1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
|
%% -*- erlang-indent-level: 2 -*-
%%
%% %CopyrightBegin%
%%
%% Copyright Ericsson AB 2007-2009. All Rights Reserved.
%%
%% The contents of this file are subject to the Erlang Public License,
%% Version 1.1, (the "License"); you may not use this file except in
%% compliance with the License. You should have received a copy of the
%% Erlang Public License along with this software. If not, it can be
%% retrieved online at http://www.erlang.org/.
%%
%% Software distributed under the License is distributed on an "AS IS"
%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
%% the License for the specific language governing rights and limitations
%% under the License.
%%
%% %CopyrightEnd%
%%
%%%=======================================================================
%% File : hipe_icode_ssa_struct_reuse.erl
%% Author : Ragnar Osterlund <ragoster@gmail.com>
%% student at the compiler techniques 2 course at UU 2007
%% Description : HiPE module that removes redundant or partially redundant
%% structure creations from Icode.
%% It does so by inserting redundant expressions as late
%% as possible in the CFG, with the exception of loops where
%% expressions are moved to just before the loop head.
%% Current Icode instructions that can be moved are mktuple()
%% and cons() primop calls. It also handles cases like
%% f({Z}) -> {Z}. It does so by looking at the structure of
%% the match, and recognizes tuples and conses.
%%=======================================================================
-module(hipe_icode_ssa_struct_reuse).
-export([struct_reuse/1]).
-include("../main/hipe.hrl").
-include("hipe_icode.hrl").
-include("hipe_icode_primops.hrl").
-include("../flow/cfg.hrl").
-define(SET, ordset).
-define(SETS, ordsets).
%%-define(DEBUG, true).
-define(MKTUPLE, mktuple).
-define(CONS, cons).
-define(SR_INSTR_TYPE, sr_instr_type).
-define(SR_STRUCT_INSTR_TYPE, sr_struct_instr_type).
-type struct_type() :: {?CONS | ?MKTUPLE, icode_term_arg(), any()}.
-type struct_elems() :: {icode_var(), non_neg_integer(), icode_term_arg()}.
%% DATATYPE AREA
%%-----------------------------------------------------------------------------
%% maps
%% The maps are used to identify variables and expressions.
%% The maps are:
%%
%% expr - a map that contains value numbered structure expressions, ie
%% mktuple and cons expression. The key is the value number and the value
%% is an expr record.
%%
%% instr - maps the semantic instruction to an expression value number,
%% that is, a key in the expr map above.
%%
%% var - maps variables to expression value numbers. These variables are
%% defined or used by the structure expressions.
-record(maps, {var = gb_trees:empty() :: gb_tree(),
instr = gb_trees:empty() :: gb_tree(),
expr = gb_trees:empty() :: gb_tree()}).
maps_var(#maps{var = Out}) -> Out.
maps_instr(#maps{instr = Out}) -> Out.
maps_expr(#maps{expr = Out}) -> Out.
maps_expr_keys(Maps) -> gb_trees:keys(maps_expr(Maps)).
maps_expr_values(Maps) -> gb_trees:values(maps_expr(Maps)).
maps_instr_lookup(Instr, Maps) -> gb_trees:lookup(Instr, maps_instr(Maps)).
maps_instr_enter(Instr, ExprId, Maps) ->
NewInstr = gb_trees:enter(Instr, ExprId, maps_instr(Maps)),
Maps#maps{instr = NewInstr}.
maps_expr_get(Id, Maps) -> gb_trees:get(Id, maps_expr(Maps)).
maps_expr_enter(Expr, Maps) ->
NewExprMap = gb_trees:enter(expr_id(Expr), Expr, maps_expr(Maps)),
Maps#maps{expr = NewExprMap}.
maps_var_get(Var, Maps) -> gb_trees:get(Var, maps_var(Maps)).
maps_var_lookup(Var, #maps{var = VarMap}) -> gb_trees:lookup(Var, VarMap).
maps_var_enter(Var, Info, Maps = #maps{var = VarMap}) ->
NewMap = gb_trees:enter(Var, Info, VarMap),
Maps#maps{var = NewMap}.
maps_var_insert(Var, Info, Maps = #maps{var = VarMap}) ->
NewMap = gb_trees:insert(Var, Info, VarMap),
Maps#maps{var = NewMap}.
maps_balance(Maps) ->
Maps#maps{instr = gb_trees:balance(maps_instr(Maps)),
expr = gb_trees:balance(maps_expr(Maps)),
var = gb_trees:balance(maps_var(Maps))}.
maps_expr_key_enter(Expr, Maps) ->
NewMaps = maps_instr_enter(expr_key(Expr), expr_id(Expr), Maps),
maps_expr_enter(Expr, NewMaps).
%%-----------------------------------------------------------------------------
%% expr
%% An expression record. Contains information about a structure expression.
%% The fields are:
%%
%% id - the value number of the expression
%% key - the semantic instruction, as defined in icode, with destination
%% removed and arguments rewritten.
%% defs - destination variable to hold the value of the expression.
%% direct_replace - indicates whether the expression shall be replaced wherever
%% it occurs, although it might not have been inserted. This is used for
%% the expressions that are detected by the icode type constructs.
%% inserts - a list of node labels that will insert this expression
%% use - a list of expression value numbers that use the value of this
%% expression
-record(expr, {id = none :: 'none' | non_neg_integer(),
key = none :: 'none' | tuple(), % illegal_icode_instr()
defs = none :: 'none' | [icode_var()],
direct_replace = false :: boolean(),
inserts = ?SETS:new() :: ?SET(_),
use = ?SETS:new() :: ?SET(_)}).
expr_id(#expr{id = Out}) -> Out.
expr_defs(#expr{defs = Out}) -> Out.
expr_key(#expr{key = Out}) -> Out.
expr_inserts(#expr{inserts = Out}) -> Out.
expr_use(#expr{use = Out}) -> Out.
expr_direct_replace(#expr{direct_replace = Out}) -> Out.
expr_use_add(Expr = #expr{use = UseSet}, Use) ->
Expr#expr{use = ?SETS:add_element(Use, UseSet)}.
%% expr_key_set(Expr, In) -> Expr#expr{key = In}.
expr_direct_replace_set(Expr, In) -> Expr#expr{direct_replace = In}.
expr_inserts_set(Expr, In) -> Expr#expr{inserts = In}.
expr_create(Key, Defs) ->
NewExprId = new_expr_id(),
#expr{id = NewExprId, key = Key, defs = Defs}.
%%-----------------------------------------------------------------------------
%% varinfo
%% A variable mapping info. Contains info about variable references.
%% The fields are:
%%
%% use - a set of expression value numbers that use this variable
%% ref - the variable which value this variable will be assigned
%% when expression is replaced. This is encoded as {N, M} where
%% N is the expression value number and M is the nth destination
%% variable defined by the expression N.
%% elem - indicates that this variable has been detected to be a part of
%% a tuple. The field contains a {V, N} tuple where V is the variable
%% that refers to the structure that this variable is an element in
%% and N is the position that the element occurs on in the tuple. Eg.
%% {{var, 3}, 2} means that the variable {var, 3} refers to a tuple
%% in which this variable is on second place.
%% exprid - a expression value number which is the expression that
%% the variable is defined by.
-record(varinfo, {use = ?SETS:new() :: ?SET(_),
ref = none :: 'none' | {non_neg_integer(), non_neg_integer()},
elem = none :: 'none' | {icode_var(), non_neg_integer()},
exprid = none :: 'none' | non_neg_integer()}).
varinfo_exprid(#varinfo{exprid = Out}) -> Out.
varinfo_use_add(#varinfo{use = UseSet} = I, Use) ->
I#varinfo{use = ?SETS:add_element(Use, UseSet)}.
%%-----------------------------------------------------------------------------
%% node - a node in the temp CFG.
%%
%% label - the label of the node in the original CFG
%% pred - a list of predecessors to this node
%% succ - a list of successors to this node
%% code - code from CFG filtered to only contain structure instructions
%% non_struct_defs - a list of variable definitions that are not defined
%% by structures
%% up_expr - upwards exposed expression value numbers
%% killed_expr - killed expressions value numbers
%% sub_inserts - a set of labels of nodes that defines one or more
%% expressions and that are in a subtree of this node
%% inserts - a set of expression value numbers to be inserted into the node
%% antic_in - a set of expression value numbers that are anticipated into
%% the node
%% antic_out - a set of expression value numbers that are anticipated out of
%% the node
%% phi - a tree of node labels which is defined in phi functions in the node
%% varmap - a list of variable tuples {V1, V2} that maps a variable that are
%% the output of phi functions in sub blocks, V1, into a variable
%% flowing from the block of this node, V2.
%% struct_type - a list of {V, N} tuples that indicates that V is a tuple
%% with N elements. These are added from the icode primop type().
%% struct_elems - a list of {VD, N, VS} tuples where VD is a variable in the N'th position
%% in VS. These are added from the icode primop unsafe_element()
-record(node, {
label = none :: 'none' | icode_lbl(),
pred = none :: 'none' | [icode_lbl()],
succ = none :: 'none' | [icode_lbl()],
code = [] :: [tuple()], % [illegal_icode_instr()]
phi = gb_trees:empty() :: gb_tree(),
varmap = [] :: [{icode_var(), icode_var()}],
pre_loop = false :: boolean(),
non_struct_defs = gb_sets:new() :: gb_set(),
up_expr = none :: 'none' | ?SET(_),
killed_expr = none :: 'none' | ?SET(_),
sub_inserts = ?SETS:new() :: ?SET(_),
inserts = ?SETS:new() :: ?SET(_),
antic_in = none :: 'none' | ?SET(_),
antic_out = none :: 'none' | ?SET(_),
struct_type = [] :: [struct_type()],
struct_elems = [] :: [struct_elems()]}).
node_sub_inserts(#node{sub_inserts = Out}) -> Out.
node_inserts(#node{inserts = Out}) -> Out.
node_antic_out(#node{antic_out = Out}) -> Out.
node_antic_in(#node{antic_in = Out}) -> Out.
node_killed_expr(#node{killed_expr = Out}) -> Out.
node_pred(#node{pred = Out}) -> Out.
node_succ(#node{succ = Out}) -> Out.
node_label(#node{label = Out}) -> Out.
node_code(#node{code = Out}) -> Out.
node_non_struct_defs(#node{non_struct_defs = Out}) -> Out.
node_up_expr(#node{up_expr = Out}) -> Out.
node_pre_loop(#node{pre_loop = Out}) -> Out.
node_struct_type(#node{struct_type = Out}) -> Out.
%% node_atom_type(#node{atom_type = Out}) -> Out.
node_struct_elems(#node{struct_elems = Out}) -> Out.
node_pre_loop_set(Node) -> Node#node{pre_loop = true}.
node_phi_add(Node = #node{phi = Phi}, Pred, Value) ->
NewList =
case gb_trees:lookup(Pred, Phi) of
{value, List} -> [Value | List];
none -> [Value]
end,
Node#node{phi = gb_trees:enter(Pred, NewList, Phi)}.
node_phi_get(#node{phi = Phi}, Pred) ->
case gb_trees:lookup(Pred, Phi) of
{value, List} -> List;
none -> []
end.
node_code_add(Node = #node{code = Code}, Instr) ->
Node#node{code = [Instr | Code]}.
node_code_rev(Node = #node{code = Code}) ->
Node#node{code = lists:reverse(Code)}.
node_struct_type_add(Node = #node{struct_type = T}, Value) ->
Node#node{struct_type = [Value | T]}.
%% node_atom_type_add(Node = #node{atom_type = T}, Value) ->
%% Node#node{atom_type = [Value | T]}.
node_struct_elems_add(Node = #node{struct_elems = T}, Value) ->
Node#node{struct_elems = [Value | T]}.
node_non_struct_defs_list(Node) ->
gb_sets:to_list(node_non_struct_defs(Node)).
node_non_struct_instr_add(Node, Instr) ->
DefList = hipe_icode:defines(Instr),
Tmp = gb_sets:union(node_non_struct_defs(Node), gb_sets:from_list(DefList)),
Node#node{non_struct_defs = Tmp}.
node_set_sub_inserts(Node, In) -> Node#node{sub_inserts = In}.
node_add_insert(Node, In) ->
NewIns = ?SETS:add_element(In, node_inserts(Node)),
Node#node{inserts = NewIns}.
node_union_sub_inserts(Node, SubIns) ->
NewSubIns = ?SETS:union(SubIns, node_sub_inserts(Node)),
node_set_sub_inserts(Node, NewSubIns).
node_varmap_set(Node, Vars) ->
Node#node{varmap = Vars}.
node_varmap_lookup(#node{varmap = Varmap}, Var) ->
case lists:keyfind(Var, 1, Varmap) of
{_, NewVar} -> NewVar;
false -> Var
end.
node_create(Label, Pred, Succ) ->
#node{label = Label, pred = Pred, succ = Succ}.
%%-----------------------------------------------------------------------------
%% nodes - describes the new temporary CFG
%%
%% domtree - the dominator tree of the original CFG
%% labels - the labels of the original CFG, filtered to only contain non fail trace paths
%% postorder - the postorder walk of labels of the original CFG, filtered to only contain non fail trace paths
%% rev_postorder - reverse of postorder.
%% start_label - the start basic block label.
%% all_expr - all expression value numbers that the CFG defines
%% tree - the tree of nodes, with labels as keys and node records as values
-record(nodes, {
domtree :: hipe_dominators:domTree(),
labels = none :: 'none' | [icode_lbl()],
postorder = none :: 'none' | [icode_lbl()],
start_label = none :: 'none' | icode_lbl(),
rev_postorder = none :: 'none' | [icode_lbl()],
all_expr = none :: 'none' | [non_neg_integer()],
tree = gb_trees:empty() :: gb_tree()}).
nodes_postorder(#nodes{postorder = Out}) -> Out.
nodes_rev_postorder(#nodes{rev_postorder = Out}) -> Out.
nodes_tree(#nodes{tree = Out}) -> Out.
nodes_domtree(#nodes{domtree = Out}) -> Out.
nodes_start_label(#nodes{start_label = Out}) -> Out.
nodes_tree_is_empty(#nodes{tree = Tree}) ->
gb_trees:is_empty(Tree).
nodes_tree_set(Tree, Nodes) -> Nodes#nodes{tree = Tree}.
nodes_all_expr_set(AllExpr, Nodes) -> Nodes#nodes{all_expr = AllExpr}.
nodes_tree_values(Nodes) ->
gb_trees:values(nodes_tree(Nodes)).
get_node(Label, Nodes) ->
gb_trees:get(Label, nodes_tree(Nodes)).
enter_node(Node, Nodes) ->
nodes_tree_set(gb_trees:enter(node_label(Node), Node, nodes_tree(Nodes)), Nodes).
remove_node(Node, Nodes) ->
nodes_tree_set(gb_trees:delete(node_label(Node), nodes_tree(Nodes)), Nodes).
nodes_create() -> #nodes{}.
%%-----------------------------------------------------------------------------
%% update
%% record used when updating the CFG, keeping track of which expressions
%% have been inserted and their mappings to variable names.
%%
%% inserted - maps an expression to a list of variables
%% del_red_test - flag that is set to true when the reduction test
%% has been inserted is used to move the reduction test.
-record(update, {inserted = gb_trees:empty() :: gb_tree(),
del_red_test = false :: boolean()}).
update_inserted_lookup(#update{inserted = Inserted}, ExprId) ->
gb_trees:lookup(ExprId, Inserted).
update_inserted_add_new(Update = #update{inserted = Inserted}, ExprId, Defs) ->
VarList = [case hipe_icode:is_var(Def) of
true -> hipe_icode:mk_new_var();
false ->
case hipe_icode:is_reg(Def) of
true -> hipe_icode:mk_new_reg();
false ->
true = hipe_icode:is_fvar(Def),
hipe_icode:mk_new_fvar()
end
end || Def <- Defs],
NewInserted = gb_trees:enter(ExprId, VarList, Inserted),
{Update#update{inserted = NewInserted}, VarList}.
update_inserted_add(Update = #update{inserted = Inserted}, ExprId, Defs) ->
Update#update{inserted = gb_trees:enter(ExprId, Defs, Inserted)}.
update_del_red_test(#update{del_red_test = DelRed}) -> DelRed.
update_del_red_test_set(Update) ->
Update#update{del_red_test = true}.
%%-----------------------------------------------------------------------------
%% CODE AREA
%%-----------------------------------------------------------------------------
%% Main function called from the hipe_main module
-spec struct_reuse(#cfg{}) -> #cfg{}.
struct_reuse(CFG) ->
%% debug_init_case_count(?SR_INSTR_TYPE),
%% debug_init_case_count(?SR_STRUCT_INSTR_TYPE),
%% debug_function({wings_ask,ask_unzip,3}, CFG),
%% debug_function(nil, CFG),
%% set_debug_flag(true),
%% debug_struct("CFG In: ", CFG),
%% debug_cfg_pp(CFG),
init_expr_id(),
Nodes = construct_nodes(CFG),
case nodes_tree_is_empty(Nodes) of
false ->
Maps = create_maps(Nodes),
Nodes3 = init_nodes(Nodes, Maps),
Nodes4 = calc_anticipated(Nodes3),
{Nodes5, Maps3} = calc_inserts(Nodes4, Maps),
Nodes6 = update_nodes_inserts(Nodes5, Maps3),
%% debug_list("ExprMap: ", gb_trees:to_list(Maps3#maps.expr)),
%% debug_list("VarMap: ", gb_trees:to_list(maps_var(Maps3))),
%% debug_nodes(Nodes6),
%% update the cfg
CFG1 = rewrite_cfg(CFG, Nodes6, Maps3),
CFG2 = hipe_icode_ssa:remove_dead_code(CFG1),
CFGOut = hipe_icode_ssa_copy_prop:cfg(CFG2),
%% CFGOut = CFG1,
%% print_struct("CFG: ", CFG),
%% debug_cfg_pp(CFG),
%% debug_cfg_pp(CFGOut),
%% debug_print_case_count(?SR_STRUCT_INSTR_TYPE),
%% debug_print_case_count(?SR_INSTR_TYPE),
%% debug("Done~n"),
%% debug_struct("CFG Out: ", CFGOut),
CFGOut;
true ->
CFG
end.
%%-----------------------------------------------------------------------------
%% Calculate simplified CFG with all fail paths removed
construct_nodes(CFG) ->
%% all important dominator tree
DomTree = hipe_dominators:domTree_create(CFG),
%% construct initial nodes
{Nodes, NonFailSet} = nodes_from_cfg(CFG, DomTree),
%% remove nodes on fail paths
NewNodes = prune_nodes(Nodes, NonFailSet),
%% fill in misc node tree info
Postorder = [Label || Label <- hipe_icode_cfg:postorder(CFG),
gb_sets:is_member(Label, NonFailSet)],
%% check postorder is valid
PostOrderTmp = hipe_icode_cfg:postorder(CFG),
LabelsTmp = hipe_icode_cfg:labels(CFG),
case length(PostOrderTmp) =/= length(LabelsTmp) of
true ->
print("Warning, Postorder and Labels differ!~n"),
print_struct("Postorder: ", PostOrderTmp),
print_struct("Labels: ", LabelsTmp);
false ->
done
end,
RevPostorder = lists:reverse(Postorder),
StartLabel = hipe_icode_cfg:start_label(CFG),
NewTree = gb_trees:balance(nodes_tree(NewNodes)),
NewNodes#nodes{postorder = Postorder,
rev_postorder = RevPostorder,
start_label = StartLabel,
tree = NewTree,
domtree = DomTree}.
%%-----------------------------------------------------------------------------
%% Constructs a tree of nodes, one node for each basic block in CFG
nodes_from_cfg(CFG, DomTree) ->
lists:foldl(fun(Label, {NodesAcc, NonFailAcc}) ->
Code = hipe_bb:code(hipe_icode_cfg:bb(CFG, Label)),
Pred = hipe_icode_cfg:pred(CFG, Label),
Succ = hipe_icode_cfg:succ(CFG, Label),
%% debug_struct("Label: ", Label),
%% debug_struct("Code: ", Code),
%% Find all structures and phi functions.
%% Find all defines in this bb that are not from structures
%% and add them to NonStructDefs, later to be used for calculating upwards
%% exposed expressions, and killed expressions.
%% Also find all non fail blocks, ie backtrace from return blocks,
%% and add them to NewNonFailAcc
Node = node_create(Label, Pred, Succ),
{NewNode, NewNonFailAcc, PreLoopPreds} =
lists:foldl(fun(Instr, {NodeAcc, NFAcc, PLPAcc}) ->
case instr_type(Instr) of
struct ->
{node_code_add(NodeAcc, Instr), NFAcc, PLPAcc};
return ->
{NodeAcc, get_back_trace_rec(CFG, Label, NFAcc), PLPAcc};
{struct_elems, NumElem, DstVar, SrcVar} ->
NewNodeAcc = node_struct_elems_add(NodeAcc, {DstVar, NumElem, SrcVar}),
{node_non_struct_instr_add(NewNodeAcc, Instr), NFAcc, PLPAcc};
{struct_type, NumElems, Var, Type} ->
{node_struct_type_add(NodeAcc, {Type, Var, NumElems}), NFAcc, PLPAcc};
{tuple_arity, Var, Cases} ->
NewNodeAcc =
lists:foldl(fun(Case, NAcc) ->
case Case of
{{const, {flat, Arity}}, _} ->
Tuple = {?MKTUPLE, Var, Arity},
node_struct_type_add(NAcc, Tuple);
_ -> NAcc
end
end, NodeAcc, Cases),
{NewNodeAcc, NFAcc, PLPAcc};
%% {atom_type, Atom, Var} ->
%% {node_atom_type_add(NodeAcc, {Var, Atom}), NFAcc, PLPAcc};
phi ->
Def = hipe_icode:phi_dst(Instr),
Part = lists:foldl(fun(P = {Pr, PredVar}, {IsDef, NotDom}) ->
case hipe_dominators:domTree_dominates(Label, Pr, DomTree) of
false ->
{IsDef, [P | NotDom]};
true ->
{IsDef andalso PredVar =:= Def, NotDom}
end
end, {true, []}, hipe_icode:phi_arglist(Instr)),
case Part of
{true, [{P, V}]} ->
%% This is the only case recognized so far. All phi
%% sub block references a static variable that is
%% assigned the same value again in the phi function.
{node_phi_add(NodeAcc, P, {Def, V}),
NFAcc, ?SETS:add_element(P, PLPAcc)};
{false, [{P, _}]} ->
{node_non_struct_instr_add(NodeAcc, Instr),
NFAcc, ?SETS:add_element(P, PLPAcc)};
_ ->
{node_non_struct_instr_add(NodeAcc, Instr), NFAcc, PLPAcc}
end;
_ ->
{node_non_struct_instr_add(NodeAcc, Instr), NFAcc, PLPAcc}
end
end, {Node, NonFailAcc, ?SETS:new()}, Code),
%% insert the new node
NewNodesAcc = enter_node(node_code_rev(NewNode), NodesAcc),
%% Set the pre loop flag of all nodes that are predecessor to this node
%% and that are the first nodes prior to a loop.
NewNodesAcc2 =
lists:foldl(fun(Lbl, NsAcc) ->
PredNode = get_node(Lbl, NsAcc),
NewPredNode = node_pre_loop_set(PredNode),
NewPredNode2 = node_varmap_set(NewPredNode, node_phi_get(NewNode, Lbl)),
enter_node(NewPredNode2, NsAcc)
end, NewNodesAcc, PreLoopPreds),
{NewNodesAcc2, NewNonFailAcc}
end, {nodes_create(), gb_sets:new()}, hipe_icode_cfg:reverse_postorder(CFG)).
%%-----------------------------------------------------------------------------
%% Get all labels from Label to root of CFG, ie backtraces from Label.
get_back_trace_rec(CFG, Label, LabelSet) ->
%% debug_struct("Label :", Label),
%% debug_struct("Set :", gb_sets:to_list(LabelSet)),
case gb_sets:is_member(Label, LabelSet) of
false ->
Preds = hipe_icode_cfg:pred(CFG, Label),
lists:foldl(fun(Lbl, SetAcc) ->
get_back_trace_rec(CFG, Lbl, SetAcc)
end, gb_sets:add(Label, LabelSet), Preds);
true -> LabelSet
end.
%%-----------------------------------------------------------------------------
%% Remove all fail block paths and successors and predecessors
%% That are on fail paths
prune_nodes(Nodes, NonFailSet) ->
lists:foldl(fun(Node, NodesAcc) ->
case gb_sets:is_member(node_label(Node), NonFailSet) of
true ->
NewSucc = [L || L <- node_succ(Node), gb_sets:is_member(L, NonFailSet)],
NewPred = [L || L <- node_pred(Node), gb_sets:is_member(L, NonFailSet)],
enter_node(Node#node{succ = NewSucc, pred = NewPred}, NodesAcc);
false ->
remove_node(Node, NodesAcc)
end
end, Nodes, nodes_tree_values(Nodes)).
%%-----------------------------------------------------------------------------
%% Map calculations.
%%-----------------------------------------------------------------------------
%% Create a maps structure from the Nodes record
create_maps(Nodes) ->
Maps = lists:foldl(fun(Label, MapsAcc) ->
Node = get_node(Label, Nodes),
NewMapsAcc = maps_from_node_struct_type(MapsAcc, Node),
NewMapsAcc2 = maps_from_node_struct_elems(NewMapsAcc, Node),
%% NewMapsAcc3 = maps_from_node_atom_type(NewMapsAcc2, Node),
maps_from_node_code(NewMapsAcc2, Node)
end, #maps{}, nodes_rev_postorder(Nodes)),
maps_balance(Maps).
%%-----------------------------------------------------------------------------
%% Add all elements in the struct_type list of Node to Maps as expressions
maps_from_node_struct_type(Maps, Node) ->
%% debug_struct("Node Label: ", node_label(Node)),
%% debug_struct("Node Tuple Type: ", node_struct_type(Node)),
lists:foldl(fun({Type, Var, Size}, MapsAcc) ->
Key = create_elem_expr_key(Size, Var, []),
InstrKey = hipe_icode:mk_primop([], Type, Key),
NewExpr2 = expr_create(InstrKey, [Var]),
NewExpr3 = expr_direct_replace_set(NewExpr2, true),
maps_expr_key_enter(NewExpr3, MapsAcc)
end, Maps, node_struct_type(Node)).
create_elem_expr_key(0, _, Key) -> Key;
create_elem_expr_key(N, Var, Key) ->
create_elem_expr_key(N - 1, Var, [{Var, N} | Key]).
%%-----------------------------------------------------------------------------
%%maps_from_node_atom_type(Maps, Node) ->
%% lists:foldl(fun({Var, Atom}, MapsAcc) ->
%% case maps_var_lookup(Var, MapsAcc) of
%% none ->
%% MapsAcc;
%% {value, #varinfo{elem = none}} ->
%% MapsAcc;
%% {value, #varinfo{elem = {Src, Num, ExprId}}} ->
%% Expr = maps_expr_get(ExprId, MapsAcc),
%% Key = expr_key(Expr),
%%
%% Filter = fun(Arg) ->
%% case Arg of
%% {Src, Num, ExprId} ->
%% hipe_icode:mk_const(Atom);
%% _ ->
%% Arg
%% end end,
%%
%% NewKey = replace_call_variables(Filter, Key),
%% NewExpr = expr_create(NewKey, expr_defs(Expr)),
%% maps_expr_key_enter(NewExpr, MapsAcc)
%% end
%% end, Maps, node_atom_type(Node)).
%%-----------------------------------------------------------------------------
%% Add all struct_elemns in Node to Maps as variables
maps_from_node_struct_elems(Maps, Node) ->
lists:foldl(fun({Dst, Num, Src}, MapsAcc) ->
VarInfo = #varinfo{elem = {Src, Num}},
maps_var_insert(Dst, VarInfo, MapsAcc)
end, Maps, node_struct_elems(Node)).
%%-----------------------------------------------------------------------------
%% Get all expressions defined by the Node and insert them into Maps.
%% Also insert information about all affected variables into Maps.
maps_from_node_code(Maps, Node) ->
%% debug_struct("Node Label: ", Label),
%% debug_struct("Node Code: ", Code),
%% Label = node_label(Node),
lists:foldl(fun(Instr, MapsAcc) ->
%% create two keys that are used to reference this structure creation
%% instruction, so that we can lookup its expression value number
%% later.
InstrKey = hipe_icode:call_dstlist_update(Instr, []),
%% Fetch the two keys from the instruction
{HasElems, RefKey, ElemKey} =
replace_call_vars_elems(MapsAcc, InstrKey),
%% create a new expr record or lookup an existing one.
case HasElems of
true ->
%% The instruction contains uses of variables that are
%% part of another structure.
case maps_instr_lookup(ElemKey, MapsAcc) of
{value, ExprId} ->
%% The instruction is equal to a structure that has
%% already been created. This is the f({Z}) -> {Z}
%% optimization. I.e. there is no need to create {Z} again.
%% Also lookup if ExprId is defining a variable that is
%% already an element in another structure. If so,
%% use that element. This takes care of nested structures
%% such as f({X, {Y, Z}}) -> {X, {Y, Z}}.
#expr{defs = [Var]} = maps_expr_get(ExprId, MapsAcc),
StructElem =
case maps_var_lookup(Var, MapsAcc) of
{value, #varinfo{elem = Elem, exprid = none}} when Elem =/= none ->
Elem;
_ -> none
end,
Defines = hipe_icode:defines(Instr),
maps_varinfos_create(Defines, ExprId, StructElem, MapsAcc);
none ->
%% create a new expression
maps_expr_varinfos_create(Instr, RefKey, MapsAcc)
end;
false ->
%% create a new expression
maps_expr_varinfos_create(Instr, RefKey, MapsAcc)
end
end, Maps, node_code(Node)).
%%-----------------------------------------------------------------------------
%% Creates varinfo structures with exprid set to ExprId for all
%% variables contained in Defines. These are put into MapsIn.
maps_varinfos_create(Defines, ExprId, Elem, MapsIn) ->
VarInfo = #varinfo{exprid = ExprId, elem = Elem},
{MapsOut, _} =
lists:foldl(fun (Def, {Maps, NumAcc}) ->
NewVarInfo = VarInfo#varinfo{ref = {ExprId, NumAcc}},
{maps_var_insert(Def, NewVarInfo, Maps), NumAcc + 1}
end, {MapsIn, 1}, Defines),
MapsOut.
%%-----------------------------------------------------------------------------
%% Creates a new expression from RefKey if RefKey is not already reffering
%% to an expression. Also creates varinfo structures for all variables defined
%% and used by Instr. Result is put in Maps.
maps_expr_varinfos_create(Instr, RefKey, Maps) ->
Defines = hipe_icode:defines(Instr),
{ExprId, Maps2} =
case maps_instr_lookup(RefKey, Maps) of
{value, EId} ->
{EId, Maps};
none ->
NewExpr = expr_create(RefKey, Defines),
{expr_id(NewExpr), maps_expr_key_enter(NewExpr, Maps)}
end,
Maps3 = maps_varinfos_create(Defines, ExprId, none, Maps2),
update_maps_var_use(Instr, ExprId, Maps3).
%%-----------------------------------------------------------------------------
%% A variable replacement function that returns a tuple of three elements
%% {T, K1, K2}, where T indicates if Instr contained variables that where
%% elements of other structures, K1 is the Instr with all variables that
%% references another structure replaced, and K2 is K1 but also with all
%% variables that are elements of other structures replaced.
replace_call_vars_elems(Maps, Instr) ->
VarMap = maps_var(Maps),
{HasElems, Vars, Elems} =
lists:foldr(fun(Arg, {HasElems, Vars, Elems}) ->
case hipe_icode:is_const(Arg) of
false ->
case gb_trees:lookup(Arg, VarMap) of
none ->
{HasElems, [Arg | Vars], [Arg | Elems]};
{value, #varinfo{ref = none, elem = none}} ->
{HasElems, [Arg | Vars], [Arg | Elems]};
{value, #varinfo{ref = Ref, elem = none}} ->
{HasElems, [Ref | Vars], [Ref | Elems]};
{value, #varinfo{ref = none, elem = Elem}} ->
{true, [Arg | Vars], [Elem | Elems]};
{value, #varinfo{ref = Ref, elem = Elem}} ->
{true, [Ref | Vars], [Elem | Elems]}
end;
true ->
{HasElems, [Arg | Vars], [Arg | Elems]}
end end, {false, [], []}, hipe_icode:args(Instr)),
{HasElems, hipe_icode:call_args_update(Instr, Vars),
hipe_icode:call_args_update(Instr, Elems)}.
%%-----------------------------------------------------------------------------
%% Updates the usage information of all variables used by Instr to also
%% contain Id and updates Maps to contain the new variable information.
%% Also updates the expressions where the updated variables are used to
%% contain the use information.
update_maps_var_use(Instr, Id, Maps) ->
lists:foldl(fun(Use, MapsAcc) ->
VarInfo = get_varinfo(Use, MapsAcc),
NewVarInfo = varinfo_use_add(VarInfo, Id),
MapsAcc2 = maps_var_enter(Use, NewVarInfo, MapsAcc),
case varinfo_exprid(VarInfo) of
none ->
MapsAcc2;
VarExprId ->
Expr = maps_expr_get(VarExprId, MapsAcc2),
NewExpr = expr_use_add(Expr, Id),
maps_expr_enter(NewExpr, MapsAcc2)
end
end, Maps, hipe_icode:uses(Instr)).
%%-----------------------------------------------------------------------------
%% Looks up an old variable info or creates a new one if none is found.
get_varinfo(Var, Maps) ->
case maps_var_lookup(Var, Maps) of
{value, Info} ->
Info;
none ->
#varinfo{}
end.
%%-----------------------------------------------------------------------------
%% filters all arguments to a function call Instr that are not constants
%% through the Filter function, and replaces the arguments in Instr with
%% the result.
replace_call_variables(Filter, Instr) ->
NewArgs = [case hipe_icode:is_const(Arg) of
false -> Filter(Arg);
true -> Arg
end || Arg <- hipe_icode:args(Instr)],
hipe_icode:call_args_update(Instr, NewArgs).
%%-----------------------------------------------------------------------------
%% Init nodes from node local expression information
init_nodes(Nodes, Maps) ->
AllExpr = maps_expr_keys(Maps),
lists:foldl(fun(Node, NodesAcc) ->
UEExpr = calc_up_exposed_expr(maps_var(Maps), Node),
%% print_list("Up ExprSet: ", ?SETS:to_list(UEExpr)),
KilledExpr = calc_killed_expr(Node, Maps),
%% print_list("Killed: ", ?SETS:to_list(KilledExpr)),
%% End nodes have no anticipated out
AnticOut =
case node_succ(Node) of
[] ->
?SETS:new();
_ ->
AllExpr
end,
enter_node(Node#node{up_expr = UEExpr,
killed_expr = KilledExpr,
antic_out = AnticOut}, NodesAcc)
end, nodes_all_expr_set(AllExpr, Nodes), nodes_tree_values(Nodes)).
%%-----------------------------------------------------------------------------
%% Calculate the upwards exposed expressions for a node.
calc_up_exposed_expr(VarMap, Node) ->
%% debug_struct("UpExpr label: ", node_label(Node)),
NonStructDefs = node_non_struct_defs(Node),
{_, ExprIdSet} =
lists:foldl(fun(Instr, {NotToUseAcc, ExprIdAcc}) ->
Defs = hipe_icode:defines(Instr),
Uses = hipe_icode:uses(Instr),
IsNotToUse =
lists:any(fun(Use) -> gb_sets:is_member(Use, NotToUseAcc) end, Uses),
case IsNotToUse of
false ->
NewExprIdAcc =
lists:foldl(fun(Def, Acc) ->
#varinfo{exprid = Id} = gb_trees:get(Def, VarMap),
?SETS:add_element(Id, Acc) end, ExprIdAcc, Defs),
{NotToUseAcc, NewExprIdAcc};
true ->
NewNotToUse =
gb_sets:union(gb_sets:from_list(Defs), NotToUseAcc),
{NewNotToUse, ExprIdAcc}
end
end, {NonStructDefs, ?SETS:new()}, node_code(Node)),
ExprIdSet.
%%-----------------------------------------------------------------------------
%% Calculate killed expression for node
calc_killed_expr(Node, Maps) ->
calc_killed_expr_defs(node_non_struct_defs_list(Node), ?SETS:new(), Maps).
calc_killed_expr_defs(Defs, UseSet, Maps) ->
lists:foldl(fun(Def, Acc) ->
case maps_var_lookup(Def, Maps) of
none ->
Acc;
{value, #varinfo{use = Use}} ->
?SETS:union(Acc, calc_killed_expr_use(Use, Maps))
end
end, UseSet, Defs).
calc_killed_expr_use(ExprIds, Maps) ->
?SETS:fold(fun(Id, Acc) ->
Expr = maps_expr_get(Id, Maps),
?SETS:union(Acc, calc_killed_expr_use(expr_use(Expr), Maps))
end, ExprIds, ExprIds).
%%-----------------------------------------------------------------------------
%% Calculate the anticipated in and anticipated out sets for each node
calc_anticipated(NodesIn) ->
calc_anticipated_rec(NodesIn, nodes_postorder(NodesIn)).
calc_anticipated_rec(NodesIn, []) -> NodesIn;
calc_anticipated_rec(NodesIn, WorkIn) ->
{NodesOut, WorkOut} =
lists:foldl(fun(Label, {NodesAcc, WorkAcc}) ->
Node = get_node(Label, NodesAcc),
%debug_struct("~nNode Label: ", Label),
AnticIn = ?SETS:union(node_up_expr(Node),
?SETS:subtract(node_antic_out(Node), node_killed_expr(Node))),
%debug_struct("AnticIn: ", AnticIn),
case (node_antic_in(Node) =:= AnticIn) of
false ->
NewNodes1 = enter_node(Node#node{antic_in = AnticIn}, NodesAcc),
Preds = node_pred(Node),
%debug_struct("Preds: ", Preds),
NewNodes2 =
lists:foldl(fun(Label2, NodesAcc2) ->
PredNode = get_node(Label2, NodesAcc2),
AnticOut = ?SETS:intersection(AnticIn, node_antic_out(PredNode)),
%debug_struct("Pred Node Label: ", Label2),
%debug_struct("Pred AnticOut: ", AnticOut),
enter_node(PredNode#node{antic_out = AnticOut}, NodesAcc2)
end, NewNodes1, Preds),
NewWork = add_work_list(Preds, WorkAcc),
%debug_struct("New Work: ", NewWork),
{NewNodes2, NewWork};
true ->
{NodesAcc, WorkAcc}
end
end, {NodesIn, new_work()}, WorkIn),
calc_anticipated_rec(NodesOut, get_work_list(WorkOut)).
%%-----------------------------------------------------------------------------
%% Function that adds inserts to expressions from nodes which either
%% have an upwards exposed expression or dominate more than one node
%% that inserts the same expression or the node is a prior to loop
%% node. The inserted info is stored in the #expr records in the expr
%% map of the #maps structure.
calc_inserts(NodesIn, MapsIn) ->
DomTree = nodes_domtree(NodesIn),
lists:foldl(fun(Label, {NodesAcc, MapsAcc}) ->
Node = get_node(Label, NodesAcc),
%% get some basic properties.
UpExpr = node_up_expr(Node),
AnticOut = node_antic_out(Node),
SubIns = node_sub_inserts(Node),
%% debug_struct("Label: ", Label),
{HasIns, NewMapsAcc} =
?SETS:fold(fun(ExprId, {HasInsAcc, MapsAcc2}) ->
Expr = maps_expr_get(ExprId, MapsAcc2),
ExprIns = expr_inserts(Expr),
ExprSubIns = ?SETS:intersection(ExprIns, SubIns),
%% There are three cases when to insert an expression
%% 1. The expression is defined at least twice in the subtree of this
%% node, that is length(ExprSubIns) > 1.
%% 2. It is defined in the node and is upwards exposed.
%% 3. The node is a block just above a loop, so we should move
%% all anticipated expressions to the node.
case length(ExprSubIns) > 1 orelse ?SETS:is_element(ExprId, UpExpr)
orelse node_pre_loop(Node) of
true ->
%% get labels of all sub blocks that inserts the expression and
%% that are dominated by the current node.
Dominates =
?SETS:filter(fun(SubLabel) ->
hipe_dominators:domTree_dominates(Label, SubLabel, DomTree)
end, ExprSubIns),
%% remove inserts labels from insert labelset.
NewIns = ?SETS:subtract(ExprIns, Dominates),
NewIns2 = ?SETS:add_element(Label, NewIns),
%% update the node.
NewMaps =
maps_expr_enter(expr_inserts_set(Expr, NewIns2), MapsAcc2),
{true, NewMaps};
false ->
{HasInsAcc, MapsAcc2}
end
end, {false, MapsAcc}, ?SETS:union(AnticOut, UpExpr)),
%% Check if there was an insert into this node,
%% and if so add to the sub inserts set.
NewSubIns =
case HasIns of
true ->
?SETS:add_element(Label, SubIns);
false ->
SubIns
end,
%% update sub inserts for all predecessors to the node.
NewNodes2 =
lists:foldl(fun(PredLabel, NodesAcc2) ->
PredNode = get_node(PredLabel, NodesAcc2),
enter_node(node_union_sub_inserts(PredNode, NewSubIns), NodesAcc2)
end, NodesAcc, node_pred(Node)),
{NewNodes2, NewMapsAcc}
end, {NodesIn, MapsIn}, nodes_postorder(NodesIn)).
%%-----------------------------------------------------------------------------
%% Update the insert sets of each node in the node tree.
%% That is, move the insert information from the expressions to
%% the actual nodes that perform the inserts.
update_nodes_inserts(Nodes, Maps) ->
lists:foldl(fun(Expr, NodesAcc) ->
ExprId = expr_id(Expr),
?SETS:fold(fun(Label, NsAcc) ->
Nd = get_node(Label, NsAcc),
enter_node(node_add_insert(Nd, ExprId), NsAcc)
end, NodesAcc, expr_inserts(Expr))
end, Nodes, maps_expr_values(Maps)).
%%-----------------------------------------------------------------------------
%% Rewrite CFG functions
%%-----------------------------------------------------------------------------
%% Do the code updating from the info in the nodes and maps structures. This
%% is a proxy function for rewrite_cfg/6
rewrite_cfg(CFG, Nodes, Maps) ->
{NewCFG, _Visited} =
rewrite_cfg(CFG, ?SETS:new(), #update{}, Nodes, Maps, [nodes_start_label(Nodes)]),
%% debug_struct("Visited: ", _Visited),
NewCFG.
%%-----------------------------------------------------------------------------
%% rewrite_cfg
%% traverse the CFG in reverse postorder and rewrite each basic block before
%% rewriteing its children. Pass along to each BB update the mappings of
%% inserted expressions in the Update record.
rewrite_cfg(CFG, Visited, Update, Nodes, Maps, Labels) ->
lists:foldl(fun(Label, {CFGAcc, VisitedAcc}) ->
case ?SETS:is_element(Label, VisitedAcc) of
false ->
%% debug_struct("Visit: ", Label),
Node = get_node(Label, Nodes),
NewVisitedAcc = ?SETS:add_element(Label, VisitedAcc),
{NewCFGAcc, NewUpdate} = rewrite_bb(CFGAcc, Update, Maps, Node),
%% debug_struct("Update inserted: ", update_inserted_list(NewUpdate)),
rewrite_cfg(NewCFGAcc, NewVisitedAcc, NewUpdate, Nodes, Maps, node_succ(Node));
true ->
{CFGAcc, VisitedAcc}
end
end, {CFG, Visited}, Labels).
%%-----------------------------------------------------------------------------
%% rewrite one single basic block in the CFG as described by the properties
%% in the Node for that block. Uses the Maps and Update info to lookup
%% the instructions and expressions to insert or delete.
rewrite_bb(CFG, Update, Maps, Node) ->
#node{pre_loop = PreLoop, label = Label, up_expr = UpExpr, inserts = Inserts} = Node,
Code = hipe_bb:code(hipe_icode_cfg:bb(CFG, Label)),
%debug_struct("RW Label: ", Label),
%debug_struct("Inserts", Inserts),
DelRed = update_del_red_test(Update),
Delete = ?SETS:subtract(UpExpr, Inserts),
%% local function that gets the instruction and defines list of an
%% expression id in the current node and and returns them.
GetInstrFunc = fun(Expr) ->
Instr = expr_key(Expr),
Defs = expr_defs(Expr),
NewInstr =
if
PreLoop ->
replace_call_variables(fun(Var) ->
node_varmap_lookup(Node,
Var)
end,
Instr);
true ->
Instr
end,
{NewInstr, Defs}
end,
%% go through all expressions defined by the node and replace
%% or remove them as indicated by the delete set. Also perform
%% reduction test replacement if neccessary.
{[CodeLast | CodeRest], NewUpdate, LocalAcc} =
lists:foldl(fun(Instr, {CodeAcc, UpdateAcc, LocalAcc}) ->
case struct_instr_type(Instr) of
struct ->
Defs = hipe_icode:defines(Instr),
#varinfo{exprid = ExprId} = maps_var_get(hd(Defs), Maps),
Expr = maps_expr_get(ExprId, Maps),
DirectReplace = expr_direct_replace(Expr),
%% Creates move intstructions from Vars to Defs
RemoveFuncVars = fun(Vars) ->
CodeAcc2 = mk_defs_moves(CodeAcc, Defs, Vars),
{CodeAcc2, UpdateAcc, LocalAcc} end,
%% Looks up an already inserted ExprId and makes moves
%% of variables from that expression to this expression.
RemoveFunc = fun() ->
{value, Vars} = update_inserted_lookup(UpdateAcc, ExprId),
RemoveFuncVars(Vars) end,
%% Is ExprId already inserted?
IsLocal = ?SETS:is_element(ExprId, LocalAcc),
case DirectReplace of
true ->
%% The Instr is reffering to an expression that is
%% defined as an identical already present instruction,
%% and can be removed directly.
RemoveFuncVars(expr_defs(Expr));
false when IsLocal ->
%% The instruction has already been inserted.
RemoveFunc();
_ ->
case ?SETS:is_element(ExprId, Delete) of
true ->
%% should not be inserted
RemoveFunc();
_ ->
%% Should remain
UpdateAcc2 = update_inserted_add(UpdateAcc, ExprId, Defs),
LocalAcc2 = ?SETS:add_element(ExprId, LocalAcc),
{[Instr | CodeAcc], UpdateAcc2, LocalAcc2}
end
end;
redtest when DelRed ->
%% delete reduction test
{CodeAcc, UpdateAcc, LocalAcc};
_ ->
{[Instr | CodeAcc], UpdateAcc, LocalAcc}
end
end, {[], Update, ?SETS:new()}, Code),
%debug_struct("RW Label 2: ", Label),
%% calculate the inserts that are new to this node, that is
%% the expressions that are in Inserts but not in UpExpr,
%% and that have not been added already,
%% that is not present in LocalAcc
NewInserts = ?SETS:subtract(?SETS:subtract(Inserts, UpExpr), LocalAcc),
{NewCodeRest, NewUpdate2} =
?SETS:fold(fun(ExprId, {CodeAcc, UpdateAcc}) ->
Expr = maps_expr_get(ExprId, Maps),
{ExprInstr, Defs} = GetInstrFunc(Expr),
{UpdateAcc2, NewDefs} = update_inserted_add_new(UpdateAcc, ExprId, Defs),
%% check if there exists an identical expression, so that
%% this expression can be replaced directly.
CodeAcc2 =
case expr_direct_replace(Expr) of
false ->
NewInstr = rewrite_expr(UpdateAcc2, ExprInstr, NewDefs),
[NewInstr | CodeAcc];
true ->
mk_defs_moves(CodeAcc, NewDefs, Defs)
end,
{CodeAcc2, UpdateAcc2}
end, {CodeRest, NewUpdate}, NewInserts),
NewCode = lists:reverse([CodeLast | NewCodeRest]),
%% Check if we are to insert new reduction test here...
{NewCode2, NewUpdate3} =
case PreLoop andalso ?SETS:size(Inserts) > 0 andalso not DelRed of
true ->
{[hipe_icode:mk_primop([], redtest, []) | NewCode], update_del_red_test_set(NewUpdate2)};
false ->
{NewCode, NewUpdate2}
end,
NewBB = hipe_bb:mk_bb(NewCode2),
NewCFG = hipe_icode_cfg:bb_add(CFG, Label, NewBB),
{NewCFG, NewUpdate3}.
%%-----------------------------------------------------------------------------
%% Create a new structure instruction from Instr with destination Defs
%% from the insert mapping in Update.
rewrite_expr(Update, Instr, Defs) ->
NewInstr =
replace_call_variables(fun(Ref) ->
case Ref of
{ExprId, Num} when is_integer(ExprId) ->
{value, DefList} = update_inserted_lookup(Update, ExprId),
lists:nth(Num, DefList);
_ -> Ref
end end, Instr),
hipe_icode:call_dstlist_update(NewInstr, Defs).
%%-----------------------------------------------------------------------------
%% Make move instructions from Defs list to all variables in
%% the Refs list and insert into Code.
mk_defs_moves(Code, [], []) -> Code;
mk_defs_moves(Code, [Ref | Refs], [Def | Defs]) ->
mk_defs_moves([hipe_icode:mk_move(Ref, Def) | Code], Refs, Defs).
%%-----------------------------------------------------------------------------
%% Utilities
new_work() ->
{[], gb_sets:new()}.
add_work_list(List, Work) ->
lists:foldl(fun(Label, WorkAcc) ->
add_work_label(Label, WorkAcc) end, Work, List).
add_work_label(Label, {List, Set}) ->
case gb_sets:is_member(Label, Set) of
false ->
{[Label | List], gb_sets:add(Label, Set)};
true ->
{List, Set}
end.
get_work_list({List, _}) ->
lists:reverse(List).
%%-----------------------------------------------------------------------------
%% instr_type
%% gets a tag for the type of instruction that is passed in I
struct_instr_type(I) ->
case I of
#icode_call{type = primop, 'fun' = mktuple} ->
%%debug_count_case(?SR_STRUCT_INSTR_TYPE, #call{type = primop, 'fun' = mktuple}),
struct;
#icode_call{type = primop, 'fun' = cons} ->
%%debug_count_case(?SR_STRUCT_INSTR_TYPE, #call{type = primop, 'fun' = cons}),
struct;
#icode_call{type = primop, 'fun' = redtest} ->
%%debug_count_case(?SR_STRUCT_INSTR_TYPE, #call{type = primop, 'fun' = redtest}),
redtest;
_ ->
%%debug_count_case(?SR_STRUCT_INSTR_TYPE, other),
other
end.
instr_type(I) ->
case I of
%#call{type = primop, dstlist = List} when length(List) >= 1 -> struct;
#icode_call{type = primop, 'fun' = {unsafe_element, Elem}, dstlist = [DstVar], args = [SrcVar]} ->
%%debug_count_case(?SR_INSTR_TYPE, #call{type = primop, 'fun' = {unsafe_element, num}}),
{struct_elems, Elem, DstVar, SrcVar};
#icode_phi{} ->
%%debug_count_case(?SR_INSTR_TYPE,#phi{}),
phi;
#icode_enter{} ->
%%debug_count_case(?SR_INSTR_TYPE,#enter{}),
return;
#icode_return{} ->
%%debug_count_case(?SR_INSTR_TYPE,#return{}),
return;
#icode_call{type = primop, 'fun' = mktuple} ->
%%debug_count_case(?SR_INSTR_TYPE, #call{type = primop, 'fun' = mktuple}),
struct;
#icode_call{type = primop, 'fun' = cons} ->
%%debug_count_case(?SR_INSTR_TYPE, #call{type = primop, 'fun' = cons}),
struct;
#icode_call{type = primop, 'fun' = redtest} ->
%%debug_count_case(?SR_INSTR_TYPE, #call{type = primop, 'fun' = redtest}),
redtest;
#icode_type{test = {tuple, Size}, args = [Var]} ->
%%debug_count_case(?SR_INSTR_TYPE, #type{type = {tuple, size}}),
{struct_type, Size, Var, ?MKTUPLE};
#icode_type{test = cons, args = [Var]} ->
%%debug_count_case(?SR_INSTR_TYPE,#type{type = cons}),
{struct_type, 2, Var, ?CONS};
%#type{type = {atom, Atom}, args = [Var]} -> {atom_type, Atom, Var};
#icode_call{type = primop, 'fun' = unsafe_hd,
dstlist = [DstVar], args = [SrcVar]} ->
%%debug_count_case(?SR_INSTR_TYPE,#call{type = primop, 'fun' = unsafe_hd}),
{struct_elems, 1, DstVar, SrcVar};
#icode_call{type = primop, 'fun' = unsafe_tl,
dstlist = [DstVar], args = [SrcVar]} ->
%%debug_count_case(?SR_INSTR_TYPE, #call{type = primop, 'fun' = unsafe_tl}),
{struct_elems, 2, DstVar, SrcVar};
#icode_switch_tuple_arity{term = Var, cases = Cases} ->
%%debug_count_case(?SR_INSTR_TYPE,#switch_tuple_arity{}),
{tuple_arity, Var, Cases};
_ -> other
end.
%%-----------------------------------------------------------------------------
%% Expression ID counter
init_expr_id() ->
put({struct_reuse, expr_id_count}, 0).
-spec new_expr_id() -> non_neg_integer().
new_expr_id() ->
V = get({struct_reuse, expr_id_count}),
put({struct_reuse, expr_id_count}, V+1),
V.
%%-----------------------------------------------------------------------------
%% Debug and print functions
print_struct(String, Struct) ->
io:format(String),
erlang:display(Struct).
print(String) ->
io:format(String).
-ifdef(DEBUG).
debug_count_case(Type, Case) ->
Cases = get(Type),
NewCases =
case gb_trees:lookup(Case, Cases) of
{value, Value} -> gb_trees:enter(Case, Value + 1, Cases);
none -> gb_trees:insert(Case, 1, Cases)
end,
put(Type, NewCases).
debug_init_case_count(Type) ->
case get(Type) of
undefined -> put(Type, gb_trees:empty());
_ -> ok
end.
debug_print_case_count(Type) ->
Cases = get(Type),
debug_struct("Case type: ", Type),
debug_list("Cases: ", gb_trees:to_list(Cases)).
set_debug_flag(Value) ->
put({struct_reuse, debug}, Value).
get_debug_flag() -> get({struct_reuse, debug}).
debug_function(FuncName, CFG) ->
Linear = hipe_icode_cfg:cfg_to_linear(CFG),
Func = hipe_icode:icode_fun(Linear),
case Func =:= FuncName orelse FuncName =:= nil of
true ->
set_debug_flag(true),
%% debug_struct("Code: ", hipe_icode_cfg:bb(CFG, 15)),
debug_struct("~nFunction name :", Func);
false ->
set_debug_flag(undefined)
end.
debug_cfg_pp(CFG) ->
case get_debug_flag() of
true -> hipe_icode_cfg:pp(CFG);
_ -> none
end.
debug_struct(String, Struct) ->
case get_debug_flag() of
true ->
io:format(String),
erlang:display(Struct);
_ -> none
end.
debug(String) ->
case get_debug_flag() of
true -> io:format(String);
_ -> none
end.
debug_list(String, List) ->
case get_debug_flag() of
true -> print_list(String, List);
_ -> none
end.
print_list(String, List) ->
io:format(String),
io:format("~n"),
print_list_rec(List),
io:format("~n").
print_list_rec([]) -> ok;
print_list_rec([Struct | List]) ->
erlang:display(Struct),
print_list_rec(List).
debug_nodes(Nodes) ->
lists:foreach(fun(Node) -> debug_node(Node) end, nodes_tree_values(Nodes)).
debug_node(Node) ->
case get_debug_flag() of
true ->
print_struct("Node Label: ", Node#node.label),
print_struct("Code: ", Node#node.code),
print_struct("Phi: ", Node#node.phi),
print_struct("PreLoop: ", Node#node.pre_loop),
print_struct("Preds: ", Node#node.pred),
print_struct("Succ: ", Node#node.succ),
print_struct("Up Expr: ", Node#node.up_expr),
print_struct("Kill : ", Node#node.killed_expr),
print_struct("AnticIn: ", Node#node.antic_in),
print_struct("AnticOut: ", Node#node.antic_out),
print_struct("SubInserts: ", Node#node.sub_inserts),
print_struct("Inserts: ", Node#node.inserts),
print_struct("NonStructDefs: ", Node#node.non_struct_defs),
print_struct("Params: ", Node#node.struct_type),
print_struct("Elems: ", Node#node.struct_elems),
io:format("~n");
_ -> none
end.
-endif.
|