(Arg, Cases, Fail, VarMap, ConstTab, Options);
true ->
gen_search_switch_val(Arg, Cases, Fail, VarMap, ConstTab, Options)
end
end;
gen_fast_switch_on(_, _, VarMap, ConstTab, _, {I,_Fail,Options}) ->
%% We can only handle smart indexing of integers and atoms
%% TODO: Consider bignum
gen_slow_switch_val(I, VarMap, ConstTab, Options).
%% Split different types into separate switches.
split_types([Case|Cases], Arg) ->
Type1 = casetype(Case),
Types = split(Cases,Type1,[Case],[]),
switch_on_types(Types,[], [], Arg);
split_types([],_) ->
%% Cant happen.
?EXIT({empty_caselist}).
switch_on_types([{Type,Cases}], AccCode, AccCases, _Arg) ->
Lbl = hipe_rtl:mk_new_label(),
I = hipe_rtl:mk_goto(hipe_rtl:label_name(Lbl)),
{[{Type,Lbl,lists:reverse(Cases)} | AccCases], lists:reverse([I|AccCode])};
switch_on_types([{other,Cases} | Rest], AccCode, AccCases, Arg) ->
%% Make sure the general case is handled last.
switch_on_types(Rest ++ [{other,Cases}], AccCode, AccCases, Arg);
switch_on_types([{Type,Cases} | Rest], AccCode, AccCases, Arg) ->
TLab = hipe_rtl:mk_new_label(),
FLab = hipe_rtl:mk_new_label(),
TestCode =
case Type of
integer ->
hipe_tagscheme:test_fixnum(Arg, hipe_rtl:label_name(TLab),
hipe_rtl:label_name(FLab), 0.5);
atom ->
hipe_tagscheme:test_atom(Arg, hipe_rtl:label_name(TLab),
hipe_rtl:label_name(FLab), 0.5);
bignum ->
hipe_tagscheme:test_bignum(Arg, hipe_rtl:label_name(TLab),
hipe_rtl:label_name(FLab), 0.5);
_ -> ?EXIT({ooops, type_not_handled, Type})
end,
switch_on_types(Rest, [[TestCode,FLab] | AccCode],
[{Type,TLab,lists:reverse(Cases)} | AccCases], Arg).
split([Case|Cases], Type, Current, Rest) ->
case casetype(Case) of
Type ->
split(Cases, Type, [Case|Current],Rest);
Other ->
split(Cases, Other, [Case], [{Type,Current}|Rest])
end;
split([], Type, Current, Rest) ->
[{Type, Current} | Rest].
%% Determine what type an entry in the caselist has
casetype({Const,_}) ->
casetype(hipe_icode:const_value(Const));
casetype(A) ->
if
is_integer(A) ->
case hipe_tagscheme:is_fixnum(A) of
true -> integer;
false -> bignum
end;
is_float(A) -> float;
is_atom(A) -> atom;
true -> other
end.
%% check that no duplicate values occur in the case list and also
%% check that all case values have the same type.
check_duplicates([]) -> true;
check_duplicates([_]) -> true;
check_duplicates([{Const1,_},{Const2,L2}|T]) ->
C1 = hipe_icode:const_value(Const1),
C2 = hipe_icode:const_value(Const2),
%% T1 = casetype(C1),
%% T2 = casetype(C2),
if C1 =/= C2 -> %% , T1 =:= T2 ->
check_duplicates([{Const2,L2}|T]);
true ->
?EXIT({bad_values_in_switchval,C1})
end.
%%
%% Determine the optimal way to divide Cases into clusters such that each
%% cluster is dense.
%%
%% See:
%% Producing Good Code for the Case Statement, Robert L. Bernstein
%% Software - Practice and Experience vol 15, 1985, no 10, pp 1021--1024
%% And
%% Correction to "Producing Good Code for the Case Statement"
%% Sampath Kannan and Todd A. Proebsting,
%% Software - Practice and Experience vol 24, 1994, no 2, p 233
%%
%% (The latter is where the algorithm comes from.)
%% This function will return a tuple with the first element being 0
%% The rest of the elements being integers. A value of M at index N
%% (where the first element is considered to have index 0) means that
%% the first N cases can be divided into M (but no fewer) clusters where
%% each cluster is dense.
minclusters(Cases) when is_list(Cases) ->
minclusters(list_to_tuple(Cases));
minclusters(Cases) when is_tuple(Cases) ->
N = size(Cases),
MinClusters = list_to_tuple([0|n_list(N,inf)]),
i_loop(1,N,MinClusters,Cases).
%% Create a list with N elements initialized to Init
n_list(0,_) -> [];
n_list(N,Init) -> [Init | n_list(N-1,Init)].
%% Do the dirty work of minclusters
i_loop(I,N,MinClusters,_Cases) when I > N ->
MinClusters;
i_loop(I,N,MinClusters,Cases) when I =< N ->
M = j_loop(0, I-1, MinClusters, Cases),
i_loop(I+1, N, M, Cases).
%% More dirty work
j_loop(J,I1,MinClusters,_Cases) when J > I1 ->
MinClusters;
j_loop(J,I1,MinClusters,Cases) when J =< I1 ->
D = density(Cases,J+1,I1+1),
A0 = element(J+1,MinClusters),
A = if
is_number(A0) ->
A0+1;
true ->
A0
end,
B = element(I1+2,MinClusters),
M = if
D >= ?MINDENSITY, A<B ->
setelement(I1+2,MinClusters,A);
true ->
MinClusters
end,
j_loop(J+1,I1,M,Cases).
%% Determine the density of a (subset of a) case list
%% A is a tuple with the cases in order from smallest to largest
%% I is the index of the first element and J of the last
density(A,I,J) ->
{AI,_} = element(I,A),
{AJ,_} = element(J,A),
(J-I+1)/(hipe_icode:const_value(AJ)-hipe_icode:const_value(AI)+1).
%% Split a case list into dense clusters
%% Returns a list of lists of cases.
%%
%% Cases is the case list and Clust is a list describing the optimal
%% clustering as returned by minclusters
%%
%% If the value in the last place in minclusters is M then we can
%% split the case list into M clusters. We then search for the last
%% (== right-most) occurance of the value M-1 in minclusters. That
%% indicates the largest number of cases that can be split into M-1
%% clusters. This means that the cases in between constitute one
%% cluster. Then we recurse on the remainder of the cases.
%%
%% The various calls to lists:reverse are just to ensure that the
%% cases remain in the correct, sorted order.
cluster_split(Cases,Clust) ->
A = tl(tuple_to_list(Clust)),
Max = element(size(Clust),Clust),
L1 = lists:reverse(Cases),
L2 = lists:reverse(A),
cluster_split(Max,[],[],L1,L2).
cluster_split(0,[],Res,Cases,_Clust) ->
L = lists:reverse(Cases),
{H,_} = hd(L),
{T,_} = hd(Cases),
[{dense,hipe_icode:const_value(H),hipe_icode:const_value(T),L}|Res];
cluster_split(N,[],Res,Cases,[N|Clust]) ->
cluster_split(N-1,[],Res,Cases,[N|Clust]);
cluster_split(N,Sofar,Res,Cases,[N|Clust]) ->
{H,_} = hd(Sofar),
{T,_} = lists:last(Sofar),
cluster_split(N-1,[],[{dense,hipe_icode:const_value(H),hipe_icode:const_value(T),Sofar}|Res],Cases,[N|Clust]);
cluster_split(N,Sofar,Res,[C|Cases],[_|Clust]) ->
cluster_split(N,[C|Sofar],Res,Cases,Clust).
%%
%% Merge adjacent small clusters into larger sparse clusters
%%
cluster_merge([C]) -> [C];
cluster_merge([{dense,Min,Max,C}|T]) when length(C) >= ?MINFORJUMPTABLE ->
C2 = cluster_merge(T),
[{dense,Min,Max,C}|C2];
cluster_merge([{sparse,Min,_,C},{sparse,_,Max,D}|T]) ->
R = {sparse,Min,Max,C ++ D},
cluster_merge([R|T]);
cluster_merge([{sparse,Min,_,C},{dense,_,Max,D}|T]) when length(D) < ?MINFORJUMPTABLE ->
R = {sparse,Min,Max,C ++ D},
cluster_merge([R|T]);
cluster_merge([{dense,Min,_,C},{dense,_,Max,D}|T]) when length(C) < ?MINFORJUMPTABLE, length(D) < ?MINFORJUMPTABLE ->
R = {sparse,Min,Max,C ++ D},
cluster_merge([R|T]);
cluster_merge([{dense,Min,_,D},{sparse,_,Max,C}|T]) when length(D) < ?MINFORJUMPTABLE ->
R = {sparse,Min,Max,C ++ D},
cluster_merge([R|T]);
cluster_merge([A,{dense,Min,Max,C}|T]) when length(C) >= ?MINFORJUMPTABLE ->
R = cluster_merge([{dense,Min,Max,C}|T]),
[A|R].
%% Generate code to search for the correct cluster
find_cluster([{sparse,_Min,_Max,C}],VarMap,ConstTab,Options,Arg,Fail,_IcodeFail) ->
case length(C) < ?MINFORINTSEARCHTREE of
true ->
gen_small_switch_val(Arg,C,Fail,VarMap,ConstTab,Options);
_ ->
gen_search_switch_val(Arg,C,Fail,VarMap,ConstTab,Options)
end;
find_cluster([{dense,Min,_Max,C}],VarMap,ConstTab,Options,Arg,Fail,IcodeFail) ->
case length(C) < ?MINFORJUMPTABLE of
true ->
gen_small_switch_val(Arg,C,Fail,VarMap,ConstTab,Options);
_ ->
gen_jump_table(Arg,Fail,IcodeFail,VarMap,ConstTab,C,Min)
end;
find_cluster([{Density,Min,Max,C}|T],VarMap,ConstTab,Options,Arg,Fail,IcodeFail) ->
ClustLab = hipe_rtl:mk_new_label(),
NextLab = hipe_rtl:mk_new_label(),
{ClustCode,V1,C1} = find_cluster([{Density,Min,Max,C}],VarMap,ConstTab,Options,Arg,Fail,IcodeFail),
{Rest,V2,C2} = find_cluster(T,V1,C1,Options,Arg,Fail,IcodeFail),
{[
hipe_rtl:mk_branch(Arg, gt, hipe_rtl:mk_imm(hipe_tagscheme:mk_fixnum(Max)),
hipe_rtl:label_name(NextLab),
hipe_rtl:label_name(ClustLab), 0.50),
ClustLab
] ++
ClustCode ++
[NextLab] ++
Rest,
V2,C2}.
%% Generate efficient code for a linear search through the case list.
%% Only works for atoms and integer.
gen_linear_switch_val(Arg,Cases,Fail,VarMap,ConstTab,_Options) ->
{Values,_Labels} = split_cases(Cases),
{LabMap,VarMap1} = lbls_from_cases(Cases,VarMap),
Code = fast_linear_search(Arg,Values,LabMap,Fail),
{Code,VarMap1,ConstTab}.
fast_linear_search(_Arg,[],[],Fail) ->
[hipe_rtl:mk_goto(hipe_rtl:label_name(Fail))];
fast_linear_search(Arg,[Case|Cases],[Label|Labels],Fail) ->
Reg = hipe_rtl:mk_new_reg_gcsafe(),
NextLab = hipe_rtl:mk_new_label(),
C2 = fast_linear_search(Arg,Cases,Labels,Fail),
C1 =
if
is_integer(Case) ->
TVal = hipe_tagscheme:mk_fixnum(Case),
[
hipe_rtl:mk_move(Reg,hipe_rtl:mk_imm(TVal)),
hipe_rtl:mk_branch(Arg,eq,Reg,
Label,
hipe_rtl:label_name(NextLab), 0.5),
NextLab
];
is_atom(Case) ->
[
hipe_rtl:mk_load_atom(Reg,Case),
hipe_rtl:mk_branch(Arg,eq,Reg,
Label,
hipe_rtl:label_name(NextLab), 0.5),
NextLab
];
true -> % This should never happen !
?EXIT({internal_error_in_switch_val,Case})
end,
[C1,C2].
%% Generate code to search through a small cluster of integers using
%% binary search
gen_small_switch_val(Arg,Cases,Fail,VarMap,ConstTab,_Options) ->
{Values,_Labels} = split_cases(Cases),
{LabMap,VarMap1} = lbls_from_cases(Cases,VarMap),
Keys = [hipe_tagscheme:mk_fixnum(X) % Add tags to the values
|| X <- Values],
Code = inline_search(Keys, LabMap, Arg, Fail),
{Code, VarMap1, ConstTab}.
%% Generate code to search through a small cluster of atoms
gen_atom_switch_val(Arg,Cases,Fail,VarMap,ConstTab,_Options) ->
{Values, _Labels} = split_cases(Cases),
{LabMap,VarMap1} = lbls_from_cases(Cases,VarMap),
LMap = [{label,L} || L <- LabMap],
{NewConstTab,Id} = hipe_consttab:insert_sorted_block(ConstTab, Values),
{NewConstTab2,LabId} =
hipe_consttab:insert_sorted_block(NewConstTab, word, LMap, Values),
Code = inline_atom_search(0, length(Cases)-1, Id, LabId, Arg, Fail, LabMap),
{Code, VarMap1, NewConstTab2}.
%% calculate the middle position of a list (+ 1 because of 1-indexing of lists)
get_middle(List) ->
N = length(List),
N div 2 + 1.
%% get element [N1, N2] from a list
get_cases(_, 0, 0) ->
[];
get_cases([H|T], 0, N) ->
[H | get_cases(T, 0, N - 1)];
get_cases([_|T], N1, N2) ->
get_cases(T, N1 - 1, N2 - 1).
%% inline_search/4 creates RTL code for a inlined binary search.
%% It requires two sorted tables - one with the keys to search
%% through and one with the corresponding labels to jump to.
%%
%% Input:
%% KeyList - A list of keys to search through.
%% LableList - A list of labels to jump to.
%% KeyReg - A register containing the key to search for.
%% Default - A label to jump to if the key is not found.
%%
inline_search([], _LabelList, _KeyReg, _Default) -> [];
inline_search(KeyList, LabelList, KeyReg, Default) ->
%% Create some registers and labels that we need.
Reg = hipe_rtl:mk_new_reg_gcsafe(),
Lab1 = hipe_rtl:mk_new_label(),
Lab2 = hipe_rtl:mk_new_label(),
Lab3 = hipe_rtl:mk_new_label(),
Length = length(KeyList),
if
Length >= 3 ->
%% Get middle element and keys/labels before that and after
Middle_pos = get_middle(KeyList),
Middle_key = lists:nth(Middle_pos, KeyList),
Keys_beginning = get_cases(KeyList, 0, Middle_pos - 1),
Labels_beginning = get_cases(LabelList, 0, Middle_pos - 1),
Keys_ending = get_cases(KeyList, Middle_pos, Length),
Labels_ending = get_cases(LabelList, Middle_pos, Length),
%% Create the code.
%% Get the label and build it up properly
Middle_label = lists:nth(Middle_pos, LabelList),
A = [hipe_rtl:mk_move(Reg, hipe_rtl:mk_imm(Middle_key)),
hipe_rtl:mk_branch(KeyReg, lt, Reg,
hipe_rtl:label_name(Lab2),
hipe_rtl:label_name(Lab1), 0.5),
Lab1,
hipe_rtl:mk_branch(KeyReg, gt, Reg,
hipe_rtl:label_name(Lab3),
Middle_label , 0.5),
Lab2],
%% build search tree for keys less than the middle element
B = inline_search(Keys_beginning, Labels_beginning, KeyReg, Default),
%% ...and for keys bigger than the middle element
D = inline_search(Keys_ending, Labels_ending, KeyReg, Default),
%% append the code and return it
A ++ B ++ [Lab3] ++ D;
Length =:= 2 ->
%% get the first and second elements and theirs labels
Key_first = hd(KeyList),
First_label = hd(LabelList),
%% Key_second = hipe_tagscheme:mk_fixnum(lists:nth(2, KeyList)),
Key_second = lists:nth(2, KeyList),
Second_label = lists:nth(2, LabelList),
NewLab = hipe_rtl:mk_new_label(),
%% compare them
A = [hipe_rtl:mk_move(Reg,hipe_rtl:mk_imm(Key_first)),
hipe_rtl:mk_branch(KeyReg, eq, Reg,
First_label,
hipe_rtl:label_name(NewLab) , 0.5),
NewLab],
B = [hipe_rtl:mk_move(Reg,hipe_rtl:mk_imm(Key_second)),
hipe_rtl:mk_branch(KeyReg, eq, Reg,
Second_label,
hipe_rtl:label_name(Default) , 0.5)],
A ++ B;
Length =:= 1 ->
Key = hd(KeyList),
Label = hd(LabelList),
[hipe_rtl:mk_move(Reg,hipe_rtl:mk_imm(Key)),
hipe_rtl:mk_branch(KeyReg, eq, Reg,
Label,
hipe_rtl:label_name(Default) , 0.5)]
end.
inline_atom_search(Start, End, Block, LBlock, KeyReg, Default, Labels) ->
Reg = hipe_rtl:mk_new_reg_gcsafe(),
Length = (End - Start) +1,
if
Length >= 3 ->
Lab1 = hipe_rtl:mk_new_label(),
Lab2 = hipe_rtl:mk_new_label(),
Lab3 = hipe_rtl:mk_new_label(),
Lab4 = hipe_rtl:mk_new_label(),
Mid = ((End-Start) div 2)+Start,
End1 = Mid-1,
Start1 = Mid+1,
A = [
hipe_rtl:mk_load_word_index(Reg,Block,Mid),
hipe_rtl:mk_branch(KeyReg, lt, Reg,
hipe_rtl:label_name(Lab2),
hipe_rtl:label_name(Lab1), 0.5),
Lab1,
hipe_rtl:mk_branch(KeyReg, gt, Reg,
hipe_rtl:label_name(Lab3),
hipe_rtl:label_name(Lab4), 0.5),
Lab4,
hipe_rtl:mk_goto_index(LBlock, Mid, Labels),
Lab2
],
B = [inline_atom_search(Start,End1,Block,LBlock,KeyReg,Default,Labels)],
C = [inline_atom_search(Start1,End,Block,LBlock,KeyReg,Default,Labels)],
A ++ B ++ [Lab3] ++ C;
Length =:= 2 ->
L1 = hipe_rtl:mk_new_label(),
L2 = hipe_rtl:mk_new_label(),
L3 = hipe_rtl:mk_new_label(),
[
hipe_rtl:mk_load_word_index(Reg,Block,Start),
hipe_rtl:mk_branch(KeyReg,eq,Reg,
hipe_rtl:label_name(L1),
hipe_rtl:label_name(L2), 0.5),
L1,
hipe_rtl:mk_goto_index(LBlock,Start,Labels),
L2,
hipe_rtl:mk_load_word_index(Reg,Block,End),
hipe_rtl:mk_branch(KeyReg,eq,Reg,
hipe_rtl:label_name(L3),
hipe_rtl:label_name(Default), 0.5),
L3,
hipe_rtl:mk_goto_index(LBlock, End, Labels)
];
Length =:= 1 ->
NewLab = hipe_rtl:mk_new_label(),
[
hipe_rtl:mk_load_word_index(Reg,Block,Start),
hipe_rtl:mk_branch(KeyReg, eq, Reg,
hipe_rtl:label_name(NewLab),
hipe_rtl:label_name(Default), 0.9),
NewLab,
hipe_rtl:mk_goto_index(LBlock, Start, Labels)
]
end.
%% Create a jumptable
gen_jump_table(Arg,Fail,IcodeFail,VarMap,ConstTab,Cases,Min) ->
%% Map is a rtl mapping of Dense
{Max,DenseTbl} = dense_interval(Cases,Min,IcodeFail),
{Map,VarMap2} = lbls_from_cases(DenseTbl,VarMap),
%% Make some labels and registers that we need.
BelowLab = hipe_rtl:mk_new_label(),
UntaggedR = hipe_rtl:mk_new_reg_gcsafe(),
StartR = hipe_rtl:mk_new_reg_gcsafe(),
%% Generate the code to do the switch...
{[
%% Untag the index.
hipe_tagscheme:untag_fixnum(UntaggedR, Arg)|
%% Check that the index is within Min and Max.
case Min of
0 -> %% First element is 0 this is simple.
[hipe_rtl:mk_branch(UntaggedR, gtu, hipe_rtl:mk_imm(Max),
hipe_rtl:label_name(Fail),
hipe_rtl:label_name(BelowLab), 0.01),
BelowLab,
%% StartR contains the index into the jumptable
hipe_rtl:mk_switch(UntaggedR, Map)];
_ -> %% First element is not 0
[hipe_rtl:mk_alu(StartR, UntaggedR, sub,
hipe_rtl:mk_imm(Min)),
hipe_rtl:mk_branch(StartR, gtu, hipe_rtl:mk_imm(Max-Min),
hipe_rtl:label_name(Fail),
hipe_rtl:label_name(BelowLab), 0.01),
BelowLab,
%% StartR contains the index into the jumptable
hipe_rtl:mk_switch(StartR, Map)]
end],
VarMap2,
ConstTab}.
%% Generate the jumptable for Cases while filling in unused positions
%% with the fail label
dense_interval(Cases, Min, IcodeFail) ->
dense_interval(Cases, Min, IcodeFail, 0, 0).
dense_interval([Pair = {Const,_}|Rest], Pos, Fail, Range, NoEntries) ->
Val = hipe_icode:const_value(Const),
if
Pos < Val ->
{Max, Res} =
dense_interval([Pair|Rest], Pos+1, Fail, Range+1, NoEntries),
{Max,[{hipe_icode:mk_const(Pos), Fail}|Res]};
true ->
{Max, Res} = dense_interval(Rest, Pos+1, Fail, Range+1, NoEntries+1),
{Max, [Pair | Res]}
end;
dense_interval([], Max, _, _, _) ->
{Max-1, []}.
%%-------------------------------------------------------------------------
%% switch_val without jumptable
%%
gen_slow_switch_val(I, VarMap, ConstTab, Options) ->
Is = rewrite_switch_val(I),
?IF_DEBUG_LEVEL(3,?msg("Switch: ~w\n",[Is]),no_debug),
hipe_icode2rtl:translate_instrs(Is, VarMap, ConstTab, Options).
rewrite_switch_val(I) ->
Arg = hipe_icode:switch_val_arg(I),
Fail = hipe_icode:switch_val_fail_label(I),
Cases = hipe_icode:switch_val_cases(I),
rewrite_switch_val_cases(Cases, Fail, Arg).
rewrite_switch_val_cases([{C,L}|Cases], Fail, Arg) ->
Tmp = hipe_icode:mk_new_var(),
NextLab = hipe_icode:mk_new_label(),
[hipe_icode:mk_move(Tmp, C),
hipe_icode:mk_if(op_exact_eqeq_2, [Arg, Tmp], L,
hipe_icode:label_name(NextLab)),
NextLab |
rewrite_switch_val_cases(Cases, Fail, Arg)];
rewrite_switch_val_cases([], Fail, _Arg) ->
[hipe_icode:mk_goto(Fail)].
%%-------------------------------------------------------------------------
%% switch_val with binary search jumptable
%%
gen_search_switch_val(Arg, Cases, Default, VarMap, ConstTab, _Options) ->
ValTableR = hipe_rtl:mk_new_reg_gcsafe(),
{Values,_Labels} = split_cases(Cases),
{NewConstTab,Id} = hipe_consttab:insert_sorted_block(ConstTab, Values),
{LabMap,VarMap1} = lbls_from_cases(Cases,VarMap),
Code =
[hipe_rtl:mk_load_address(ValTableR, Id, constant)|
tab(Values,LabMap,Arg,ValTableR,Default)],
{Code, VarMap1, NewConstTab}.
%%-------------------------------------------------------------------------
%%
%% tab/5 creates RTL code for a binary search.
%% It requires two sorted tables one with the keys to search
%% through and one with the corresponding labels to jump to.
%%
%% The implementation is derived from John Bentlys
%% Programming Pearls.
%%
%% Input:
%% KeyList - A list of keys to search through.
%% (Just used to calculate the number of elements.)
%% LableList - A list of labels to jump to.
%% KeyReg - A register containing the key to search for.
%% TablePntrReg - A register containing a pointer to the
%% tables with keys
%% Default - A lable to jump to if the key is not found.
%%
%% Example:
%% KeyTbl: < a, b, d, f, h, i, z >
%% Lbls: < 5, 3, 2, 4, 1, 7, 6 >
%% Default: 8
%% KeyReg: v37
%% TablePntrReg: r41
%%
%% should give code like:
%% r41 <- KeyTbl
%% r42 <- 0
%% r43 <- [r41+16]
%% if (r43 gt v37) then L17 (0.50) else L16
%% L16:
%% r42 <- 16
%% goto L17
%% L17:
%% r46 <- r42 add 16
%% r45 <- [r41+r46]
%% if (r45 gt v37) then L21 (0.50) else L20
%% L20:
%% r42 <- r46
%% goto L21
%% L21:
%% r48 <- r42 add 8
%% r47 <- [r41+r48]
%% if (r47 gt v37) then L23 (0.50) else L22
%% L22:
%% r42 <- r48
%% goto L23
%% L23:
%% r50 <- r42 add 4
%% r49 <- [r41+r50]
%% if (r49 gt v37) then L25 (0.50) else L24
%% L24:
%% r42 <- r42 add 4
%% goto L25
%% L25:
%% if (r42 gt 28) then L6 (0.50) else L18
%% L18:
%% r44 <- [r41+r42]
%% if (r44 eq v37) then L19 (0.90) else L8
%% L19:
%% r42 <- r42 sra 2
%% switch (r42) <L5, L3, L2, L4, L1,
%% L7, L6>
%%
%% The search is done like a rolled out binary search,
%% but instead of starting in the middle we start at
%% the power of two closest above the middle.
%%
%% We let IndexReg point to the lower bound of our
%% search, and then we speculatively look at a
%% position at IndexReg + I where I is a power of 2.
%%
%% Example: Looking for 'h' in
%% KeyTbl: < a, b, d, f, h, i, z >
%%
%% We start with IndexReg=0 and I=4
%% < a, b, d, f, h, i, z >
%% ^ ^
%% IndexReg + I
%%
%% 'f' < 'h' so we add I to IndexReg and divide I with 2
%% IndexReg=4 and I=2
%% < a, b, d, f, h, i, z >
%% ^ ^
%% IndexReg + I
%%
%% 'i' > 'h' so we keep IndexReg and divide I with 2
%% IndexReg=4 and I=1
%% < a, b, d, f, h, i, z >
%% ^ ^
%% IndexReg+ I
%% Now we have found 'h' so we add I to IndexReg -> 5
%% And we can load switch to the label at position 5 in
%% the label table.
%%
%% Now since the wordsize is 4 all numbers above are
%% Multiples of 4.
tab(KeyList, LabelList, KeyReg, TablePntrReg, Default) ->
%% io:format("Making switch\n",[]),
%% Calculate the size of the table:
%% the number of keys * wordsize.
LastOffset = (length(KeyList)-1)*?WORDSIZE,
%% Calculate the power of two closest to the size of the table.
Pow2 = trunc(math:pow(2,(trunc(math:log(LastOffset) / math:log(2))))),
%% Create some registers an lables that we need.
IndexReg = hipe_rtl:mk_new_reg_gcsafe(),
Temp = hipe_rtl:mk_new_reg_gcsafe(),
Temp2 = hipe_rtl:mk_new_reg_gcsafe(),
Lab1 = hipe_rtl:mk_new_label(),
Lab2 = hipe_rtl:mk_new_label(),
Lab3 = hipe_rtl:mk_new_label(),
Lab4 = hipe_rtl:mk_new_label(),
%% Calculate the position to start looking at.
Init = (LastOffset)-Pow2,
%% Create the code.
[
hipe_rtl:mk_move(IndexReg,hipe_rtl:mk_imm(0)),
hipe_rtl:mk_load(Temp,TablePntrReg,hipe_rtl:mk_imm(Init)),
hipe_rtl:mk_branch(Temp, ge, KeyReg,
hipe_rtl:label_name(Lab2),
hipe_rtl:label_name(Lab1), 0.5),
Lab1,
hipe_rtl:mk_alu(IndexReg, IndexReg, add,
hipe_rtl:mk_imm(Init+?WORDSIZE)),
hipe_rtl:mk_goto(hipe_rtl:label_name(Lab2)),
Lab2] ++
step(Pow2 div 2,TablePntrReg,IndexReg,KeyReg) ++
[hipe_rtl:mk_branch(IndexReg, gt, hipe_rtl:mk_imm(LastOffset),
hipe_rtl:label_name(Default),
hipe_rtl:label_name(Lab3), 0.5),
Lab3,
hipe_rtl:mk_load(Temp2,TablePntrReg,IndexReg),
hipe_rtl:mk_branch(Temp2, eq, KeyReg,
hipe_rtl:label_name(Lab4),
hipe_rtl:label_name(Default), 0.9),
Lab4,
hipe_rtl:mk_alu(IndexReg, IndexReg, sra,
hipe_rtl:mk_imm(hipe_rtl_arch:log2_word_size())),
hipe_rtl:mk_sorted_switch(IndexReg, LabelList, KeyList)
].
step(I,TablePntrReg,IndexReg,KeyReg) ->
Temp = hipe_rtl:mk_new_reg_gcsafe(),
TempIndex = hipe_rtl:mk_new_reg_gcsafe(),
Lab1 = hipe_rtl:mk_new_label(),
Lab2 = hipe_rtl:mk_new_label(),
[hipe_rtl:mk_alu(TempIndex, IndexReg, add, hipe_rtl:mk_imm(I)),
hipe_rtl:mk_load(Temp,TablePntrReg,TempIndex),
hipe_rtl:mk_branch(Temp, gt, KeyReg,
hipe_rtl:label_name(Lab2),
hipe_rtl:label_name(Lab1) , 0.5),
Lab1] ++
case ?WORDSIZE of
I -> %% Recursive base case
[hipe_rtl:mk_alu(IndexReg, IndexReg, add, hipe_rtl:mk_imm(I)),
hipe_rtl:mk_goto(hipe_rtl:label_name(Lab2)),
Lab2
];
_ -> %% Recursion case
[hipe_rtl:mk_move(IndexReg, TempIndex),
hipe_rtl:mk_goto(hipe_rtl:label_name(Lab2)),
Lab2
| step(I div 2,TablePntrReg,IndexReg,KeyReg)
]
end.
%%-------------------------------------------------------------------------
lbls_from_cases([{_,L}|Rest], VarMap) ->
{Map,VarMap1} = lbls_from_cases(Rest, VarMap),
{RtlL, VarMap2} = hipe_rtl_varmap:icode_label2rtl_label(L,VarMap1),
%% {[{label,hipe_rtl:label_name(RtlL)}|Map],VarMap2};
{[hipe_rtl:label_name(RtlL)|Map],VarMap2};
lbls_from_cases([],VarMap) -> {[], VarMap}.
%%-------------------------------------------------------------------------
split_cases(L) ->
split_cases(L,[],[]).
split_cases([],Vs,Ls) -> {lists:reverse(Vs),lists:reverse(Ls)};
split_cases([{V,L}|Rest], Vs, Ls) ->
split_cases(Rest, [hipe_icode:const_value(V)|Vs], [L|Ls]).
%%-------------------------------------------------------------------------
%%
%% {switch_tuple_arity,X,Fail,N,[{A1,L1},...,{AN,LN}]}
%%
%% if not boxed(X) goto Fail
%% Hdr := *boxed_val(X)
%% switch_int(Hdr,Fail,[{H(A1),L1},...,{H(AN),LN}])
%% where H(Ai) = make_arityval(Ai)
%%
%%-------------------------------------------------------------------------
gen_switch_tuple(I, Map, ConstTab, _Options) ->
{X, Map1} =
hipe_rtl_varmap:icode_var2rtl_var(hipe_icode:switch_tuple_arity_arg(I), Map),
Fail0 = hipe_icode:switch_tuple_arity_fail_label(I),
{Fail1, Map2} = hipe_rtl_varmap:icode_label2rtl_label(Fail0, Map1),
FailLab = hipe_rtl:label_name(Fail1),
{Cases, Map3} =
lists:foldr(fun({A,L}, {Rest,M}) ->
{L1,M1} = hipe_rtl_varmap:icode_label2rtl_label(L, M),
L2 = hipe_rtl:label_name(L1),
A1 = hipe_icode:const_value(A),
H1 = hipe_tagscheme:mk_arityval(A1),
{[{H1,L2}|Rest], M1} end,
{[], Map2},
hipe_icode:switch_tuple_arity_cases(I)),
Hdr = hipe_rtl:mk_new_reg_gcsafe(),
IsBoxedLab = hipe_rtl:mk_new_label(),
{[hipe_tagscheme:test_is_boxed(X, hipe_rtl:label_name(IsBoxedLab),
FailLab, 0.9),
IsBoxedLab,
hipe_tagscheme:get_header(Hdr, X) |
gen_switch_int(Hdr, FailLab, Cases)],
Map3, ConstTab}.
%%
%% RTL-level switch-on-int
%%
gen_switch_int(X, FailLab, [{C,L}|Rest]) ->
NextLab = hipe_rtl:mk_new_label(),
[hipe_rtl:mk_branch(X, eq, hipe_rtl:mk_imm(C), L,
hipe_rtl:label_name(NextLab), 0.5),
NextLab |
gen_switch_int(X, FailLab, Rest)];
gen_switch_int(_, FailLab, []) ->
[hipe_rtl:mk_goto(FailLab)].
|