1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
|
%%
%% %CopyrightBegin%
%%
%% Copyright Ericsson AB 2000-2009. All Rights Reserved.
%%
%% The contents of this file are subject to the Erlang Public License,
%% Version 1.1, (the "License"); you may not use this file except in
%% compliance with the License. You should have received a copy of the
%% Erlang Public License along with this software. If not, it can be
%% retrieved online at http://www.erlang.org/.
%%
%% Software distributed under the License is distributed on an "AS IS"
%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
%% the License for the specific language governing rights and limitations
%% under the License.
%%
%% %CopyrightEnd%
%%
-module(digraph_utils_SUITE).
%-define(debug, true).
-ifdef(debug).
-define(line, put(line, ?LINE), ).
-else.
-include("test_server.hrl").
-endif.
-export([all/1]).
-export([simple/1, loop/1, isolated/1, topsort/1, subgraph/1,
condensation/1, tree/1]).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
all(suite) -> {req, [stdlib], [simple, loop, isolated, topsort,
subgraph, condensation, tree]}.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
simple(doc) -> [];
simple(suite) -> [];
simple(Config) when is_list(Config) ->
?line G = digraph:new(),
?line add_vertices(G, [a]),
?line add_edges(G, [{b,c},{b,d},{e,f},{f,g},{g,e},{h,h},{i,i},{i,j}]),
?line 10 = length(digraph_utils:postorder(G)),
?line 10 = length(digraph_utils:preorder(G)),
?line ok = evall(digraph_utils:components(G),
[[a],[b,c,d],[e,f,g],[h],[i,j]]),
?line ok = evall(digraph_utils:strong_components(G),
[[a],[b],[c],[d],[e,f,g],[h],[i],[j]]),
?line ok = evall(digraph_utils:cyclic_strong_components(G),
[[e,f,g],[h],[i]]),
?line true = path(G, e, e),
?line false = path(G, e, j),
?line false = path(G, a, a),
?line false = digraph_utils:topsort(G),
?line false = digraph_utils:is_acyclic(G),
?line ok = eval(digraph_utils:loop_vertices(G), [h,i]),
?line ok = eval(digraph_utils:reaching([e], G), [e,f,g]),
?line ok = eval(digraph_utils:reaching_neighbours([e], G), [e,f,g]),
?line ok = eval(digraph_utils:reachable([e], G), [e,f,g]),
?line ok = eval(digraph_utils:reachable_neighbours([e], G), [e,f,g]),
?line ok = eval(digraph_utils:reaching([b], G), [b]),
?line ok = eval(digraph_utils:reaching_neighbours([b], G), []),
?line ok = eval(digraph_utils:reachable([b], G), [b,c,d]),
?line ok = eval(digraph_utils:reachable_neighbours([b], G), [c,d]),
?line ok = eval(digraph_utils:reaching([h], G), [h]),
?line ok = eval(digraph_utils:reaching_neighbours([h], G), [h]),
?line ok = eval(digraph_utils:reachable([h], G), [h]),
?line ok = eval(digraph_utils:reachable_neighbours([h], G), [h]),
?line ok = eval(digraph_utils:reachable([e,f], G), [e,f,g]),
?line ok = eval(digraph_utils:reachable_neighbours([e,f], G), [e,f,g]),
?line ok = eval(digraph_utils:reachable([h,h,h], G), [h]),
?line true = digraph:delete(G),
ok.
loop(doc) -> [];
loop(suite) -> [];
loop(Config) when is_list(Config) ->
?line G = digraph:new(),
?line add_vertices(G, [a,b]),
?line add_edges(G, [{a,a},{b,b}]),
?line ok = evall(digraph_utils:components(G), [[a],[b]]),
?line ok = evall(digraph_utils:strong_components(G), [[a],[b]]),
?line ok = evall(digraph_utils:cyclic_strong_components(G), [[a],[b]]),
?line [_,_] = digraph_utils:topsort(G),
?line false = digraph_utils:is_acyclic(G),
?line ok = eval(digraph_utils:loop_vertices(G), [a,b]),
?line [_,_] = digraph_utils:preorder(G),
?line [_,_] = digraph_utils:postorder(G),
?line ok = eval(digraph_utils:reaching([b], G), [b]),
?line ok = eval(digraph_utils:reaching_neighbours([b], G), [b]),
?line ok = eval(digraph_utils:reachable([b], G), [b]),
?line ok = eval(digraph_utils:reachable_neighbours([b], G), [b]),
?line true = path(G, a, a),
?line true = digraph:delete(G),
ok.
isolated(doc) -> [];
isolated(suite) -> [];
isolated(Config) when is_list(Config) ->
?line G = digraph:new(),
?line add_vertices(G, [a,b]),
?line ok = evall(digraph_utils:components(G), [[a],[b]]),
?line ok = evall(digraph_utils:strong_components(G), [[a],[b]]),
?line ok = evall(digraph_utils:cyclic_strong_components(G), []),
?line [_,_] = digraph_utils:topsort(G),
?line true = digraph_utils:is_acyclic(G),
?line ok = eval(digraph_utils:loop_vertices(G), []),
?line [_,_] = digraph_utils:preorder(G),
?line [_,_] = digraph_utils:postorder(G),
?line ok = eval(digraph_utils:reaching([b], G), [b]),
?line ok = eval(digraph_utils:reaching_neighbours([b], G), []),
?line ok = eval(digraph_utils:reachable([b], G), [b]),
?line ok = eval(digraph_utils:reachable_neighbours([b], G), []),
?line false = path(G, a, a),
?line true = digraph:delete(G),
ok.
topsort(doc) -> [];
topsort(suite) -> [];
topsort(Config) when is_list(Config) ->
?line G = digraph:new(),
?line add_edges(G, [{a,b},{b,c},{c,d},{d,e},{e,f}]),
?line ok = eval(digraph_utils:topsort(G), [a,b,c,d,e,f]),
?line true = digraph:delete(G),
ok.
subgraph(doc) -> [];
subgraph(suite) -> [];
subgraph(Config) when is_list(Config) ->
?line G = digraph:new([acyclic]),
?line add_edges(G, [{b,c},{b,d},{e,f},{f,fg,fgl,g},{f,fg2,fgl2,g},{g,e},
{h,h},{i,i},{i,j}]),
?line add_vertices(G, [{b,bl},{f,fl}]),
?line SG = digraph_utils:subgraph(G, [u1,b,c,u2,f,g,i,u3]),
?line [b,c,f,g,i] = lists:sort(digraph:vertices(SG)),
?line {b,bl} = digraph:vertex(SG, b),
?line {c,[]} = digraph:vertex(SG, c),
?line {fg,f,g,fgl} = digraph:edge(SG, fg),
?line {fg2,f,g,fgl2} = digraph:edge(SG, fg2),
?line {_, {_, acyclic}} = lists:keysearch(cyclicity, 1, digraph:info(SG)),
?line true = digraph:delete(SG),
?line SG1 = digraph_utils:subgraph(G, [f, g, h],
[{type, []}, {keep_labels, false}]),
?line [f,g,h] = lists:sort(digraph:vertices(SG1)),
?line {f,[]} = digraph:vertex(SG1, f),
?line {fg,f,g,[]} = digraph:edge(SG1, fg),
?line {_, {_, cyclic}} = lists:keysearch(cyclicity, 1, digraph:info(SG1)),
?line true = digraph:delete(SG1),
?line SG2 = digraph_utils:subgraph(G, [f, g, h],
[{type, [acyclic]},
{keep_labels, true}]),
?line [f,g,h] = lists:sort(digraph:vertices(SG2)),
?line {f,fl} = digraph:vertex(SG2, f),
?line {fg,f,g,fgl} = digraph:edge(SG2, fg),
?line {_, {_, acyclic}} = lists:keysearch(cyclicity, 1, digraph:info(SG2)),
?line true = digraph:delete(SG2),
?line {'EXIT',{badarg,_}} =
(catch digraph_utils:subgraph(G, [f], [{invalid, opt}])),
?line {'EXIT',{badarg,_}} =
(catch digraph_utils:subgraph(G, [f], [{keep_labels, not_Bool}])),
?line {'EXIT',{badarg,_}} =
(catch digraph_utils:subgraph(G, [f], [{type, not_type}])),
?line {'EXIT',{badarg,_}} =
(catch digraph_utils:subgraph(G, [f], [{type, [not_type]}])),
?line {'EXIT',{badarg,_}} =
(catch digraph_utils:subgraph(G, [f], not_a_list)),
?line true = digraph:delete(G),
ok.
condensation(doc) -> [];
condensation(suite) -> [];
condensation(Config) when is_list(Config) ->
?line G = digraph:new([]),
?line add_edges(G, [{b,c},{b,d},{e,f},{f,fg,fgl,g},{f,fg2,fgl2,g},{g,e},
{h,h},{j,i},{i,j}]),
?line add_vertices(G, [q]),
?line CG = digraph_utils:condensation(G),
?line Vs = sort_2(digraph:vertices(CG)),
?line [[b],[c],[d],[e,f,g],[h],[i,j],[q]] = Vs,
?line Fun = fun(E) ->
{_E, V1, V2, _L} = digraph:edge(CG, E),
{lists:sort(V1), lists:sort(V2)}
end,
?line Es = lists:map(Fun, digraph:edges(CG)),
?line [{[b],[c]},{[b],[d]},{[e,f,g],[e,f,g]},{[h],[h]},{[i,j],[i,j]}] =
lists:sort(Es),
?line true = digraph:delete(CG),
?line true = digraph:delete(G),
ok.
tree(doc) -> ["OTP-7081"];
tree(suite) -> [];
tree(Config) when is_list(Config) ->
?line false = is_tree([], []),
?line true = is_tree([a], []),
?line false = is_tree([a,b], []),
?line true = is_tree([{a,b}]),
?line false = is_tree([{a,b},{b,a}]),
?line true = is_tree([{a,b},{a,c},{b,d},{b,e}]),
?line false = is_tree([{a,b},{a,c},{b,d},{b,e}, {d,e}]),
?line false = is_tree([{a,b},{a,c},{b,d},{b,e}, {b,e}]),
?line true = is_tree([{a,c},{c,b}]),
?line true = is_tree([{b,a},{c,a}]),
%% Parallel edges. Acyclic and with one componets
%% (according to the digraph module).
?line false = is_tree([{a,b},{a,b}]),
?line no = arborescence_root([], []),
?line {yes, a} = arborescence_root([a], []),
?line no = arborescence_root([a,b], []),
?line {yes, a} = arborescence_root([{a,b}]),
?line no = arborescence_root([{a,b},{b,a}]),
?line {yes, a} = arborescence_root([{a,b},{a,c},{b,d},{b,e}]),
?line no = arborescence_root([{a,b},{a,c},{b,d},{b,e}, {d,e}]),
?line no = arborescence_root([{a,b},{a,c},{b,d},{b,e}, {b,e}]),
?line {yes, a} = arborescence_root([{a,c},{c,b}]),
?line no = arborescence_root([{b,a},{c,a}]),
?line false = is_arborescence([], []),
?line true = is_arborescence([a], []),
?line false = is_arborescence([a,b], []),
?line true = is_arborescence([{a,b}]),
?line false = is_arborescence([{a,b},{b,a}]),
?line true = is_arborescence([{a,b},{a,c},{b,d},{b,e}]),
?line false = is_arborescence([{a,b},{a,c},{b,d},{b,e}, {d,e}]),
?line false = is_arborescence([{a,b},{a,c},{b,d},{b,e}, {b,e}]),
?line true = is_arborescence([{a,c},{c,b}]),
?line false = is_arborescence([{b,a},{c,a}]),
%% Parallel edges.
?line false = is_arborescence([{a,b},{a,b}]),
ok.
is_tree(Es) ->
is_tree([], Es).
is_tree(Vs, Es) ->
gu(Vs, Es, is_tree).
is_arborescence(Es) ->
is_arborescence([], Es).
is_arborescence(Vs, Es) ->
gu(Vs, Es, is_arborescence).
arborescence_root(Es) ->
arborescence_root([], Es).
arborescence_root(Vs, Es) ->
gu(Vs, Es, arborescence_root).
gu(Vs, Es, F) ->
G = digraph:new(),
add_vertices(G, Vs),
add_edges(G, Es),
Reply = digraph_utils:F(G),
true = digraph:delete(G),
Reply.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
sort_2(L) ->
lists:sort(lists:map(fun(V) -> lists:sort(V) end, L)).
path(G, V1, V2) ->
digraph:get_path(G, V1, V2) /= false.
add_vertices(G, Vs) ->
lists:foreach(fun({V, Label}) -> digraph:add_vertex(G, V, Label);
(V) -> digraph:add_vertex(G, V)
end, Vs).
add_edges(G, L) ->
Fun = fun({From, To}) ->
digraph:add_vertex(G, From),
digraph:add_vertex(G, To),
digraph:add_edge(G, From, To);
({From, Edge, Label, To}) ->
digraph:add_vertex(G, From),
digraph:add_vertex(G, To),
digraph:add_edge(G, Edge, From, To, Label)
end,
lists:foreach(Fun, L).
eval(L, E) ->
Expected = lists:sort(E),
Got = lists:sort(L),
if
Expected == Got ->
ok;
true ->
not_ok
end.
evall(L, E) ->
F = fun(L1) -> lists:sort(L1) end,
Fun = fun(LL) -> F(lists:map(F, LL)) end,
Expected = Fun(E),
Got = Fun(L),
if
Expected == Got ->
ok;
true ->
not_ok
end.
|