1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
|
%% -*- erlang-indent-level: 2 -*-
%%
%% %CopyrightBegin%
%%
%% Copyright Ericsson AB 2002-2013. All Rights Reserved.
%%
%% The contents of this file are subject to the Erlang Public License,
%% Version 1.1, (the "License"); you may not use this file except in
%% compliance with the License. You should have received a copy of the
%% Erlang Public License along with this software. If not, it can be
%% retrieved online at http://www.erlang.org/.
%%
%% Software distributed under the License is distributed on an "AS IS"
%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
%% the License for the specific language governing rights and limitations
%% under the License.
%%
%% %CopyrightEnd%
%%
%%----------------------------------------------------------------------
%% File : hipe_ssa.inc
%% Authors : Christoffer Vikström, Daniel Deogun, and Jesper Bengtsson
%% Created : March 2002
%% Purpose : Provides code which converts the code of a CFG into SSA
%% (Static Single Assignment) form and back.
%% A routine to check for SSA-ness is also provided.
%%
%% Major Modifications:
%% * Feb 2003: Per Gustafsson - added SSA checker.
%% * Aug 2003: Per Gustafsson - added removal of dead code.
%% * Feb 2004: Kostis Sagonas - made it work on RTL level too.
%% * Feb 2004: Tobias Lindahl - re-wrote the unconvert/1 function.
%%----------------------------------------------------------------------
-export([convert/1, check/1, unconvert/1, remove_dead_code/1]).
-include("../main/hipe.hrl").
-include("../flow/cfg.hrl"). %% needed for the specs
-include("../ssa/hipe_ssa_liveness.inc"). %% needed for dead code removal
%%----------------------------------------------------------------------
%%
%% NOTE! When the phi-instructions are placed, it is important that
%% the internal order is preserved. Otherwise the (correct) order:
%%
%% v1 := phi({1, v2}, {2, v11})
%% v2 := phi({1, v11}, {2, v12})
%%
%% can become (the incorrect)
%%
%% v2 := phi({1, v11}, {2, v12})
%% v1 := phi({1, v2}, {2, v11})
%%
%% that will set v1 to the _new_ value of v2 instead of the old value.
%%
%%----------------------------------------------------------------------
-spec convert(#cfg{}) -> #cfg{}.
convert(CFG) ->
CFG1 = insertNewStartNode(CFG),
?opt_start_timer("Dominator Tree construction"),
DomTree = hipe_dominators:domTree_create(CFG1),
?opt_stop_timer("Dominator Tree construction done"),
?opt_start_timer("Dominance Frontier"),
DomFrontier = hipe_dominators:domFrontier_create(CFG1, DomTree),
?opt_stop_timer("Dominance Frontier done"),
?opt_start_timer("placement of Phi-nodes"),
CFG2 = place_phi(CFG1, DomFrontier),
?opt_stop_timer("placement of Phi-nodes done"),
?opt_start_timer("Rename"),
CFG3 = rename(CFG2, DomTree),
?opt_stop_timer("Rename done"),
CFG3.
%%----------------------------------------------------------------------
insertNewStartNode(CFG) ->
StartLabel = ?CFG:start_label(CFG),
NewStartLabel = ?CODE:label_name(?CODE:mk_new_label()),
BB = hipe_bb:mk_bb([?CODE:mk_goto(StartLabel)]),
CFG2 = ?CFG:bb_add(CFG, NewStartLabel, BB),
?CFG:start_label_update(CFG2, NewStartLabel).
%%======================================================================
%% PlacePhi Algorithm
%%======================================================================
%%----------------------------------------------------------------------
%% Procedure : place_phi/2
%% Purpose : Places phi nodes at appropriate places in the CFG.
%% Arguments : CFG - Control Flow Graph.
%% DF - Dominance Frontier.
%% Returns : CFG with phi functions.
%%----------------------------------------------------------------------
place_phi(CFG, DF) ->
AssMap = insertParams(CFG),
AssMap2 = preProcess(CFG, AssMap),
VarList = gb_trees:to_list(AssMap2),
Liveness = ?LIVENESS:analyze(CFG),
variableTraverse(CFG, DF, gb_trees:empty(), gb_trees:empty(),
0, AssMap2, Liveness, VarList).
%%----------------------------------------------------------------------
%% Procedure : insertParams/1
%% Purpose : Inserts the parameters of the CFG into the AssMap.
%% Arguments : CFG - Control Flow Graph
%% Returns : AssMap - Assignment map.
%%----------------------------------------------------------------------
insertParams(CFG) ->
StartLabel = ?CFG:start_label(CFG),
Params = ?CFG:params(CFG),
insertParams(Params, StartLabel, gb_trees:empty()).
insertParams([Param|T], StartLabel, AssMap) ->
insertParams(T, StartLabel, gb_trees:insert(Param, [StartLabel], AssMap));
insertParams([], _, AssMap) -> AssMap.
%%----------------------------------------------------------------------
%% Procedure : preProcessg/2
%% Purpose : Creates the assignment map.
%% Arguments : CFG - Control Flow Graph
%% AssMap - Assignment map
%% Returns : AssMap.
%%----------------------------------------------------------------------
preProcess(CFG, AssMap) ->
traverseLabels(CFG, ?CFG:labels(CFG), AssMap).
%%----------------------------------------------------------------------
%% Procedure : traverseLabels/3
%% Purpose : Traverses all labels and adds all assignments in the basic
%% block to the assignment map.
%% Arguments : CFG - Control Flow Graph
%% AssMap - Assignment Map
%% Label - A label for a node
%% Returns : AssMap.
%%----------------------------------------------------------------------
traverseLabels(CFG, [Label|T], AssMap) ->
Code = get_code_from_label(CFG, Label),
NewVarList = getAssignments(Code),
traverseLabels(CFG, T, updateAssMap(NewVarList, Label, AssMap));
traverseLabels(_, [], AssMap) -> AssMap.
%%----------------------------------------------------------------------
%% Procedure : getAssignments/1
%% Purpose : Retrieves all assigned variables in a basic block.
%% Arguments : InstrLst - A list of instructions from a basic block.
%% VarList - A list of variables.
%% Returns : VarList.
%% Notes : This function may return a list containing duplicates.
%%----------------------------------------------------------------------
getAssignments(InstrList) -> getAssignments(InstrList, []).
getAssignments([Instr|T], VarList) ->
getAssignments(T, defs_to_rename(Instr) ++ VarList);
getAssignments([], VarList) -> VarList.
%%----------------------------------------------------------------------
%% Procedure : updateAssMap/3
%% Purpose : Updates the assignment map with. Each variable in the AssVar
%% list is inserted with the value Label.
%% Arguments : Label - a label of a node
%% AssVar - a variable that is assigned at Label
%% AssMap - Assignment map.
%% Returns : AssMap.
%%----------------------------------------------------------------------
updateAssMap([AssVar|T], Label, AssMap) ->
Lst = getAssMap(AssVar, AssMap),
updateAssMap(T, Label, gb_trees:enter(AssVar, [Label|Lst], AssMap));
updateAssMap([], _, AssMap) -> AssMap.
getAssMap(AssVar, AssMap) ->
case gb_trees:lookup(AssVar, AssMap) of
{value, L} -> L;
none -> []
end.
%%----------------------------------------------------------------------
%% Procedure : variableTraverse/7
%% Purpose : This function traverses all variables and adds phi functions
%% at appropriate nodes.
%% Arguments : CFG - Control Flow Graph
%% DFMap - Dominance Frontier Map
%% HasAlready - A map of nodes which already have phi functions
%% Work -
%% IterCount - Counter of how many iterations have been done
%% AssMap - Assignment map
%% VarLst - Variable list that is traversed
%% Returns : CFG.
%%----------------------------------------------------------------------
variableTraverse(CFG, DFMap, HasAlready, Work,
IterCount, AssMap, Liveness, [{Var,_}|VarLst]) ->
IterCount2 = IterCount + 1,
DefLst = getAssMap(Var, AssMap),
{Work2, WorkLst2} = workListBuilder(DefLst, Work, [], IterCount2),
{CFG2, HasAlready2, Work3} = doWork(CFG, DFMap, HasAlready,
Work2, IterCount2, WorkLst2,
Var, Liveness),
variableTraverse(CFG2, DFMap, HasAlready2, Work3,
IterCount2, AssMap, Liveness, VarLst);
variableTraverse(CFG, _, _, _, _, _, _, []) -> CFG.
%%----------------------------------------------------------------------
%% Procedure : workListBuilder/4
%% Purpose : Builds the worklist that the algorithm is working on.
%% Arguments : Work -
%% WorkLst - The worklist that is worked through
%% IterCount - Counter of how many itterations that has been done
%% Node - A node in the CFG
%% Returns :
%%----------------------------------------------------------------------
workListBuilder([Node|T], Work, WorkLst, IterCount) ->
case getCount(Node, Work) of
0 ->
Work2 = gb_trees:enter(Node, IterCount, Work),
workListBuilder(T, Work2, [Node|WorkLst], IterCount);
_ ->
Work2 = gb_trees:enter(Node, IterCount, Work),
workListBuilder(T, Work2, [Node|WorkLst], IterCount)
end;
workListBuilder([], Work, WorkLst, _IterCount) ->
{Work, WorkLst}.
getCount(Key, Dict) ->
case gb_trees:lookup(Key, Dict) of
{value, V} -> V;
none -> 0
end.
%%----------------------------------------------------------------------
%% Procedure : doWork/7
%% Purpose : This procedure works itself through the worklist and checks
%% if a node needs any phi functions.
%% Arguments : CFG - Control Flow Graph
%% DFMap - Dominance Frontier Map
%% HasAlready - A map of nodes that already have phi functions
%% Work -
%% IterCount - Counter of how many iterations have taken place
%% WorkLst - The worklist that is worked through
%% Var - Variable
%% Returns : {CFG, HasAlready, Work}
%%----------------------------------------------------------------------
doWork(CFG, DFMap, HasAlready, Work, IterCount,
[Node|WorkLst], Var, Liveness) ->
DFofX = hipe_dominators:domFrontier_get(Node, DFMap),
{CFG2, HasAlready2, Work2, WorkLst2} =
checkPhiNeeds(CFG, DFofX, HasAlready, Work,
IterCount, WorkLst, Var, Liveness),
doWork(CFG2, DFMap, HasAlready2, Work2,
IterCount, WorkLst2, Var, Liveness);
doWork(CFG, _, HasAlready, Work, _, [], _, _) ->
{CFG, HasAlready, Work}.
%%----------------------------------------------------------------------
%% Procedure : checkPhiNeeds/7
%% Purpose : This function checks if a node needs a phi function and adds
%% one if its needed.
%% Arguments : CFG - Control Flow Graph
%% DFofX - Dominance Frontier of a node
%% HasAlready - A map of nodes that already have phi functions
%% Work -
%% IterCount - Counter of how many iterations have taken place
%% WorkLst - The worklist that is worked through
%% Var - Variable
%% Returns : {CFG, HasAlready, Work, WorkLst}
%%----------------------------------------------------------------------
checkPhiNeeds(CFG, [Node|DFofX], HasAlready, Work,
IterCount, WorkLst, Var, Liveness) ->
case getCount(Node, HasAlready) < IterCount of
true ->
LiveIn = ?LIVENESS:livein(Liveness, Node),
case lists:member(Var, LiveIn) of
true ->
CFG2 = insertPhiCode(CFG, Node, Var),
HasAlready2 = gb_trees:enter(Node, IterCount, HasAlready),
case getCount(Node, Work) < IterCount of
true ->
Work2 = gb_trees:enter(Node, IterCount, Work),
WorkLst2 = [Node|WorkLst],
checkPhiNeeds(CFG2, DFofX, HasAlready2, Work2,
IterCount, WorkLst2, Var, Liveness);
false ->
checkPhiNeeds(CFG2, DFofX, HasAlready2, Work,
IterCount, WorkLst, Var, Liveness)
end;
false ->
checkPhiNeeds(CFG, DFofX, HasAlready, Work, IterCount,
WorkLst, Var, Liveness)
end;
false ->
checkPhiNeeds(CFG, DFofX, HasAlready, Work, IterCount,
WorkLst, Var, Liveness)
end;
checkPhiNeeds(CFG, [], HasAlready, Work, _, WorkLst, _, _) ->
{CFG, HasAlready, Work, WorkLst}.
%%----------------------------------------------------------------------
%% Procedure : insertPhiCode/3
%% Purpose :
%% Arguments : CFG - Control Flow Graph
%% Node - A node
%% Var - A variable
%% Returns : CFG
%%----------------------------------------------------------------------
insertPhiCode(CFG, Node, Var) ->
BB = ?CFG:bb(CFG, Node),
Phi = ?CODE:mk_phi(Var),
Code = [Phi | hipe_bb:code(BB)],
?CFG:bb_add(CFG, Node, hipe_bb:code_update(BB, Code)).
%%======================================================================
%% SSA Renaming pass
%%======================================================================
%%----------------------------------------------------------------------
%% Procedure : rename/2
%% Purpose : Renames all the variables in the CFG according to the SSA
%% conversion algorithm.
%% Arguments : CFG - The CFG being translated.
%% DomTree - The dominator tree of the CFG.
%% Returns : A CFG where all variables are renamed.
%%----------------------------------------------------------------------
rename(CFG, DomTree) ->
%% Reset the appropriate variable index so that we start from low
%% variable numbers again
reset_var_indx(),
{CFG2,Current} = insertRenamedParams(CFG),
rename(CFG2, ?CFG:start_label(CFG2), DomTree, Current).
rename(CFG, Node, DomTree, Current) ->
BB = ?CFG:bb(CFG, Node),
Statements = hipe_bb:code(BB),
{Statements2,Current2} = renameVars(Statements, Current),
CFG1 = ?CFG:bb_add(CFG, Node, hipe_bb:code_update(BB, Statements2)),
Succ = ?CFG:succ(CFG1, Node),
CFG2 = updateSuccPhi(Succ, Node, CFG1, Current2),
Children = hipe_dominators:domTree_getChildren(Node, DomTree),
childrenRename(Children, CFG2, DomTree, Current2).
%%----------------------------------------------------------------------
%% Procedure : childrenRename/5
%% Purpose : Renames all the nodes in a list according to the SSA
%% conversion algorithm.
%% Arguments : ChildList - the list of nodes being renamed
%% CFG - the CFG that the children are a part of
%% DomTree - The dominator tree for the CFG
%% Current - the current index of all variables encountered
%% Returns : CFG
%%----------------------------------------------------------------------
childrenRename([Child|Children], CFG, DomTree, Current) ->
CFG2 = rename(CFG, Child, DomTree, Current),
childrenRename(Children, CFG2, DomTree, Current);
childrenRename([], CFG, _, _) ->
CFG.
%%----------------------------------------------------------------------
%% Procedure : renameVars/3
%% Purpose : Renames the variables in basic block
%% Arguments : Statements - the basic block
%% Current - the current index of all variables encountered
%% Returns : {Statements,Current}
%%----------------------------------------------------------------------
renameVars(Statements, Current) ->
renameVars(Statements, Current, []).
renameVars([Statement|Statements], Current, Result) ->
Statement2 = renameUses(Statement, Current),
{Statement3,Current2} = renameDefs(Statement2, Current),
renameVars(Statements, Current2, [Statement3|Result]);
renameVars([], Current, Result) ->
{lists:reverse(Result),Current}.
%%----------------------------------------------------------------------
%% Procedure : renameUses/2
%% Purpose : Renames all the uses of a variable in a statement.
%% Arguments : Statement - the statement being renamed.
%% Current - the current index of all variables encountered.
%% Returns : Statement
%%----------------------------------------------------------------------
renameUses(Statement, Current) ->
case ?CODE:is_phi(Statement) of
true -> Statement;
false -> VarList = uses_to_rename(Statement),
updateStatementUses(VarList, Statement, Current)
end.
%%----------------------------------------------------------------------
%% Procedure : updateStatementUses/3
%% Purpose : Traverses the variable list and renames all the instances
%% of a variable in the Statement uses to its current value.
%% Arguments : VarList - the list of variables being updated.
%% Statement - the statement being updated.
%% Current - the current index of all variables encountered.
%% Returns : An updated statement.
%%----------------------------------------------------------------------
updateStatementUses(Vars, Statement, Current) ->
Substs = [{Var,gb_trees:get(Var, Current)} || Var <- Vars],
?CODE:subst_uses(Substs, Statement).
%%----------------------------------------------------------------------
%% Procedure : renameDefs/3
%% Purpose : Renames all the definitons in Statement.
%% Arguments : Statement - the statement where the definitions are being
%% renamed.
%% Current - the current index of all variables encountered.
%% Returns : Statement
%%----------------------------------------------------------------------
renameDefs(Statement, Current) ->
VarList = defs_to_rename(Statement),
updateStatementDefs(VarList, Statement, Current).
%%----------------------------------------------------------------------
%% Procedure : updateStatementDefs/4
%% Purpose : traverses a variable list and exchanges all instances of
%% the variable in the statements definitions by its current
%% value.
%% Arguments : VariableList - the list of varibles being renamed
%% Statement - the statement whos definitions are being changed
%% Current - the current index of all variables encountered
%% Returns : {Statement, Current}
%% Notes : Per Gustafsson:
%% I changed this function to update the statement only when
%% all substitutions are found.
%%----------------------------------------------------------------------
updateStatementDefs(Vars, Statement, Current) ->
updateStatementDefs(Vars, Statement, Current, []).
updateStatementDefs([Var|Vars], Statement, Current, Acc) ->
{NewVar,Current2} = updateIndices(Current, Var),
updateStatementDefs(Vars, Statement, Current2, [{Var,NewVar}|Acc]);
updateStatementDefs([], Statement, Current, Acc) ->
Statement2 = ?CODE:subst_defines(Acc, Statement),
{Statement2,Current}.
%%----------------------------------------------------------------------
%% Procedure : updateIndices/3
%% Purpose : This function is used for updating the Current hash table
%% and for getting a new variable/fp variable/register.
%% Arguments : Current - Hash table containg the current index for a
%% particular variable.
%% Variable - The variable that is used as key in the hash table.
%% Returns : A two-tuple containing the new variable and Current.
%%----------------------------------------------------------------------
updateIndices(Current, Variable) ->
case ?CODE:is_var(Variable) of
true ->
NewVar = ?CODE:mk_new_var(),
{NewVar,gb_trees:enter(Variable, NewVar, Current)};
false ->
case is_fp_temp(Variable) of
true ->
NewFVar = mk_new_fp_temp(),
{NewFVar,gb_trees:enter(Variable, NewFVar, Current)};
false ->
NewReg = ?CODE:mk_new_reg(),
{NewReg,gb_trees:enter(Variable, NewReg, Current)}
end
end.
%%----------------------------------------------------------------------
%% Procedure : updateSuccPhi/4
%% Purpose : This function is used for updating phi functions in a
%% particular node's successors. That is, the function
%% traverses the successor list of a node and updates the
%% arguments in the phi function calls.
%% Arguments : Succ - A successor to the node Parent.
%% T - The remainder of the successor list
%% Parent - The parent of the node Succ
%% CFG - Control Flow Graph
%% Current - Hash table containg the current index for a
%% particular variable
%% Returns : An updated version of the CFG
%%----------------------------------------------------------------------
updateSuccPhi([Succ|T], Parent, CFG, Current) ->
CFG2 = updatePhi(Succ, Parent, CFG, Current),
updateSuccPhi(T, Parent, CFG2, Current);
updateSuccPhi([], _, CFG, _) ->
CFG.
%%----------------------------------------------------------------------
%% Procedure : updatePhi/4
%% Purpose : This function prepares for an update of a phi function call.
%% That is, if a statement contains a phi function call
%% then the number of predecessors are computed and the index
%% of the parent in the predecessor list is used for computing
%% which variable in the argument list of the phi function call
%% that need to be updated.
%% Arguments : Node - A node in the CFG
%% Parent - The parent of the node Node in the dominator tree
%% CFG - Control Flow Graph
%% Current - Hash table containg the current index for a
%% particular variable
%% Returns : An updated version of the CFG
%%----------------------------------------------------------------------
updatePhi(Node, Parent, CFG, Current) ->
BB = ?CFG:bb(CFG, Node),
case hipe_bb:code(BB) of
[Code|_] = Statements ->
case ?CODE:is_phi(Code) of
true ->
Code2 = updateCode(Statements, Parent, Current),
?CFG:bb_add(CFG, Node, hipe_bb:code_update(BB, Code2));
_ ->
CFG
end;
_ ->
CFG
end.
%%----------------------------------------------------------------------
%% Procedure : updateCode/3
%% Purpose : This function updates a statement that contains a phi
%% function, i.e. it changes the arguments in the phi
%% function to their correct names.
%% Arguments : Code - A list of code
%% Pred - A predecessor of the node containing the
%% phi-function
%% Current - Hash table containing the current index for a
%% particular variable
%% Returns : A list of Code
%%----------------------------------------------------------------------
updateCode(Code, Pred, Current) ->
updateCode(Code, Pred, Current, []).
updateCode([Stat|Stats] = Statements, Pred, Current, Result) ->
case ?CODE:is_phi(Stat) of
true ->
Var = ?CODE:phi_id(Stat),
Result2 = case gb_trees:lookup(Var, Current) of
none ->
[Stat|Result];
{value,Var2} ->
Stat2 = ?CODE:phi_enter_pred(Stat, Pred, Var2),
[Stat2|Result]
end,
updateCode(Stats, Pred, Current, Result2);
_ ->
Result ++ Statements
end.
%%----------------------------------------------------------------------
%% Procedure : insertRenamedParams/1
%% Purpose : Inserts the parameters of the CFG into the working hashmaps.
%% Arguments : CFG - the target control flow graph.
%% Returns : {CFG,Current}
%%----------------------------------------------------------------------
insertRenamedParams(CFG) ->
Params = ?CFG:params(CFG),
%% Current - the current variable we are working on.
{Current,Params2} = insertRenamedParams(Params, gb_trees:empty(), []),
CFG2 = ?CFG:params_update(CFG, Params2),
{CFG2,Current}.
insertRenamedParams([Param|Params], Current, Result) ->
{Var,Current2} = updateIndices(Current, Param),
insertRenamedParams(Params, Current2, [Var|Result]);
insertRenamedParams([], Current, Result) ->
{Current,lists:reverse(Result)}.
%%======================================================================
%% SSA Checker
%%======================================================================
%%
%% @doc Checks the control flow graph CFG of a function for SSA-ness.
%% More specifically, it checks that all variables in the CFG are only
%% defined once and that all uses of each variable in the function are
%% dominated by a define. If a variable does not abide by these rules,
%% a warning message will be printed on stdout.
%%
-spec check(#cfg{}) -> 'ok'.
check(CFG) ->
Labels = ?CFG:labels(CFG),
VarTree = traverse_labels(Labels, CFG),
DomTree = hipe_dominators:domTree_create(CFG),
test_uses(Labels, VarTree, DomTree, CFG).
%%
%% @doc Traverses all the labels in a CFG.
%%
traverse_labels(Labels, CFG) ->
VarTree = add_args(?CFG:params(CFG)),
traverse_labels(Labels, VarTree, CFG).
traverse_labels([Label|Rest], VarTree, CFG) ->
Code = get_code_from_label(CFG, Label),
NewVarTree = traverse_code(Code, VarTree, Label),
traverse_labels(Rest, NewVarTree, CFG);
traverse_labels([], VarTree, _CFG) ->
VarTree.
%%
%% @doc Traverses the code in a basic block.
%%
traverse_code([Instr|Rest], VarTree, Label) ->
Defined = defs_to_rename(Instr),
NewVarTree = add_to_var_tree(Defined, VarTree, Instr, Label),
traverse_code(Rest, NewVarTree, Label);
traverse_code([], VarTree, _) ->
VarTree.
%%
%% @doc
%% Adds a variable to the variable tree if the variable is defined.
%% The entry in the variable tree will have the variable as key and a
%% two tuple consisting of a list of Instructions and a list of labels
%% where the variable is defined. If a variable is defined a second
%% time a warning message to this effect is printed on stdout.
%%
add_to_var_tree([Var|Rest], VarTree, Instr, Label) ->
NewVarTree =
case gb_trees:lookup(Var, VarTree) of
{value,{OldInstr,OldLabel}} ->
?WARNING_MSG("Variable: ~w defined a second time\n"++
"in Instr: ~w\n"++
"at Label: ~w\n"++
"variable was first defined at Label(s) ~w\n"++
"in Instr(s): ~w\n -> non SSA form\n",
[Var,Instr,Label,OldLabel,OldInstr]),
gb_trees:update(Var, {[Instr|OldInstr],[Label|OldLabel]}, VarTree);
none ->
gb_trees:insert(Var, {[Instr],[Label]}, VarTree)
end,
add_to_var_tree(Rest, NewVarTree, Instr, Label);
add_to_var_tree([], VarTree, _, _) ->
VarTree.
%%
%% @doc Adds the argument of a function to the VarTree.
%% They are defined at Label 0.
%%
add_args(Args) ->
add_args(Args, gb_trees:empty()).
add_args([Arg|Rest], VarTree) ->
add_args(Rest, gb_trees:insert(Arg, {[argument_variable],[0]}, VarTree));
add_args([], VarTree) ->
VarTree.
%%
%% The functions below test that a use is dominated by a corresponding def.
%%
%%
%% This function is analogous to traverse_labels.
%%
test_uses([Label|Rest], VarTree, DomTree,CFG) ->
Code = get_code_from_label(CFG, Label),
test_code(Code, VarTree, Label, DomTree, CFG, []),
test_uses(Rest, VarTree, DomTree, CFG);
test_uses([], _VarTree, _DomTree, _CFG) ->
ok.
%%
%% This function is analogous to traverse_code.
%%
test_code([Instr|Instrs], VarTree, Label, DomTree, CFG, Old) ->
case ?CODE:is_phi(Instr) of
true ->
ArgList = ?CODE:phi_arglist(Instr),
case ArgList of
[_Arg] ->
?WARNING_MSG("Phi with only one source at BB with label ~w:\n",
[Label]),
%% case ?CODE of
%% hipe_rtl -> ?CODE:pp_block(get_code_from_label(CFG, Label));
%% _ -> ok
%% end,
ok;
[_|_] -> ok
end,
lists:foreach(fun ({Pred,Var}) ->
def_doms_use([Var], VarTree, Pred, DomTree,
get_code_from_label(CFG,Pred))
end, ArgList);
false ->
Uses = uses_to_rename(Instr),
def_doms_use(Uses, VarTree, Label, DomTree, Old)
end,
test_code(Instrs, VarTree, Label, DomTree, CFG, [Instr|Old]);
test_code([], _VarTree, _Label, _DomTree, _CFG, _Old) ->
ok.
get_code_from_label(CFG, Label) ->
case ?CFG:bb(CFG,Label) of
not_found ->
?error_msg("Basic block with label ~w was not found\n", [Label]);
%% ?EXIT('Detected serious problem in SSA form');
BB ->
hipe_bb:code(BB)
end.
%%
%% This function checks whether a use is dominated by a def.
%% There are five different cases:
%% 1. A use of an argument register. This use is dominated by the def.
%% 2. Use and Def in same basic block if Use comes first this will
%% lead to a warning message, otherwise it is ok.
%% 3. The deinition is in a basic block that dominates the basic block
%% of the use. This is ok.
%% 4. The definition is in a basic block that does not dominate the use.
%% This will result in a warning message being printed.
%% 5. A use without any definition. This will result in a warning message
%% being printed.
%%
def_doms_use([Var|Vars], VarTree, Label, DomTree, Old) ->
case gb_trees:lookup(Var, VarTree) of
{value,{_,[DefLabel|_]}} ->
case DefLabel of
0 ->
ok;
Label ->
Fun = fun(X) -> Defs = defs_to_rename(X),
lists:any(fun(Y) -> Var == Y end, Defs)
end,
case lists:any(Fun, Old) of
true ->
ok;
false ->
?WARNING_MSG("Variable : ~w used before definition in bb: ~w\n",
[Var,Label])
end;
_ ->
case hipe_dominators:domTree_dominates(DefLabel, Label, DomTree) of
true ->
ok;
false ->
?WARNING_MSG("Definition does not dominate use for variable: ~w "++
"at label: ~w (definition label: ~w)\n",
[Var, Label, DefLabel])
end
end;
none ->
?WARNING_MSG("Use with no definition of variable: ~w at label: ~w\n",
[Var, Label])
end,
def_doms_use(Vars, VarTree, Label, DomTree, Old);
def_doms_use([], _VarTree, _Label, _DomTree, _Old) ->
ok.
%%======================================================================
%% SSA Un-Converter
%%======================================================================
%%----------------------------------------------------------------------
%% Procedure : unconvert/2
%% Purpose : Removes all phi functions and propagates all
%% assignments up to the appropriate predecessors.
%% Arguments : CFG - Control Flow Graph
%% Node - A node in the CFG
%% Returns : CFG
%% Note : The call to remove_trivial_bbs is needed so that moves,
%% which are introduced in new basic blocks as part of the
%% un-conversion, are merged with the basic blocks of their
%% predecessors, if possible.
%%----------------------------------------------------------------------
-spec unconvert(#cfg{}) -> #cfg{}.
unconvert(CFG) ->
?CFG:remove_trivial_bbs(unconvert(?CFG:reverse_postorder(CFG), CFG)).
unconvert([Node|Nodes], CFG) ->
BB = ?CFG:bb(CFG, Node),
Code = hipe_bb:code(BB),
{Phis,Code2} = getPhiFuncts(Code, []),
case Phis of
[] ->
unconvert(Nodes, CFG);
_ ->
BB2 = hipe_bb:code_update(BB, Code2),
CFG2 = ?CFG:bb_add(CFG, Node, BB2),
Pred = ?CFG:pred(CFG2, Node),
PredMoveMap = get_moves(Pred, Phis),
CFG3 = insert_move_bbs(PredMoveMap, Node, CFG2),
unconvert(Nodes, CFG3)
end;
unconvert([], CFG) ->
CFG.
%%----------------------------------------------------------------------
%% Procedure : get_moves/2 and /3
%% Purpose : Find the moves that corresponds to phi-instructions of
%% a block. Try to merge incoming edges to avoid duplicate
%% blocks.
%% Arguments : Preds - The predecessors to this block.
%% Phis - The phi instructions that used to start this block.
%% Returns : [{ListOfMoves, [Preds]}]
%%----------------------------------------------------------------------
get_moves(Preds, Phis) ->
get_moves(Preds, Phis, gb_trees:empty()).
get_moves([Pred|Left], Phis, Map)->
Moves = get_moves_from_phis(Pred, Phis, []),
NewMap =
case gb_trees:lookup(Moves, Map) of
none -> gb_trees:insert(Moves, [Pred], Map);
{value,List} -> gb_trees:update(Moves, [Pred|List], Map)
end,
get_moves(Left, Phis, NewMap);
get_moves([], _Phis, Map) ->
gb_trees:to_list(Map).
%%----------------------------------------------------------------------
%% Procedure : get_moves_from_phis/3
%% Purpose : Find all the moves that should be done in the edge
%% coming in from Pred.
%% Arguments : Pred - The predecessor
%% Phis - Reverse list of phi instructions.
%% Returns : [{Dst,Src}] representing the move instructions;
%% ORDERING IS SIGNIFICANT!
%%----------------------------------------------------------------------
get_moves_from_phis(Pred, [Phi|Left], Acc) ->
Dst = ?CODE:phi_dst(Phi),
Src = ?CODE:phi_arg(Phi, Pred),
NewAcc = [{Dst, Src}|Acc],
get_moves_from_phis(Pred, Left, NewAcc);
get_moves_from_phis(_Pred, [], Acc) ->
Acc.
%%----------------------------------------------------------------------
%% Procedure : insert_move_bbs/3
%% Purpose : Create the bbs that contains the moves.
%% Arguments : Ordset - The move instruction tuples {Dst, Src}
%% Preds - The predecessors that needs the moves in Ordset
%% Label - The original label that contained the phis.
%% Cfg - The current cfg
%% Returns : The new Cfg.
%%----------------------------------------------------------------------
insert_move_bbs([{Ordset,Preds}|Left], Label, Cfg) ->
Code = create_moves(Ordset, []) ++ [?CODE:mk_goto(Label)],
BB = hipe_bb:mk_bb(Code),
NewLabel = ?CODE:label_name(?CODE:mk_new_label()),
NewCfg1 = ?CFG:bb_add(Cfg, NewLabel, BB),
NewCfg2 = lists:foldl(fun(X, Acc) ->
?CFG:redirect(Acc, X, Label, NewLabel)
end,
NewCfg1, Preds),
insert_move_bbs(Left, Label, NewCfg2);
insert_move_bbs([], _Label, Cfg) ->
Cfg.
create_moves([{X,X}|Left], Acc) ->
create_moves(Left, Acc);
create_moves([{Dst,Src}|Left], Acc) ->
create_moves(Left, [makePhiMove(Dst, Src)|Acc]);
create_moves([], Acc) ->
%% NOTE: ORDERING IS SIGNIFICANT!
lists:reverse(Acc).
%%----------------------------------------------------------------------
%% Procedure : getPhiFuncts/2
%% Purpose : This function returns the list of phi-functions from a
%% list of intermediate code instructions.
%% Arguments :
%% List - A list of Code
%% Result - Accumulative parameter to store the result
%% Returns : Reverse list of the phi instructions. ORDERING IS SIGNIFICANT!
%%----------------------------------------------------------------------
getPhiFuncts([I|T] = List, Result) ->
case ?CODE:is_phi(I) of
true ->
getPhiFuncts(T, [I|Result]);
false ->
{Result,List}
end;
getPhiFuncts([], Result) ->
{Result,[]}.
%%======================================================================
%% Dead Code Elimination on SSA form
%%======================================================================
-spec remove_dead_code(#cfg{}) -> #cfg{}.
remove_dead_code(CFG) ->
Lbls = ?CFG:reverse_postorder(CFG),
Liveness = ssa_liveness__analyze(CFG),
case do_lbls(Lbls, CFG, Liveness, false) of
{CFG1,true} ->
remove_dead_code(CFG1);
{CFG1,false} ->
CFG1
end.
do_lbls([Lbl|Rest], CFG, Liveness, Changed) ->
LiveOut = gb_sets:from_list(ssa_liveness__liveout(Liveness, Lbl)),
BB = ?CFG:bb(CFG, Lbl),
Code = hipe_bb:code(BB),
{NewCode,NewChanged} = do_code(lists:reverse(Code), LiveOut, Changed, []),
NewBB = hipe_bb:code_update(BB, NewCode),
NewCFG = ?CFG:bb_add(CFG, Lbl, NewBB),
do_lbls(Rest, NewCFG, Liveness, NewChanged);
do_lbls([], CFG, _Liveness, Changed) ->
{CFG,Changed}.
do_code([Instr|Instrs], LiveOut, Changed, Acc) ->
Def = ?CODE:defines(Instr),
Use = ?CODE:uses(Instr),
DefSet = gb_sets:from_list(Def),
UseSet = gb_sets:from_list(Use),
LiveIn = gb_sets:union(gb_sets:difference(LiveOut, DefSet), UseSet),
case gb_sets:is_empty(gb_sets:intersection(DefSet, LiveOut)) of
false ->
do_code(Instrs, LiveIn, Changed, [Instr|Acc]);
true ->
case ?CODE:is_safe(Instr) of
true ->
case ?CODE:is_call(Instr) of
true ->
case ?CODE:call_continuation(Instr) of
[] ->
do_code(Instrs, LiveOut, true, Acc);
SuccLblName ->
NewInstr = ?CODE:mk_goto(SuccLblName),
do_code(Instrs, LiveOut, true, [NewInstr|Acc])
end;
false ->
do_code(Instrs, LiveOut, true, Acc)
end;
false -> %% not a safe instruction - cannot be removed
case ?CODE:is_call(Instr) of
true ->
case ?CODE:call_dstlist(Instr) of
[] -> %% result was not used anyway; no change
do_code(Instrs, LiveIn, Changed, [Instr|Acc]);
[_Dst] -> %% remove the unused assignment to call's destination
NewInstr = ?CODE:call_dstlist_update(Instr, []),
do_code(Instrs, LiveIn, true, [NewInstr|Acc]);
[_|_] -> %% calls with multiple dests are left untouched
do_code(Instrs, LiveIn, Changed, [Instr|Acc])
end;
false ->
do_code(Instrs, LiveIn, Changed, [Instr|Acc])
end
end
end;
do_code([], _LiveOut, Changed, Acc) ->
{Acc,Changed}.
|