1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
|
/*
* %CopyrightBegin%
*
* Copyright Ericsson AB 2002-2012. All Rights Reserved.
*
* The contents of this file are subject to the Erlang Public License,
* Version 1.1, (the "License"); you may not use this file except in
* compliance with the License. You should have received a copy of the
* Erlang Public License along with this software. If not, it can be
* retrieved online at http://www.erlang.org/.
*
* Software distributed under the License is distributed on an "AS IS"
* basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
* the License for the specific language governing rights and limitations
* under the License.
*
* %CopyrightEnd%
*
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "erl_nif.h"
/* #define ASN1_DEBUG 1 */
#define ASN1_OK 0
#define ASN1_ERROR -1
#define ASN1_COMPL_ERROR 1
#define ASN1_MEMORY_ERROR 0
#define ASN1_DECODE_ERROR 2
#define ASN1_TAG_ERROR -3
#define ASN1_LEN_ERROR -4
#define ASN1_INDEF_LEN_ERROR -5
#define ASN1_VALUE_ERROR -6
#define ASN1_CLASS 0xc0
#define ASN1_FORM 0x20
#define ASN1_CLASSFORM (ASN1_CLASS | ASN1_FORM)
#define ASN1_TAG 0x1f
#define ASN1_LONG_TAG 0x7f
#define ASN1_INDEFINITE_LENGTH 0x80
#define ASN1_SHORT_DEFINITE_LENGTH 0
#define ASN1_PRIMITIVE 0
#define ASN1_CONSTRUCTED 0x20
#define ASN1_NOVALUE 0
#define ASN1_SKIPPED 0
#define ASN1_OPTIONAL 1
#define ASN1_CHOOSEN 2
#define CEIL(X,Y) ((X-1) / Y + 1)
#define INVMASK(X,M) (X & (M ^ 0xff))
#define MASK(X,M) (X & M)
/* PER COMPLETE */
int per_complete(ErlNifBinary *, unsigned char *, int);
int per_insert_octets(int, unsigned char **, unsigned char **, int *);
int per_insert_octets_except_unused(int, unsigned char **, unsigned char **,
int *, int);
int per_insert_octets_as_bits_exact_len(int, int, unsigned char **,
unsigned char **, int *);
int per_insert_octets_as_bits(int, unsigned char **, unsigned char **, int *);
int per_pad_bits(int, unsigned char **, int *);
int per_insert_least_sign_bits(int, unsigned char, unsigned char **, int *);
int per_insert_most_sign_bits(int, unsigned char, unsigned char **, int *);
int per_insert_bits_as_bits(int, int, unsigned char **, unsigned char **, int *);
int per_insert_octets_unaligned(int, unsigned char **, unsigned char **, int);
int per_realloc_memory(ErlNifBinary *, int, unsigned char **);
/* BER DECODE */
int ber_decode_begin(ErlNifEnv *, ERL_NIF_TERM *, unsigned char *, int,
unsigned int *);
int ber_decode(ErlNifEnv *, ERL_NIF_TERM *, unsigned char *, int *, int);
int ber_decode_tag(ErlNifEnv *, ERL_NIF_TERM *, unsigned char *, int, int *);
int ber_decode_value(ErlNifEnv*, ERL_NIF_TERM *, unsigned char *, int *, int,
int);
/* BER ENCODE */
typedef struct ber_encode_mem_chunk mem_chunk_t;
int ber_encode(ErlNifEnv *, ERL_NIF_TERM , mem_chunk_t **, unsigned int *);
void ber_free_chunks(mem_chunk_t *chunk);
mem_chunk_t *ber_new_chunk(unsigned int length);
int ber_check_memory(mem_chunk_t **curr, unsigned int needed);
int ber_encode_tag(ErlNifEnv *, ERL_NIF_TERM , unsigned int ,
mem_chunk_t **, unsigned int *);
int ber_encode_length(size_t , mem_chunk_t **, unsigned int *);
/*
*
* This section defines functionality for the complete encode of a
* PER encoded message
*
*/
int per_complete(ErlNifBinary *out_binary, unsigned char *in_buf,
int in_buf_len) {
int counter = in_buf_len;
/* counter keeps track of number of bytes left in the
input buffer */
int buf_space = in_buf_len;
/* This is the amount of allocated space left of the out_binary. It
is possible when padding is applied that more space is needed than
was originally allocated. */
int buf_size = in_buf_len;
/* Size of the buffer. May become reallocated and thus other than
in_buf_len */
unsigned char *in_ptr, *ptr;
/* in_ptr points at the next byte in in_buf to be moved to
complete_buf.
ptr points into the new completed buffer, complete_buf, at the
position of the next byte that will be set */
int unused = 8;
/* unused = [1,...,8] indicates how many of the rigthmost bits of
the byte that ptr points at that are unassigned */
int no_bits, no_bytes, in_unused, desired_len, ret, saved_mem, needed,
pad_bits;
unsigned char val;
in_ptr = in_buf;
ptr = out_binary->data;
*ptr = 0x00;
while (counter > 0) {
counter--;
switch (*in_ptr) {
case 0:
/* just one zero-bit should be added to the buffer */
if (unused == 1) {
unused = 8;
*++ptr = 0x00;
buf_space--;
} else
unused--;
break;
case 1:
/* one one-bit should be added to the buffer */
if (unused == 1) {
*ptr = *ptr | 1;
unused = 8;
*++ptr = 0x00;
buf_space--;
} else {
*ptr = *ptr | (1 << (unused - 1));
unused--;
}
break;
case 2:
/* align buffer to end of byte */
if (unused != 8) {
*++ptr = 0x00;
buf_space--;
unused = 8;
}
break;
case 10:
/* next byte in in_buf tells how many bits in the second next
byte that will be used */
/* The leftmost unused bits in the value byte are supposed to be
zero bits */
no_bits = (int) *(++in_ptr);
val = *(++in_ptr);
counter -= 2;
if ((ret = per_insert_least_sign_bits(no_bits, val, &ptr, &unused))
== ASN1_ERROR
)
return ASN1_ERROR;
buf_space -= ret;
break;
case 20:
/* in this case the next value in_ptr points at holds the number
of following bytes that holds the value that will be inserted
in the completed buffer */
no_bytes = (int) *(++in_ptr);
counter -= (no_bytes + 1);
if ((counter < 0)
|| (ret = per_insert_octets(no_bytes, &in_ptr, &ptr,
&unused)) == ASN1_ERROR
)
return ASN1_ERROR;
buf_space -= ret;
break;
case 21:
/* in this case the next two bytes in_ptr points at holds the number
of following bytes that holds the value that will be inserted
in the completed buffer */
no_bytes = (int) *(++in_ptr);
no_bytes = no_bytes << 8;
no_bytes = no_bytes | (int) *(++in_ptr);
counter -= (2 + no_bytes);
if ((counter < 0)
|| (ret = per_insert_octets(no_bytes, &in_ptr, &ptr,
&unused)) == ASN1_ERROR
)
return ASN1_ERROR;
buf_space -= ret;
break;
case 30:
/* If we call the following bytes, in the buffer in_ptr points at,
By1,By2,Rest then Rest is the value that will be transfered to
the completed buffer. By1 tells how many of the rightmost bits in
Rest that should not be used. By2 is the length of Rest in bytes.*/
in_unused = (int) *(++in_ptr);
no_bytes = (int) *(++in_ptr);
counter -= (2 + no_bytes);
ret = -4711;
if ((counter < 0)
|| (ret = per_insert_octets_except_unused(no_bytes, &in_ptr,
&ptr, &unused, in_unused)) == ASN1_ERROR
)
return ASN1_ERROR;
buf_space -= ret;
break;
case 31:
/* If we call the following bytes, in the buffer in_ptr points at,
By1,By2,By3,Rest then Rest is the value that will be transfered to
the completed buffer. By1 tells how many of the rightmost bits in
Rest that should not be used. By2 and By3 is the length of
Rest in bytes.*/
in_unused = (int) *(++in_ptr);
no_bytes = (int) *(++in_ptr);
no_bytes = no_bytes << 8;
no_bytes = no_bytes | (int) *(++in_ptr);
counter -= (3 + no_bytes);
if ((counter < 0)
|| (ret = per_insert_octets_except_unused(no_bytes, &in_ptr,
&ptr, &unused, in_unused)) == ASN1_ERROR
)
return ASN1_ERROR;
buf_space -= ret;
break;
case 40:
/* This case implies that next byte,By1,(..,By1,By2,Bin,...)
is the desired length of the completed value, maybe needs
padding zero bits or removal of trailing zero bits from Bin.
By2 is the length of Bin and Bin is the value that will be
put into the completed buffer. Each byte in Bin has the value
1 or 0.*/
desired_len = (int) *(++in_ptr);
no_bytes = (int) *(++in_ptr);
/* This is the algorithm for need of memory reallocation:
Only when padding (cases 40 - 43,45 - 47) more memory may be
used than allocated. Therefore one has to keep track of how
much of the allocated memory that has been saved, i.e. the
difference between the number of parsed bytes of the input buffer
and the number of used bytes of the output buffer.
If saved memory is less than needed for the padding then we
need more memory. */
saved_mem = buf_space - counter;
pad_bits = desired_len - no_bytes - unused;
needed = (pad_bits > 0) ? CEIL(pad_bits,8) : 0;
if (saved_mem < needed) {
/* Have to allocate more memory */
buf_size += needed;
buf_space += needed;
if (per_realloc_memory(out_binary, buf_size, &ptr) == ASN1_ERROR
)
return ASN1_ERROR;
}
counter -= (2 + no_bytes);
if ((counter < 0)
|| (ret = per_insert_octets_as_bits_exact_len(desired_len,
no_bytes, &in_ptr, &ptr, &unused)) == ASN1_ERROR
)
return ASN1_ERROR;
buf_space -= ret;
break;
case 41:
/* Same as case 40 apart from By2, the length of Bin, which is in
two bytes*/
desired_len = (int) *(++in_ptr);
no_bytes = (int) *(++in_ptr);
no_bytes = no_bytes << 8;
no_bytes = no_bytes | (int) *(++in_ptr);
saved_mem = buf_space - counter;
needed = CEIL((desired_len-unused),8) - no_bytes;
if (saved_mem < needed) {
/* Have to allocate more memory */
buf_size += needed;
buf_space += needed;
if (per_realloc_memory(out_binary, buf_size, &ptr) == ASN1_ERROR
)
return ASN1_ERROR;
}
counter -= (3 + no_bytes);
if ((counter < 0)
|| (ret = per_insert_octets_as_bits_exact_len(desired_len,
no_bytes, &in_ptr, &ptr, &unused)) == ASN1_ERROR
)
return ASN1_ERROR;
buf_space -= ret;
break;
case 42:
/* Same as case 40 apart from By1, the desired length, which is in
two bytes*/
desired_len = (int) *(++in_ptr);
desired_len = desired_len << 8;
desired_len = desired_len | (int) *(++in_ptr);
no_bytes = (int) *(++in_ptr);
saved_mem = buf_space - counter;
needed = CEIL((desired_len-unused),8) - no_bytes;
if (saved_mem < needed) {
/* Have to allocate more memory */
buf_size += needed;
buf_space += needed;
if (per_realloc_memory(out_binary, buf_size, &ptr) == ASN1_ERROR
)
return ASN1_ERROR;
}
counter -= (3 + no_bytes);
if ((counter < 0)
|| (ret = per_insert_octets_as_bits_exact_len(desired_len,
no_bytes, &in_ptr, &ptr, &unused)) == ASN1_ERROR
)
return ASN1_ERROR;
buf_space -= ret;
break;
case 43:
/* Same as case 40 apart from By1 and By2, the desired length and
the length of Bin, which are in two bytes each. */
desired_len = (int) *(++in_ptr);
desired_len = desired_len << 8;
desired_len = desired_len | (int) *(++in_ptr);
no_bytes = (int) *(++in_ptr);
no_bytes = no_bytes << 8;
no_bytes = no_bytes | (int) *(++in_ptr);
saved_mem = buf_space - counter;
needed = CEIL((desired_len-unused),8) - no_bytes;
if (saved_mem < needed) {
/* Have to allocate more memory */
buf_size += needed;
buf_space += needed;
if (per_realloc_memory(out_binary, buf_size, &ptr) == ASN1_ERROR
)
return ASN1_ERROR;
}
counter -= (4 + no_bytes);
if ((counter < 0)
|| (ret = per_insert_octets_as_bits_exact_len(desired_len,
no_bytes, &in_ptr, &ptr, &unused)) == ASN1_ERROR
)
return ASN1_ERROR;
buf_space -= ret;
break;
case 45:
/* This case assumes that the following bytes in the incoming buffer
(called By1,By2,Bin) is By1, which is the number of bits (n) that
will be inserted in the completed buffer. By2 is the number of
bytes in Bin. Each bit in the buffer Bin should be inserted from
the leftmost until the nth.*/
desired_len = (int) *(++in_ptr);
no_bytes = (int) *(++in_ptr);
saved_mem = buf_space - counter;
needed = CEIL((desired_len-unused),8) - no_bytes;
if (saved_mem < needed) {
/* Have to allocate more memory */
buf_size += needed;
buf_space += needed;
if (per_realloc_memory(out_binary, buf_size, &ptr) == ASN1_ERROR
)
return ASN1_ERROR;
}
counter -= (2 + no_bytes);
if ((counter < 0)
|| (ret = per_insert_bits_as_bits(desired_len, no_bytes,
&in_ptr, &ptr, &unused)) == ASN1_ERROR
)
return ASN1_ERROR;
buf_space -= ret;
break;
case 46:
/* Same as case 45 apart from By1, the desired length, which is
in two bytes. */
desired_len = (int) *(++in_ptr);
desired_len = desired_len << 8;
desired_len = desired_len | (int) *(++in_ptr);
no_bytes = (int) *(++in_ptr);
saved_mem = buf_space - counter;
needed = CEIL((desired_len-unused),8) - no_bytes;
if (saved_mem < needed) {
/* Have to allocate more memory */
buf_size += needed;
buf_space += needed;
if (per_realloc_memory(out_binary, buf_size, &ptr) == ASN1_ERROR
)
return ASN1_ERROR;
}
counter -= (3 + no_bytes);
if ((counter < 0)
|| (ret = per_insert_bits_as_bits(desired_len, no_bytes,
&in_ptr, &ptr, &unused)) == ASN1_ERROR
)
return ASN1_ERROR;
buf_space -= ret;
break;
case 47:
/* Same as case 45 apart from By1 and By2, the desired length
and the length of Bin, which are in two bytes each. */
desired_len = (int) *(++in_ptr);
desired_len = desired_len << 8;
desired_len = desired_len | (int) *(++in_ptr);
no_bytes = (int) *(++in_ptr);
no_bytes = no_bytes << 8;
no_bytes = no_bytes | (int) *(++in_ptr);
saved_mem = buf_space - counter;
needed = CEIL((desired_len-unused),8) - no_bytes;
if (saved_mem < needed) {
/* Have to allocate more memory */
buf_size += needed;
buf_space += needed;
if (per_realloc_memory(out_binary, buf_size, &ptr) == ASN1_ERROR
)
return ASN1_ERROR;
}
counter -= (4 + no_bytes);
if ((counter < 0)
|| (ret = per_insert_bits_as_bits(desired_len, no_bytes,
&in_ptr, &ptr, &unused)) == ASN1_ERROR
)
return ASN1_ERROR;
buf_space -= ret;
break;
default:
return ASN1_ERROR;
}
in_ptr++;
}
/* The returned buffer must be at least one byte and
it must be octet aligned */
if ((unused == 8) && (ptr != out_binary->data))
return (ptr - out_binary->data);
else {
ptr++; /* octet align buffer */
return (ptr - out_binary->data);
}
}
int per_realloc_memory(ErlNifBinary *binary, int amount, unsigned char **ptr) {
int i = *ptr - binary->data;
if (!enif_realloc_binary(binary, amount)) {
/*error handling due to memory allocation failure */
return ASN1_ERROR;
} else {
*ptr = binary->data + i;
}
return ASN1_OK;
}
int per_insert_most_sign_bits(int no_bits, unsigned char val,
unsigned char **output_ptr, int *unused) {
unsigned char *ptr = *output_ptr;
if (no_bits < *unused) {
*ptr = *ptr | (val >> (8 - *unused));
*unused -= no_bits;
} else if (no_bits == *unused) {
*ptr = *ptr | (val >> (8 - *unused));
*unused = 8;
*++ptr = 0x00;
} else {
*ptr = *ptr | (val >> (8 - *unused));
*++ptr = 0x00;
*ptr = *ptr | (val << *unused);
*unused = 8 - (no_bits - *unused);
}
*output_ptr = ptr;
return ASN1_OK;
}
int per_insert_least_sign_bits(int no_bits, unsigned char val,
unsigned char **output_ptr, int *unused) {
unsigned char *ptr = *output_ptr;
int ret = 0;
if (no_bits < *unused) {
*ptr = *ptr | (val << (*unused - no_bits));
*unused -= no_bits;
} else if (no_bits == *unused) {
*ptr = *ptr | val;
*unused = 8;
*++ptr = 0x00;
ret++;
} else {
/* first in the begun byte in the completed buffer insert
so many bits that fit, then insert the rest in next byte.*/
*ptr = *ptr | (val >> (no_bits - *unused));
*++ptr = 0x00;
ret++;
*ptr = *ptr | (val << (8 - (no_bits - *unused)));
*unused = 8 - (no_bits - *unused);
}
*output_ptr = ptr;
return ret;
}
/* per_pad_bits adds no_bits bits in the buffer that output_ptr
points at.
*/
int per_pad_bits(int no_bits, unsigned char **output_ptr, int *unused) {
unsigned char *ptr = *output_ptr;
int ret = 0;
while (no_bits > 0) {
if (*unused == 1) {
*unused = 8;
*++ptr = 0x00;
ret++;
} else
(*unused)--;
no_bits--;
}
*output_ptr = ptr;
return ret;
}
/* insert_bits_as_bits removes no_bytes bytes from the buffer that in_ptr
points at and takes the desired_no leftmost bits from those removed
bytes and inserts them in the buffer(output buffer) that ptr points at.
The unused parameter tells how many bits that are not set in the
actual byte in the output buffer. If desired_no is more bits than the
input buffer has in no_bytes bytes, then zero bits is padded.*/
int per_insert_bits_as_bits(int desired_no, int no_bytes,
unsigned char **input_ptr, unsigned char **output_ptr, int *unused) {
unsigned char *in_ptr = *input_ptr;
unsigned char val;
int no_bits, ret;
if (desired_no == (no_bytes * 8)) {
if (per_insert_octets_unaligned(no_bytes, &in_ptr, output_ptr, *unused)
== ASN1_ERROR
)
return ASN1_ERROR;
ret = no_bytes;
} else if (desired_no < (no_bytes * 8)) {
/* printf("per_insert_bits_as_bits 1\n\r"); */
if (per_insert_octets_unaligned(desired_no / 8, &in_ptr, output_ptr,
*unused) == ASN1_ERROR
)
return ASN1_ERROR;
/* printf("per_insert_bits_as_bits 2\n\r"); */
val = *++in_ptr;
/* printf("val = %d\n\r",(int)val); */
no_bits = desired_no % 8;
/* printf("no_bits = %d\n\r",no_bits); */
per_insert_most_sign_bits(no_bits, val, output_ptr, unused);
ret = CEIL(desired_no,8);
} else {
if (per_insert_octets_unaligned(no_bytes, &in_ptr, output_ptr, *unused)
== ASN1_ERROR
)
return ASN1_ERROR;
per_pad_bits(desired_no - (no_bytes * 8), output_ptr, unused);
ret = CEIL(desired_no,8);
/* printf("ret = %d\n\r",ret); */
}
/* printf("*unused = %d\n\r",*unused); */
*input_ptr = in_ptr;
return ret;
}
/* per_insert_octets_as_bits_exact_len */
int per_insert_octets_as_bits_exact_len(int desired_len, int in_buff_len,
unsigned char **in_ptr, unsigned char **ptr, int *unused) {
int ret = 0;
int ret2 = 0;
if (desired_len == in_buff_len) {
if ((ret = per_insert_octets_as_bits(in_buff_len, in_ptr, ptr, unused))
== ASN1_ERROR
)
return ASN1_ERROR;
} else if (desired_len > in_buff_len) {
if ((ret = per_insert_octets_as_bits(in_buff_len, in_ptr, ptr, unused))
== ASN1_ERROR
)
return ASN1_ERROR;
/* now pad with zero bits */
/* printf("~npad_bits: called with %d bits padding~n~n~r",desired_len - in_buff_len); */
if ((ret2 = per_pad_bits(desired_len - in_buff_len, ptr, unused))
== ASN1_ERROR
)
return ASN1_ERROR;
} else {/* desired_len < no_bits */
if ((ret = per_insert_octets_as_bits(desired_len, in_ptr, ptr, unused))
== ASN1_ERROR
)
return ASN1_ERROR;
/* now remove no_bits - desired_len bytes from in buffer */
*in_ptr += (in_buff_len - desired_len);
}
return (ret + ret2);
}
/* insert_octets_as_bits takes no_bytes bytes from the buffer that input_ptr
points at and inserts the least significant bit of it in the buffer that
output_ptr points at. Each byte in the input buffer must be 1 or 0
otherwise the function returns ASN1_ERROR. The output buffer is concatenated
without alignment.
*/
int per_insert_octets_as_bits(int no_bytes, unsigned char **input_ptr,
unsigned char **output_ptr, int *unused) {
unsigned char *in_ptr = *input_ptr;
unsigned char *ptr = *output_ptr;
int used_bits = 8 - *unused;
while (no_bytes > 0) {
switch (*++in_ptr) {
case 0:
if (*unused == 1) {
*unused = 8;
*++ptr = 0x00;
} else
(*unused)--;
break;
case 1:
if (*unused == 1) {
*ptr = *ptr | 1;
*unused = 8;
*++ptr = 0x00;
} else {
*ptr = *ptr | (1 << (*unused - 1));
(*unused)--;
}
break;
default:
return ASN1_ERROR;
}
no_bytes--;
}
*input_ptr = in_ptr;
*output_ptr = ptr;
return ((used_bits + no_bytes) / 8); /*return number of new bytes
in completed buffer */
}
/* insert_octets inserts bytes from the input buffer, *input_ptr,
into the output buffer, *output_ptr. Before the first byte is
inserted the input buffer is aligned.
*/
int per_insert_octets(int no_bytes, unsigned char **input_ptr,
unsigned char **output_ptr, int *unused) {
unsigned char *in_ptr = *input_ptr;
unsigned char *ptr = *output_ptr;
int ret = 0;
if (*unused != 8) {/* must align before octets are added */
*++ptr = 0x00;
ret++;
*unused = 8;
}
while (no_bytes > 0) {
*ptr = *(++in_ptr);
*++ptr = 0x00;
/* *unused = *unused - 1; */
no_bytes--;
}
*input_ptr = in_ptr;
*output_ptr = ptr;
return (ret + no_bytes);
}
/* per_insert_octets_unaligned inserts bytes from the input buffer, *input_ptr,
into the output buffer, *output_ptr.No alignment is done.
*/
int per_insert_octets_unaligned(int no_bytes, unsigned char **input_ptr,
unsigned char **output_ptr, int unused) {
unsigned char *in_ptr = *input_ptr;
unsigned char *ptr = *output_ptr;
int n = no_bytes;
unsigned char val;
while (n > 0) {
if (unused == 8) {
*ptr = *++in_ptr;
*++ptr = 0x00;
} else {
val = *++in_ptr;
*ptr = *ptr | val >> (8 - unused);
*++ptr = 0x00;
*ptr = val << unused;
}
n--;
}
*input_ptr = in_ptr;
*output_ptr = ptr;
return no_bytes;
}
int per_insert_octets_except_unused(int no_bytes, unsigned char **input_ptr,
unsigned char **output_ptr, int *unused, int in_unused) {
unsigned char *in_ptr = *input_ptr;
unsigned char *ptr = *output_ptr;
int val, no_bits;
int ret = 0;
if (in_unused == 0) {
if ((ret = per_insert_octets_unaligned(no_bytes, &in_ptr, &ptr, *unused))
== ASN1_ERROR
)
return ASN1_ERROR;
} else {
if ((ret = per_insert_octets_unaligned(no_bytes - 1, &in_ptr, &ptr, *unused))
!= ASN1_ERROR) {
val = (int) *(++in_ptr);
no_bits = 8 - in_unused;
/* no_bits is always less than *unused since the buffer is
octet aligned after insert:octets call, so the following
if clasuse is obsolete I think */
if (no_bits < *unused) {
*ptr = *ptr | (val >> (8 - *unused));
*unused = *unused - no_bits;
} else if (no_bits == *unused) {
*ptr = *ptr | (val >> (8 - *unused));
*++ptr = 0x00;
ret++;
*unused = 8;
} else {
*ptr = *ptr | (val >> (8 - *unused));
*++ptr = 0x00;
ret++;
*ptr = *ptr | (val << *unused);
*unused = 8 - (no_bits - *unused);
}
} else
return ASN1_ERROR;
}
*input_ptr = in_ptr;
*output_ptr = ptr;
return ret;
}
/*
*
* This section defines functionality for the partial decode of a
* BER encoded message
*
*/
/*
* int decode(ErlNifEnv* env, ERL_NIF_TERM *term, unsigned char *in_buf,
int in_buf_len, unsigned int *err_pos)
* term is a pointer to the term which is to be returned to erlang
* in_buf is a pointer into the buffer of incoming bytes.
* in_buf_len is the length of the incoming buffer.
* The function reads the bytes in the incoming buffer and structures
* it in a nested way as Erlang terms. The buffer contains data in the
* order tag - length - value. Tag, length and value has the following
* format:
* A tag is normally one byte but may be of any length, if the tag number
* is greater than 30. +----------+
* |CL|C|NNNNN|
* +----------+
* If NNNNN is 31 then will the 7 l.s.b of each of the following tag number
* bytes contain the tag number. Each tag number byte that is not the last one
* has the m.s.b. set to 1.
* The length can be short definite length (sdl), long definite length (ldl)
* or indefinite length (il).
* sdl: +---------+ the L bits is the length
* |0|LLLLLLL|
* +---------+
* ldl: +---------+ +---------+ +---------+ +-----------+
* |1|lllllll| |first len| | | |the Nth len|
* +---------+ +---------+ +---------+ ... +-----------+
* The first byte tells how many len octets will follow, max 127
* il: +---------+ +----------------------+ +--------+ +--------+
* |1|0000000| |content octets (Value)| |00000000| |00000000|
* +---------+ +----------------------+ +--------+ +--------+
* The value octets are preceded by one octet and followed by two
* exactly as above. The value must be some tag-length-value encoding.
*
* The function returns a value in Erlang nif term format:
* {{TagNo,Value},Rest}
* TagNo is an integer ((CL bsl 16) + tag number) which limits the tag number
* to 65535.
* Value is a binary if the C bit in tag was unset, otherwise (if tag was
* constructed) Value is a list, List.
* List is like: [{TagNo,Value},{TagNo,Value},...]
* Rest is a binary, i.e. the undecoded part of the buffer. Most often Rest
* is the empty binary.
* If some error occured during the decoding of the in_buf an error is returned.
*/
int ber_decode_begin(ErlNifEnv* env, ERL_NIF_TERM *term, unsigned char *in_buf,
int in_buf_len, unsigned int *err_pos) {
int maybe_ret;
int ib_index = 0;
unsigned char *rest_data;
ERL_NIF_TERM decoded_term, rest;
if ((maybe_ret = ber_decode(env, &decoded_term, in_buf, &ib_index,
in_buf_len)) <= ASN1_ERROR)
{
*err_pos = ib_index;
return maybe_ret;
};
// The remaining binary after one ASN1 segment has been decoded
if ((rest_data = enif_make_new_binary(env, in_buf_len - ib_index, &rest))
== NULL) {
*term = enif_make_atom(env, "could_not_alloc_binary");
return ASN1_ERROR;
}
*term = enif_make_tuple2(env, decoded_term, rest);
return ASN1_OK;
}
int ber_decode(ErlNifEnv* env, ERL_NIF_TERM *term, unsigned char *in_buf,
int *ib_index, int in_buf_len) {
int maybe_ret;
int form;
ERL_NIF_TERM tag, value;
/*buffer must hold at least two bytes*/
if ((*ib_index + 2) > in_buf_len)
return ASN1_VALUE_ERROR;
/* "{{TagNo," */
if ((form = ber_decode_tag(env, &tag, in_buf, in_buf_len, ib_index))
<= ASN1_ERROR
)
return form; /* 5 bytes */
if (*ib_index >= in_buf_len) {
return ASN1_TAG_ERROR;
}
/* buffer must hold at least one byte (0 as length and nothing as
value) */
/* "{{TagNo,Value}," */
if ((maybe_ret = ber_decode_value(env, &value, in_buf, ib_index, form,
in_buf_len)) <= ASN1_ERROR
)
return maybe_ret; /* at least 5 bytes */
*term = enif_make_tuple2(env, tag, value);
return ASN1_OK;
}
/*
* decode_tag decodes the BER encoded tag in in_buf and creates an
* nif term tag
*/
int ber_decode_tag(ErlNifEnv* env, ERL_NIF_TERM *tag, unsigned char *in_buf,
int in_buf_len, int *ib_index) {
int tag_no, tmp_tag, form;
/* first get the class of tag and bit shift left 16*/
tag_no = ((MASK(in_buf[*ib_index],ASN1_CLASS)) << 10);
form = (MASK(in_buf[*ib_index],ASN1_FORM));
/* then get the tag number */
if ((tmp_tag = (int) INVMASK(in_buf[*ib_index],ASN1_CLASSFORM)) < 31) {
*tag = enif_make_uint(env, tag_no + tmp_tag);
(*ib_index)++;
} else {
int n = 0; /* n is used to check that the 64K limit is not
exceeded*/
/* should check that at least three bytes are left in
in-buffer,at least two tag byte and at least one length byte */
if ((*ib_index + 3) > in_buf_len)
return ASN1_VALUE_ERROR;
(*ib_index)++;
/* The tag is in the following bytes in in_buf as
1ttttttt 1ttttttt ... 0ttttttt, where the t-bits
is the tag number*/
/* In practice is the tag size limited to 64K, i.e. 16 bits. If
the tag is greater then 64K return an error */
while (((tmp_tag = (int) in_buf[*ib_index]) >= 128) && n < 2) {
/* m.s.b. = 1 */
tag_no = tag_no + (MASK(tmp_tag,ASN1_LONG_TAG) << 7);
(*ib_index)++;
n++;
};
if ((n == 2) && in_buf[*ib_index] > 3)
return ASN1_TAG_ERROR; /* tag number > 64K */
tag_no = tag_no + in_buf[*ib_index];
(*ib_index)++;
*tag = enif_make_uint(env, tag_no);
}
return form;
}
/*
* ber_decode_value decodes the BER encoded length and value fields in the
* in_buf and puts the value part in the decode_buf as an Erlang
* nif term into value
*/
int ber_decode_value(ErlNifEnv* env, ERL_NIF_TERM *value, unsigned char *in_buf,
int *ib_index, int form, int in_buf_len) {
int maybe_ret;
unsigned int len = 0;
unsigned int lenoflen = 0;
int indef = 0;
unsigned char *tmp_out_buff;
ERL_NIF_TERM term = 0, curr_head = 0;
if (((in_buf[*ib_index]) & 0x80) == ASN1_SHORT_DEFINITE_LENGTH) {
len = in_buf[*ib_index];
} else if (in_buf[*ib_index] == ASN1_INDEFINITE_LENGTH
)
indef = 1;
else /* long definite length */{
lenoflen = (in_buf[*ib_index] & 0x7f); /*length of length */
if (lenoflen > (in_buf_len - (*ib_index + 1)))
return ASN1_LEN_ERROR;
len = 0;
while (lenoflen--) {
(*ib_index)++;
if (!(len < (1 << (sizeof(len) - 1) * 8)))
return ASN1_LEN_ERROR; /* length does not fit in 32 bits */
len = (len << 8) + in_buf[*ib_index];
}
}
if (len > (in_buf_len - (*ib_index + 1)))
return ASN1_VALUE_ERROR;
(*ib_index)++;
if (indef == 1) { /* in this case it is desireably to check that indefinite length
end bytes exist in inbuffer */
curr_head = enif_make_list(env, 0);
while (!(in_buf[*ib_index] == 0 && in_buf[*ib_index + 1] == 0)) {
if (*ib_index >= in_buf_len)
return ASN1_INDEF_LEN_ERROR;
if ((maybe_ret = ber_decode(env, &term, in_buf, ib_index, in_buf_len))
<= ASN1_ERROR
)
return maybe_ret;
curr_head = enif_make_list_cell(env, term, curr_head);
}
enif_make_reverse_list(env, curr_head, value);
(*ib_index) += 2; /* skip the indefinite length end bytes */
} else if (form == ASN1_CONSTRUCTED)
{
int end_index = *ib_index + len;
if (end_index > in_buf_len)
return ASN1_LEN_ERROR;
curr_head = enif_make_list(env, 0);
while (*ib_index < end_index) {
if ((maybe_ret = ber_decode(env, &term, in_buf, ib_index,
in_buf_len)) <= ASN1_ERROR
)
return maybe_ret;
curr_head = enif_make_list_cell(env, term, curr_head);
}
enif_make_reverse_list(env, curr_head, value);
} else {
if ((*ib_index + len) > in_buf_len)
return ASN1_LEN_ERROR;
tmp_out_buff = enif_make_new_binary(env, len, value);
memcpy(tmp_out_buff, in_buf + *ib_index, len);
*ib_index = *ib_index + len;
}
return ASN1_OK;
}
struct ber_encode_mem_chunk {
mem_chunk_t *next;
int length;
char *top;
char *curr;
};
int ber_encode(ErlNifEnv *env, ERL_NIF_TERM term, mem_chunk_t **curr, unsigned int *count) {
const ERL_NIF_TERM *tv;
unsigned int form;
int arity;
if (!enif_get_tuple(env, term, &arity, &tv))
return ASN1_ERROR;
form = enif_is_list(env, tv[1]) ? ASN1_CONSTRUCTED : ASN1_PRIMITIVE;
switch (form) {
case ASN1_PRIMITIVE: {
ErlNifBinary value;
if (!enif_inspect_binary(env, tv[1], &value))
return ASN1_ERROR;
if (ber_check_memory(curr, value.size))
return ASN1_ERROR;
memcpy((*curr)->curr - value.size + 1, value.data, value.size);
(*curr)->curr -= value.size;
*count += value.size;
if (ber_encode_length(value.size, curr, count))
return ASN1_ERROR;
break;
}
case ASN1_CONSTRUCTED: {
ERL_NIF_TERM head, tail;
unsigned int tmp_cnt;
if(!enif_make_reverse_list(env, tv[1], &head))
return ASN1_ERROR;
if (!enif_get_list_cell(env, head, &head, &tail)) {
if (enif_is_empty_list(env, tv[1])) {
*((*curr)->curr) = 0;
(*curr)->curr -= 1;
(*count)++;
break;
} else
return ASN1_ERROR;
}
do {
tmp_cnt = 0;
if (ber_encode(env, head, curr, &tmp_cnt)) {
return ASN1_ERROR;
}
*count += tmp_cnt;
} while (enif_get_list_cell(env, tail, &head, &tail));
if (ber_check_memory(curr, *count)) {
return ASN1_ERROR;
}
if (ber_encode_length(*count, curr, count)) {
return ASN1_ERROR;
}
break;
}
}
// We need atleast 5 bytes to encode the next tlv
if (ber_check_memory(curr, 3))
return ASN1_ERROR;
if (ber_encode_tag(env, tv[0], form, curr, count))
return ASN1_ERROR;
return ASN1_OK;
}
int ber_encode_tag(ErlNifEnv *env, ERL_NIF_TERM tag, unsigned int form,
mem_chunk_t **curr, unsigned int *count) {
unsigned int class_tag_no, head_tag;
if (!enif_get_uint(env, tag, &class_tag_no))
return ASN1_ERROR;
head_tag = form | ((class_tag_no & 0x30000) >> 10);
class_tag_no = class_tag_no & 0xFFFF;
if (class_tag_no <= 30) {
*(*curr)->curr = head_tag | class_tag_no;
(*curr)->curr -= 1;
(*count)++;
return ASN1_OK;
} else {
*(*curr)->curr = class_tag_no & 127;
class_tag_no = class_tag_no >> 7;
(*curr)->curr -= 1;
(*count)++;
while (class_tag_no > 0) {
*(*curr)->curr = (class_tag_no & 127) | 0x80;
class_tag_no >>= 7;
(*curr)->curr -= 1;
(*count)++;
}
*(*curr)->curr = head_tag | 0x1F;
(*curr)->curr -= 1;
(*count)++;
return ASN1_OK;
}
}
int ber_encode_length(size_t size, mem_chunk_t **curr, unsigned int *count) {
if (size < 128) {
if (ber_check_memory(curr, 1u))
return ASN1_ERROR;
*(*curr)->curr = size;
(*curr)->curr -= 1;
(*count)++;
} else {
int chunks = size / 256 + 1;
if (ber_check_memory(curr, chunks + 1))
return ASN1_ERROR;
while (size > 0)
{
*(*curr)->curr = size & 0xFF;
size >>= 8;
(*curr)->curr -= 1;
(*count)++;
}
*(*curr)->curr = chunks | 0x80;
(*curr)->curr -= 1;
(*count)++;
}
return ASN1_OK;
}
mem_chunk_t *ber_new_chunk(unsigned int length) {
mem_chunk_t *new = enif_alloc(sizeof(mem_chunk_t));
if (new == NULL)
return NULL;
new->next = NULL;
new->top = enif_alloc(sizeof(char) * length);
if (new->top == NULL) {
free(new);
return NULL;
}
new->curr = new->top + length - 1;
new->length = length;
return new;
}
void ber_free_chunks(mem_chunk_t *chunk) {
mem_chunk_t *curr, *next = chunk;
while (next != NULL) {
curr = next;
next = curr->next;
enif_free(curr->top);
enif_free(curr);
}
}
int ber_check_memory(mem_chunk_t **curr, unsigned int needed) {
mem_chunk_t *new;
if ((*curr)->curr-needed >= (*curr)->top)
return ASN1_OK;
if ((new = ber_new_chunk((*curr)->length > needed ? (*curr)->length * 2 : (*curr)->length + needed)) == NULL)
return ASN1_ERROR;
new->next = *curr;
*curr = new;
return ASN1_OK;
}
static ERL_NIF_TERM encode_per_complete(ErlNifEnv* env, int argc,
const ERL_NIF_TERM argv[]) {
ERL_NIF_TERM err_code;
ErlNifBinary in_binary;
ErlNifBinary out_binary;
int complete_len;
if (!enif_inspect_iolist_as_binary(env, argv[0], &in_binary))
return enif_make_badarg(env);
if (!enif_alloc_binary(in_binary.size, &out_binary))
return enif_make_atom(env, "alloc_binary_failed");
if (in_binary.size == 0)
return enif_make_binary(env, &out_binary);
if ((complete_len = per_complete(&out_binary, in_binary.data,
in_binary.size)) <= ASN1_ERROR) {
enif_release_binary(&out_binary);
if (complete_len == ASN1_ERROR
)
err_code = enif_make_uint(env, '1');
else
err_code = enif_make_uint(env, 0);
return enif_make_tuple2(env, enif_make_atom(env, "error"), err_code);
}
if (complete_len < out_binary.size)
enif_realloc_binary(&out_binary, complete_len);
return enif_make_binary(env, &out_binary);
}
static ERL_NIF_TERM decode_ber_tlv(ErlNifEnv* env, int argc,
const ERL_NIF_TERM argv[]) {
ErlNifBinary in_binary;
ERL_NIF_TERM return_term;
unsigned int err_pos = 0, return_code;
if (!enif_inspect_iolist_as_binary(env, argv[0], &in_binary))
return enif_make_badarg(env);
if ((return_code = ber_decode_begin(env, &return_term, in_binary.data,
in_binary.size, &err_pos)) != ASN1_OK
)
return enif_make_tuple2(env, enif_make_atom(env,"error"), enif_make_tuple2(env,
enif_make_int(env, return_code),enif_make_int(env, err_pos)));
return return_term;
}
static ERL_NIF_TERM encode_ber_tlv(ErlNifEnv* env, int argc,
const ERL_NIF_TERM argv[]) {
ErlNifBinary out_binary;
unsigned int length = 0, pos = 0;
int encode_err;
mem_chunk_t *curr, *top;
ERL_NIF_TERM err_code;
curr = ber_new_chunk(40);
if ((encode_err = ber_encode(env, argv[0], &curr, &length))
<= ASN1_ERROR) {
ber_free_chunks(curr);
err_code = enif_make_int(env, encode_err);
return enif_make_tuple2(env, enif_make_atom(env, "error"), err_code);
}
if (!enif_alloc_binary(length, &out_binary)) {
ber_free_chunks(curr);
return enif_make_tuple2(env, enif_make_atom(env, "error"), enif_make_atom(env,"oom"));
}
top = curr;
while (curr != NULL) {
length = curr->length - (curr->curr-curr->top) -1;
if (length > 0)
memcpy(out_binary.data + pos, curr->curr+1, length);
pos += length;
curr = curr->next;
}
ber_free_chunks(top);
return enif_make_binary(env, &out_binary);
}
static int is_ok_load_info(ErlNifEnv* env, ERL_NIF_TERM load_info) {
int i;
return enif_get_int(env, load_info, &i) && i == 1;
}
static int load(ErlNifEnv* env, void** priv_data, ERL_NIF_TERM load_info) {
if (!is_ok_load_info(env, load_info))
return -1;
return 0;
}
static int upgrade(ErlNifEnv* env, void** priv_data, void** old_priv_data,
ERL_NIF_TERM load_info) {
if (!is_ok_load_info(env, load_info))
return -1;
return 0;
}
static void unload(ErlNifEnv* env, void* priv_data) {
}
static ErlNifFunc nif_funcs[] = { { "encode_per_complete", 1,
encode_per_complete }, { "decode_ber_tlv", 1, decode_ber_tlv }, {
"encode_ber_tlv", 1, encode_ber_tlv } };
ERL_NIF_INIT(asn1rt_nif, nif_funcs, load, NULL, upgrade, unload)
|