1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003
|
%% -*- erlang-indent-level: 4 -*-
%%
%% %CopyrightBegin%
%%
%% Copyright Ericsson AB 2003-2009. All Rights Reserved.
%%
%% The contents of this file are subject to the Erlang Public License,
%% Version 1.1, (the "License"); you may not use this file except in
%% compliance with the License. You should have received a copy of the
%% Erlang Public License along with this software. If not, it can be
%% retrieved online at http://www.erlang.org/.
%%
%% Software distributed under the License is distributed on an "AS IS"
%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
%% the License for the specific language governing rights and limitations
%% under the License.
%%
%% %CopyrightEnd%
%%
%% Type analysis of Core Erlang programs.
%%
%% Copyright (C) 2001-2002 Richard Carlsson
%%
%% Author contact: richardc@it.uu.se
%%
%% @doc Type analysis of Core Erlang programs.
%% TODO: filters must handle conjunctions for better precision!
%% TODO: should get filters from patterns as well as guards.
%% TODO: unused functions are being included in the analysis.
-module(cerl_typean).
-export([core_transform/2, analyze/1, pp_hook/0]).
%%-export([analyze/2, analyze/5, annotate/1, annotate/2, annotate/5]).
-import(erl_types, [t_any/0, t_atom/0, t_atom_vals/1, t_binary/0,
t_cons/2, t_cons_hd/1, t_cons_tl/1, t_float/0,
t_fun/0, t_fun/2, t_from_range/2, t_from_term/1,
t_inf/2, t_integer/0,
t_is_any/1, t_is_atom/1, t_is_cons/1, t_is_list/1,
t_is_maybe_improper_list/1, t_is_none/1, t_is_tuple/1,
t_limit/2, t_list_elements/1, t_maybe_improper_list/0,
t_none/0, t_number/0, t_pid/0, t_port/0, t_product/1,
t_reference/0, t_sup/2, t_to_tlist/1, t_tuple/0, t_tuple/1,
t_tuple_args/1, t_tuple_size/1, t_tuple_subtypes/1]).
-import(cerl, [ann_c_fun/3, ann_c_var/2, alias_pat/1, alias_var/1,
apply_args/1, apply_op/1, atom_val/1, bitstr_size/1,
bitstr_val/1, bitstr_type/1, bitstr_flags/1, binary_segments/1,
c_letrec/2, c_nil/0,
c_values/1, call_args/1, call_module/1, call_name/1,
case_arg/1, case_clauses/1, catch_body/1, clause_body/1,
clause_guard/1, clause_pats/1, concrete/1, cons_hd/1,
cons_tl/1, fun_body/1, fun_vars/1, get_ann/1, int_val/1,
is_c_atom/1, is_c_int/1, let_arg/1, let_body/1, let_vars/1,
letrec_body/1, letrec_defs/1, module_defs/1,
module_defs/1, module_exports/1, pat_vars/1,
primop_args/1, primop_name/1, receive_action/1,
receive_clauses/1, receive_timeout/1, seq_arg/1,
seq_body/1, set_ann/2, try_arg/1, try_body/1,
try_evars/1, try_handler/1, try_vars/1, tuple_arity/1,
tuple_es/1, type/1, values_es/1, var_name/1]).
-import(cerl_trees, [get_label/1]).
-ifdef(DEBUG).
-define(ANNOTATE(X), case erl_types:t_to_string(X) of Q when length(Q) < 255 -> list_to_atom(Q); Q -> Q end).
-else.
-define(ANNOTATE(X), X).
-endif.
%% Limit for type representation depth.
-define(DEF_LIMIT, 3).
%% @spec core_transform(Module::cerl_records(), Options::[term()]) ->
%% cerl_records()
%%
%% @doc Annotates a module represented by records with type
%% information. See <code>annotate/1</code> for details.
%%
%% <p>Use the compiler option <code>{core_transform, cerl_typean}</code>
%% to insert this function as a compilation pass.</p>
%%
%% @see module/2
-spec core_transform(cerl:cerl(), [term()]) -> cerl:cerl().
core_transform(Code, _Opts) ->
{Code1, _} = cerl_trees:label(cerl:from_records(Code)),
%% io:fwrite("Running type analysis..."),
%% {T1,_} = statistics(runtime),
{Code2, _, _} = annotate(Code1),
%% {T2,_} = statistics(runtime),
%% io:fwrite("(~w ms).\n", [T2 - T1]),
cerl:to_records(Code2).
%% =====================================================================
%% annotate(Tree) -> {Tree1, Type, Vars}
%%
%% Tree = cerl:cerl()
%%
%% Analyzes `Tree' (see `analyze') and appends terms `{type, Type}'
%% to the annotation list of each fun-expression node and
%% apply-expression node of `Tree', respectively, where `Labels' is
%% an ordered-set list of labels of fun-expressions in `Tree',
%% possibly also containing the atom `external', corresponding to
%% the dependency information derived by the analysis. Any previous
%% such annotations are removed from `Tree'. `Tree1' is the
%% modified tree; for details on `OutList', `Outputs' ,
%% `Dependencies' and `Escapes', see `analyze'.
%%
%% Note: `Tree' must be annotated with labels in order to use this
%% function; see `analyze' for details.
annotate(Tree) ->
annotate(Tree, ?DEF_LIMIT).
annotate(Tree, Limit) ->
{_, _, Esc, Dep, Par} = cerl_closurean:analyze(Tree),
annotate(Tree, Limit, Esc, Dep, Par).
annotate(Tree, Limit, Esc, Dep, Par) ->
{Type, Out, Vars} = analyze(Tree, Limit, Esc, Dep, Par),
DelAnn = fun (T) -> set_ann(T, delete_ann(type, get_ann(T))) end,
SetType = fun (T, Dict) ->
case dict:find(get_label(T), Dict) of
{ok, X} ->
case t_is_any(X) of
true ->
DelAnn(T);
false ->
set_ann(T, append_ann(type,
?ANNOTATE(X),
get_ann(T)))
end;
error ->
DelAnn(T)
end
end,
F = fun (T) ->
case type(T) of
var ->
SetType(T, Vars);
apply ->
SetType(T, Out);
call ->
SetType(T, Out);
primop ->
SetType(T, Out);
'fun' ->
SetType(T, Out);
_ ->
DelAnn(T)
end
end,
{cerl_trees:map(F, Tree), Type, Vars}.
append_ann(Tag, Val, [X | Xs]) ->
if tuple_size(X) >= 1, element(1, X) =:= Tag ->
append_ann(Tag, Val, Xs);
true ->
[X | append_ann(Tag, Val, Xs)]
end;
append_ann(Tag, Val, []) ->
[{Tag, Val}].
delete_ann(Tag, [X | Xs]) ->
if tuple_size(X) >= 1, element(1, X) =:= Tag ->
delete_ann(Tag, Xs);
true ->
[X | delete_ann(Tag, Xs)]
end;
delete_ann(_, []) ->
[].
%% =====================================================================
%% analyze(Tree) -> {OutList, Outputs, Dependencies}
%%
%% Tree = cerl:cerl()
%% OutList = [LabelSet] | none
%% Outputs = dict(integer(), OutList)
%% Dependencies = dict(integer(), LabelSet)
%% LabelSet = ordset(Label)
%% Label = integer() | external
%%
%% Analyzes a module or an expression represented by `Tree'.
%%
%% The returned `OutList' is a list of sets of labels of
%% fun-expressions which correspond to the possible closures in the
%% value list produced by `Tree' (viewed as an expression; the
%% "value" of a module contains its exported functions). The atom
%% `none' denotes missing or conflicting information.
%%
%% The atom `external' in any label set denotes any possible
%% function outside `Tree', including those in `Escapes'.
%%
%% `Outputs' is a mapping from the labels of fun-expressions in
%% `Tree' to corresponding lists of sets of labels of
%% fun-expressions (or the atom `none'), representing the possible
%% closures in the value lists returned by the respective
%% functions.
%%
%% `Dependencies' is a similar mapping from the labels of
%% fun-expressions and apply-expressions in `Tree' to sets of
%% labels of corresponding fun-expressions which may contain call
%% sites of the functions or be called from the call sites,
%% respectively. Any such label not defined in `Dependencies'
%% represents an unreachable function or a dead or faulty
%% application.
%%
%% `Escapes' is the set of labels of fun-expressions in `Tree' such
%% that corresponding closures may be accessed from outside `Tree'.
%%
%% Note: `Tree' must be annotated with labels (as done by the
%% function `cerl_trees:label/1') in order to use this function.
%% The label annotation `{label, L}' (where L should be an integer)
%% must be the first element of the annotation list of each node in
%% the tree. Instances of variables bound in `Tree' which denote
%% the same variable must have the same label; apart from this,
%% labels should be unique. Constant literals do not need to be
%% labeled.
-record(state, {k, vars, out, dep, work, funs, envs}).
%% Note: In order to keep our domain simple, we assume that all remote
%% calls and primops return a single value, if any.
%% We wrap the given syntax tree T in a fun-expression labeled `top',
%% which is initially in the set of escaped labels. `top' will be
%% visited at least once.
%%
%% We create a separate function labeled `external', defined as:
%% "External = fun () -> Any", which will represent any and all
%% functions outside T, and whose return value has unknown type.
-type label() :: integer() | 'external' | 'top'.
-type ordset(X) :: [X]. % XXX: TAKE ME OUT
-type labelset() :: ordset(label()).
-type outlist() :: [labelset()] | 'none'.
-spec analyze(cerl:cerl()) -> {outlist(), dict(), dict()}.
analyze(Tree) ->
analyze(Tree, ?DEF_LIMIT).
analyze(Tree, Limit) ->
{_, _, Esc, Dep, Par} = cerl_closurean:analyze(Tree),
analyze(Tree, Limit, Esc, Dep, Par).
analyze(Tree, Limit, Esc0, Dep0, Par) ->
%% Note that we use different name spaces for variable labels and
%% function/call site labels. We assume that the labeling of Tree
%% only uses integers, not atoms.
LabelExtL = [{label, external}],
External = ann_c_var(LabelExtL, {external, 1}),
ExtFun = ann_c_fun(LabelExtL, [], ann_c_var([{label, any}], 'Any')),
%%% io:fwrite("external fun:\n~s.\n",
%%% [cerl_prettypr:format(ExtFun, [noann, {paper, 80}])]),
LabelTopL = [{label, top}],
Top = ann_c_var(LabelTopL, {top, 0}),
TopFun = ann_c_fun(LabelTopL, [], Tree),
%% The "start fun" just makes the initialisation easier. It is not
%% itself in the call graph.
StartFun = ann_c_fun([{label, start}], [],
c_letrec([{External, ExtFun}, {Top, TopFun}],
c_nil())),
%%% io:fwrite("start fun:\n~s.\n",
%%% [cerl_prettypr:format(StartFun, [{paper, 80}])]),
%% Gather a database of all fun-expressions in Tree and initialise
%% their outputs and parameter variables. All escaping functions can
%% receive any values as inputs. Also add an extra dependency edge
%% from each fun-expression label to its parent fun-expression.
%%% io:fwrite("Escape: ~p.\n",[Esc0]),
Esc = sets:from_list(Esc0),
Any = t_any(),
None = t_none(),
Funs0 = dict:new(),
Vars0 = dict:store(any, Any, dict:new()),
Out0 = dict:store(top, None,
dict:store(external, None, dict:new())),
Envs0 = dict:store(top, dict:new(),
dict:store(external, dict:new(), dict:new())),
F = fun (T, S = {Fs, Vs, Os, Es}) ->
case type(T) of
'fun' ->
L = get_label(T),
As = fun_vars(T),
X = case sets:is_element(L, Esc) of
true -> Any;
false -> None
end,
{dict:store(L, T, Fs),
bind_vars_single(As, X, Vs),
dict:store(L, None, Os),
dict:store(L, dict:new(), Es)};
_ ->
S
end
end,
{Funs, Vars, Out, Envs} = cerl_trees:fold(F, {Funs0, Vars0, Out0,
Envs0}, StartFun),
%% Add dependencies from funs to their parent funs.
Dep = lists:foldl(fun ({L, L1}, D) -> add_dep(L, L1, D) end,
Dep0, dict:to_list(Par)),
%% Enter the fixpoint iteration at the StartFun.
St = loop(TopFun, top, #state{vars = Vars,
out = Out,
dep = Dep,
work = init_work(),
funs = Funs,
envs = Envs,
k = Limit}),
{dict:fetch(top, St#state.out),
tidy_dict([top, external], St#state.out),
tidy_dict([any], St#state.vars)}.
tidy_dict([X | Xs], D) ->
tidy_dict(Xs, dict:erase(X, D));
tidy_dict([], D) ->
D.
loop(T, L, St0) ->
%%% io:fwrite("analyzing: ~w.\n",[L]),
%%% io:fwrite("work: ~w.\n", [Queue0]),
Env = dict:fetch(L, St0#state.envs),
X0 = dict:fetch(L, St0#state.out),
{X1, St1} = visit(fun_body(T), Env, St0),
X = limit(X1, St1#state.k),
{W, M} = case equal(X0, X) of
true ->
{St1#state.work, St1#state.out};
false ->
%%% io:fwrite("out (~w) changed: ~s <- ~s.\n",
%%% [L, erl_types:t_to_string(X),
%%% erl_types:t_to_string(X0)]),
M1 = dict:store(L, X, St1#state.out),
case dict:find(L, St1#state.dep) of
{ok, S} ->
%%% io:fwrite("adding work: ~w.\n", [S]),
{add_work(S, St1#state.work), M1};
error ->
{St1#state.work, M1}
end
end,
St2 = St1#state{out = M},
case take_work(W) of
{ok, L1, W1} ->
T1 = dict:fetch(L1, St2#state.funs),
loop(T1, L1, St2#state{work = W1});
none ->
St2
end.
visit(T, Env, St) ->
case type(T) of
literal ->
{t_from_term(concrete(T)), St};
var ->
%% If a variable is not already in the store at this point,
%% we initialize it to 'none()'.
L = get_label(T),
Vars = St#state.vars,
case dict:find(L, Vars) of
{ok, X} ->
case dict:find(var_name(T), Env) of
{ok, X1} ->
%%% io:fwrite("filtered variable reference: ~w:~s.\n",
%%% [var_name(T), erl_types:t_to_string(X1)]),
{meet(X, X1), St};
error ->
{X, St}
end;
error ->
X = t_none(),
Vars1 = dict:store(L, X, Vars),
St1 = St#state{vars = Vars1},
{X, St1}
end;
'fun' ->
%% Must revisit the fun also, because its environment might
%% have changed. (We don't keep track of such dependencies.)
L = get_label(T),
Xs = [dict:fetch(get_label(V), St#state.vars)
|| V <- fun_vars(T)],
X = dict:fetch(L, St#state.out),
St1 = St#state{work = add_work([L], St#state.work),
envs = dict:store(L, Env, St#state.envs)},
{t_fun(Xs, X), St1};
values ->
{Xs, St1} = visit_list(values_es(T), Env, St),
{t_product(Xs), St1};
cons ->
{[X1, X2], St1} = visit_list([cons_hd(T), cons_tl(T)], Env, St),
{t_cons(X1, X2), St1};
tuple ->
{Xs, St1} = visit_list(tuple_es(T), Env, St),
{t_tuple(Xs), St1};
'let' ->
{X, St1} = visit(let_arg(T), Env, St),
LetVars = let_vars(T),
St1Vars = St1#state.vars,
Vars = case t_is_any(X) orelse t_is_none(X) of
true ->
bind_vars_single(LetVars, X, St1Vars);
false ->
bind_vars(LetVars, t_to_tlist(X), St1Vars)
end,
visit(let_body(T), Env, St1#state{vars = Vars});
seq ->
{_, St1} = visit(seq_arg(T), Env, St),
visit(seq_body(T), Env, St1);
apply ->
{_F, St1} = visit(apply_op(T), Env, St),
{As, St2} = visit_list(apply_args(T), Env, St1),
L = get_label(T),
Ls = get_deps(L, St#state.dep),
Out = St2#state.out,
X = join_list([dict:fetch(L1, Out) || L1 <- Ls]),
Out1 = dict:store(L, X, Out),
{X, call_site(Ls, As, St2#state{out = Out1})};
call ->
M = call_module(T),
F = call_name(T),
As = call_args(T),
{[X1, X2], St1} = visit_list([M, F], Env, St),
{Xs, St2} = visit_list(As, Env, St1),
%%% io:fwrite("call: ~w:~w(~w).\n",[X1,X2,Xs]),
X = case {t_atom_vals(X1), t_atom_vals(X2)} of
{[M1], [F1]} ->
A = length(As),
%%% io:fwrite("known call: ~w:~w/~w.\n",
%%% [M1, F1, A]),
call_type(M1, F1, A, Xs);
_ ->
t_any()
end,
L = get_label(T),
{X, St2#state{out = dict:store(L, X, St2#state.out)}};
primop ->
As = primop_args(T),
{Xs, St1} = visit_list(As, Env, St),
F = atom_val(primop_name(T)),
A = length(As),
L = get_label(T),
X = primop_type(F, A, Xs),
{X, St1#state{out = dict:store(L, X, St1#state.out)}};
'case' ->
{X, St1} = visit(case_arg(T), Env, St),
Xs = case t_is_any(X) orelse t_is_none(X) of
true ->
[X || _ <- cerl:case_clauses(T)];
false ->
t_to_tlist(X)
end,
join_visit_clauses(Xs, case_clauses(T), Env, St1);
'receive' ->
Any = t_any(),
{X1, St1} = join_visit_clauses([Any], receive_clauses(T),
Env, St),
{X2, St2} = visit(receive_timeout(T), Env, St1),
case t_is_atom(X2) andalso (t_atom_vals(X2) =:= [infinity]) of
true ->
{X1, St2};
false ->
{X3, St3} = visit(receive_action(T), Env, St2),
{join(X1, X3), St3}
end;
'try' ->
{X, St1} = visit(try_arg(T), Env, St),
Any = t_any(),
Atom = t_atom(),
TryVars = try_vars(T),
St1Vars = St1#state.vars,
Vars = case t_is_any(X) orelse t_is_none(X) of
true ->
bind_vars_single(TryVars, X, St1Vars);
false ->
bind_vars(TryVars, t_to_tlist(X), St1Vars)
end,
{X1, St2} = visit(try_body(T), Env, St1#state{vars = Vars}),
EVars = bind_vars(try_evars(T), [Atom, Any, Any], St2#state.vars),
{X2, St3} = visit(try_handler(T), Env, St2#state{vars = EVars}),
{join(X1, X2), St3};
'catch' ->
{_, St1} = visit(catch_body(T), Env, St),
{t_any(), St1};
binary ->
{_, St1} = visit_list(binary_segments(T), Env, St),
{t_binary(), St1};
bitstr ->
%% The other fields are constant literals.
{_, St1} = visit(bitstr_val(T), Env, St),
{_, St2} = visit(bitstr_size(T), Env, St1),
{t_none(), St2};
letrec ->
%% All the bound funs should be revisited, because the
%% environment might have changed.
Vars = bind_defs(letrec_defs(T), St#state.vars,
St#state.out),
Ls = [get_label(F) || {_, F} <- letrec_defs(T)],
St1 = St#state{work = add_work(Ls, St#state.work),
vars = Vars},
visit(letrec_body(T), Env, St1);
module ->
%% We handle a module as a sequence of function variables in
%% the body of a `letrec'.
{_, St1} = visit(c_letrec(module_defs(T),
c_values(module_exports(T))),
Env, St),
{t_none(), St1}
end.
visit_clause(T, Xs, Env, St) ->
Env1 = Env,
Vars = bind_pats(clause_pats(T), Xs, St#state.vars),
G = clause_guard(T),
{_, St1} = visit(G, Env1, St#state{vars = Vars}),
Env2 = guard_filters(G, Env1),
visit(clause_body(T), Env2, St1).
%% We assume correct value-list typing.
visit_list([T | Ts], Env, St) ->
{X, St1} = visit(T, Env, St),
{Xs, St2} = visit_list(Ts, Env, St1),
{[X | Xs], St2};
visit_list([], _Env, St) ->
{[], St}.
join_visit_clauses(Xs, [T | Ts], Env, St) ->
{X1, St1} = visit_clause(T, Xs, Env, St),
{X2, St2} = join_visit_clauses(Xs, Ts, Env, St1),
{join(X1, X2), St2};
join_visit_clauses(_, [], _Env, St) ->
{t_none(), St}.
bind_defs([{V, F} | Ds], Vars, Out) ->
Xs = [dict:fetch(get_label(V1), Vars) || V1 <- fun_vars(F)],
X = dict:fetch(get_label(F), Out),
bind_defs(Ds, dict:store(get_label(V), t_fun(Xs, X), Vars), Out);
bind_defs([], Vars, _Out) ->
Vars.
bind_pats(Ps, Xs, Vars) ->
if length(Xs) =:= length(Ps) ->
bind_pats_list(Ps, Xs, Vars);
true ->
bind_pats_single(Ps, t_none(), Vars)
end.
bind_pats_list([P | Ps], [X | Xs], Vars) ->
Vars1 = bind_pat_vars(P, X, Vars),
bind_pats_list(Ps, Xs, Vars1);
bind_pats_list([], [], Vars) ->
Vars.
bind_pats_single([P | Ps], X, Vars) ->
bind_pats_single(Ps, X, bind_pat_vars(P, X, Vars));
bind_pats_single([], _X, Vars) ->
Vars.
bind_pat_vars(P, X, Vars) ->
case type(P) of
var ->
dict:store(get_label(P), X, Vars);
literal ->
Vars;
cons ->
case t_is_cons(X) of
true ->
%% If X is "nonempty proper list of X1", then the
%% head has type X1 and the tail has type "proper
%% list of X1". (If X is just "cons cell of X1",
%% then both head and tail have type X1.)
Vars1 = bind_pat_vars(cons_hd(P), t_cons_hd(X),
Vars),
bind_pat_vars(cons_tl(P), t_cons_tl(X), Vars1);
false ->
case t_is_list(X) of
true ->
%% If X is "proper list of X1", then the
%% head has type X1 and the tail has type
%% "proper list of X1", i.e., type X.
Vars1 = bind_pat_vars(cons_hd(P),
t_list_elements(X),
Vars),
bind_pat_vars(cons_tl(P), X, Vars1);
false ->
case t_is_maybe_improper_list(X) of
true ->
%% If X is "cons cell of X1", both
%% the head and tail have type X1.
X1 = t_list_elements(X),
Vars1 = bind_pat_vars(cons_hd(P),
X1, Vars),
bind_pat_vars(cons_tl(P), X1,
Vars1);
false ->
bind_vars_single(pat_vars(P),
top_or_bottom(X),
Vars)
end
end
end;
tuple ->
case t_is_tuple(X) of
true ->
case t_tuple_subtypes(X) of
unknown ->
bind_vars_single(pat_vars(P), top_or_bottom(X),
Vars);
[Tuple] ->
case t_tuple_size(Tuple) =:= tuple_arity(P) of
true ->
bind_pats_list(tuple_es(P),
t_tuple_args(Tuple), Vars);
false ->
bind_vars_single(pat_vars(P),
top_or_bottom(X), Vars)
end;
List when is_list(List) ->
bind_vars_single(pat_vars(P), top_or_bottom(X),
Vars)
end;
false ->
bind_vars_single(pat_vars(P), top_or_bottom(X), Vars)
end;
binary ->
bind_pats_single(binary_segments(P), t_none(), Vars);
bitstr ->
%% Only the Value field is a new binding. Size is already
%% bound, and the other fields are constant literals.
%% We could create a filter for Size being an integer().
Size = bitstr_size(P),
ValType =
case concrete(bitstr_type(P)) of
float -> t_float();
binary -> t_binary();
integer ->
case is_c_int(Size) of
false -> t_integer();
true ->
SizeVal = int_val(Size),
Flags = concrete(bitstr_flags(P)),
case lists:member(signed, Flags) of
true ->
t_from_range(-(1 bsl (SizeVal - 1)),
1 bsl (SizeVal - 1) - 1);
false ->
t_from_range(0,1 bsl SizeVal - 1)
end
end
end,
bind_pat_vars(bitstr_val(P), ValType, Vars);
alias ->
P1 = alias_pat(P),
Vars1 = bind_pat_vars(P1, X, Vars),
dict:store(get_label(alias_var(P)), pat_type(P1, Vars1),
Vars1)
end.
pat_type(P, Vars) ->
case type(P) of
var ->
dict:fetch(get_label(P), Vars);
literal ->
t_from_term(concrete(P));
cons ->
t_cons(pat_type(cons_hd(P), Vars),
pat_type(cons_tl(P), Vars));
tuple ->
t_tuple([pat_type(E, Vars) || E <- tuple_es(P)]);
binary ->
t_binary();
alias ->
pat_type(alias_pat(P), Vars)
end.
bind_vars(Vs, Xs, Vars) ->
if length(Vs) =:= length(Xs) ->
bind_vars_list(Vs, Xs, Vars);
true ->
bind_vars_single(Vs, t_none(), Vars)
end.
bind_vars_list([V | Vs], [X | Xs], Vars) ->
bind_vars_list(Vs, Xs, dict:store(get_label(V), X, Vars));
bind_vars_list([], [], Vars) ->
Vars.
bind_vars_single([V | Vs], X, Vars) ->
bind_vars_single(Vs, X, dict:store(get_label(V), X, Vars));
bind_vars_single([], _X, Vars) ->
Vars.
add_dep(Source, Target, Deps) ->
case dict:find(Source, Deps) of
{ok, X} ->
case set__is_member(Target, X) of
true ->
Deps;
false ->
%%% io:fwrite("new dep: ~w <- ~w.\n", [Target, Source]),
dict:store(Source, set__add(Target, X), Deps)
end;
error ->
%%% io:fwrite("new dep: ~w <- ~w.\n", [Target, Source]),
dict:store(Source, set__singleton(Target), Deps)
end.
%% This handles a call site, updating parameter variables with respect
%% to the actual parameters.
call_site(Ls, Xs, St) ->
%% io:fwrite("call site: ~w ~s.\n",
%% [Ls, erl_types:t_to_string(erl_types:t_product(Xs))]),
{W, V} = call_site(Ls, Xs, St#state.work, St#state.vars,
St#state.funs, St#state.k),
St#state{work = W, vars = V}.
call_site([L | Ls], Xs, W, V, Fs, Limit) ->
Vs = fun_vars(dict:fetch(L, Fs)),
case bind_args(Vs, Xs, V, Limit) of
{V1, true} ->
call_site(Ls, Xs, add_work([L], W), V1, Fs, Limit);
{V1, false} ->
call_site(Ls, Xs, W, V1, Fs, Limit)
end;
call_site([], _, W, V, _, _) ->
{W, V}.
%% If the arity does not match the call, nothing is done here.
bind_args(Vs, Xs, Vars, Limit) ->
if length(Vs) =:= length(Xs) ->
bind_args(Vs, Xs, Vars, Limit, false);
true ->
{Vars, false}
end.
bind_args([V | Vs], [X | Xs], Vars, Limit, Ch) ->
L = get_label(V),
{Vars1, Ch1} = bind_arg(L, X, Vars, Limit, Ch),
bind_args(Vs, Xs, Vars1, Limit, Ch1);
bind_args([], [], Vars, _Limit, Ch) ->
{Vars, Ch}.
%% bind_arg(L, X, Vars, Limit) ->
%% bind_arg(L, X, Vars, Limit, false).
bind_arg(L, X, Vars, Limit, Ch) ->
X0 = dict:fetch(L, Vars),
X1 = limit(join(X, X0), Limit),
case equal(X0, X1) of
true ->
{Vars, Ch};
false ->
%%% io:fwrite("arg (~w) changed: ~s <- ~s + ~s.\n",
%%% [L, erl_types:t_to_string(X1),
%%% erl_types:t_to_string(X0),
%%% erl_types:t_to_string(X)]),
{dict:store(L, X1, Vars), true}
end.
%% Domain: type(), defined in module `erl_types'.
meet(X, Y) -> t_inf(X, Y).
join(X, Y) -> t_sup(X, Y).
join_list([Xs | Xss]) ->
join(Xs, join_list(Xss));
join_list([]) ->
t_none().
equal(X, Y) -> X =:= Y.
limit(X, K) -> t_limit(X, K).
top_or_bottom(T) ->
case t_is_none(T) of
true ->
T;
false ->
t_any()
end.
strict(Xs, T) ->
case erl_types:any_none(Xs) of
true ->
t_none();
false ->
T
end.
%% Set abstraction for label sets.
%% set__new() -> [].
set__singleton(X) -> [X].
%% set__to_list(S) -> S.
%% set__from_list(S) -> ordsets:from_list(S).
%% set__union(X, Y) -> ordsets:union(X, Y).
set__add(X, S) -> ordsets:add_element(X, S).
set__is_member(X, S) -> ordsets:is_element(X, S).
%% set__subtract(X, Y) -> ordsets:subtract(X, Y).
%% set__equal(X, Y) -> X =:= Y.
%% A simple but efficient functional queue.
queue__new() -> {[], []}.
queue__put(X, {In, Out}) -> {[X | In], Out}.
queue__get({In, [X | Out]}) -> {ok, X, {In, Out}};
queue__get({[], _}) -> empty;
queue__get({In, _}) ->
[X | In1] = lists:reverse(In),
{ok, X, {[], In1}}.
%% The work list - a queue without repeated elements.
init_work() ->
{queue__put(external, queue__new()), sets:new()}.
add_work(Ls, {Q, Set}) ->
add_work(Ls, Q, Set).
%% Note that the elements are enqueued in order.
add_work([L | Ls], Q, Set) ->
case sets:is_element(L, Set) of
true ->
add_work(Ls, Q, Set);
false ->
add_work(Ls, queue__put(L, Q), sets:add_element(L, Set))
end;
add_work([], Q, Set) ->
{Q, Set}.
take_work({Queue0, Set0}) ->
case queue__get(Queue0) of
{ok, L, Queue1} ->
Set1 = sets:del_element(L, Set0),
{ok, L, {Queue1, Set1}};
empty ->
none
end.
get_deps(L, Dep) ->
case dict:find(L, Dep) of
{ok, Ls} -> Ls;
error -> []
end.
%% Type information for built-in functions. We do not check that the
%% arguments have the correct type; if the call would actually fail,
%% rather than return a value, this is a safe overapproximation.
primop_type(match_fail, 1, _) -> t_none();
primop_type(_, _, Xs) -> strict(Xs, t_any()).
call_type(M, F, A, Xs) ->
erl_bif_types:type(M, F, A, Xs).
guard_filters(T, Env) ->
guard_filters(T, Env, dict:new()).
guard_filters(T, Env, Vars) ->
case type(T) of
call ->
M = call_module(T),
F = call_name(T),
case is_c_atom(M) andalso is_c_atom(F) of
true ->
As = call_args(T),
case {atom_val(M), atom_val(F), length(As)} of
{erlang, 'and', 2} ->
[A1, A2] = As,
guard_filters(A1, guard_filters(A2, Env));
{erlang, is_atom, 1} ->
filter(As, t_atom(), Env);
{erlang, is_binary, 1} ->
filter(As, t_binary(), Env);
{erlang, is_float, 1} ->
filter(As, t_float(), Env);
{erlang, is_function, 1} ->
filter(As, t_fun(), Env);
{erlang, is_integer, 1} ->
filter(As, t_integer(), Env);
{erlang, is_list, 1} ->
filter(As, t_maybe_improper_list(), Env);
{erlang, is_number, 1} ->
filter(As, t_number(), Env);
{erlang, is_pid, 1} ->
filter(As, t_pid(), Env);
{erlang, is_port, 1} ->
filter(As, t_port(), Env);
{erlang, is_reference, 1} ->
filter(As, t_reference(), Env);
{erlang, is_tuple, 1} ->
filter(As, t_tuple(), Env);
_ ->
Env
end;
false ->
Env
end;
var ->
case dict:find(var_name(T), Vars) of
{ok, T1} ->
guard_filters(T1, Env, Vars);
error ->
Env
end;
'let' ->
case let_vars(T) of
[V] ->
guard_filters(let_body(T), Env,
dict:store(var_name(V), let_arg(T),
Vars));
_ ->
Env
end;
values ->
case values_es(T) of
[T1] ->
guard_filters(T1, Env, Vars);
_ ->
Env
end;
_ ->
Env
end.
filter(As, X, Env) ->
[A] = As,
case type(A) of
var ->
V = var_name(A),
case dict:find(V, Env) of
{ok, X1} ->
dict:store(V, meet(X, X1), Env);
error ->
dict:store(V, X, Env)
end;
_ ->
Env
end.
%% Callback hook for cerl_prettypr:
-spec pp_hook() -> fun((cerl:cerl(), _, fun((_,_) -> any())) -> any()).
pp_hook() ->
fun pp_hook/3.
pp_hook(Node, Ctxt, Cont) ->
As = cerl:get_ann(Node),
As1 = proplists:delete(type, proplists:delete(label, As)),
As2 = proplists:delete(typesig, proplists:delete(file, As1)),
D = Cont(cerl:set_ann(Node, []), Ctxt),
T = case proplists:lookup(type, As) of
{type, T0} -> T0;
none ->
case proplists:lookup(typesig, As) of
{typesig, T0} -> T0;
none -> t_any()
end
end,
D1 = case erl_types:t_is_any(T) of
true ->
D;
false ->
case cerl:is_literal(Node) of
true ->
D;
false ->
S = erl_types:t_to_string(T),
Q = prettypr:beside(prettypr:text("::"),
prettypr:text(S)),
prettypr:beside(D, Q)
end
end,
cerl_prettypr:annotate(D1, As2, Ctxt).
%% =====================================================================
|