1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
|
%%
%% %CopyrightBegin%
%%
%% Copyright Ericsson AB 2003-2012. All Rights Reserved.
%%
%% The contents of this file are subject to the Erlang Public License,
%% Version 1.1, (the "License"); you may not use this file except in
%% compliance with the License. You should have received a copy of the
%% Erlang Public License along with this software. If not, it can be
%% retrieved online at http://www.erlang.org/.
%%
%% Software distributed under the License is distributed on an "AS IS"
%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
%% the License for the specific language governing rights and limitations
%% under the License.
%%
%% %CopyrightEnd%
%%
%% @author Richard Carlsson <richardc@it.uu.se>
%% @copyright 2000-2004 Richard Carlsson
%% @doc HiPE-ification of Core Erlang code. Prepares Core Erlang code
%% for translation to ICode.
%% @see cerl_to_icode
-module(cerl_hipeify).
-define(NO_UNUSED, true).
-export([transform/2]).
-ifndef(NO_UNUSED).
-export([core_transform/2]).
-endif.
-include("cerl_hipe_primops.hrl").
-record(ctxt, {class = expr}).
%% @spec core_transform(Module::cerl_records(), Options::[term()]) ->
%% cerl_records()
%%
%% @doc Transforms a module represented by records. See
%% <code>transform/2</code> for details.
%%
%% <p>Use the compiler option <code>{core_transform,
%% cerl_hipeify}</code> to insert this function as a compilation
%% pass.</p>
%%
%% @see transform/2
-ifndef(NO_UNUSED).
core_transform(M, Opts) ->
cerl:to_records(transform(cerl:from_records(M), Opts)).
-endif. % NO_UNUSED
%% @clear
%% @spec transform(Module::cerl(), Options::[term()]) -> cerl()
%%
%% cerl() = cerl:cerl()
%%
%% @doc Rewrites a Core Erlang module to a form suitable for further
%% translation to HiPE Icode. See module <code>cerl_to_icode</code> for
%% details.
%%
%% @see cerl_to_icode
%% @see cerl_cconv
-spec transform(cerl:c_module(), [term()]) -> cerl:c_module().
transform(E, Opts) ->
%% Start by closure converting the code
module(cerl_cconv:transform(E, Opts), Opts).
module(E, Opts) ->
{Ds, Env, Ren} = add_defs(cerl:module_defs(E), env__new(),
ren__new()),
M = cerl:module_name(E),
S0 = s__new(cerl:atom_val(M)),
S = s__set_pmatch(proplists:get_value(pmatch, Opts, true), S0),
{Ds1, _} = defs(Ds, true, Env, Ren, S),
cerl:update_c_module(E, M, cerl:module_exports(E),
cerl:module_attrs(E), Ds1).
%% Note that the environment is defined on the renamed variables.
expr(E0, Env, Ren, Ctxt, S0) ->
%% Do peephole optimizations as we traverse the code.
E = cerl_lib:reduce_expr(E0),
case cerl:type(E) of
literal ->
{E, S0};
var ->
variable(E, Env, Ren, Ctxt, S0);
values ->
{Es, S1} = expr_list(cerl:values_es(E), Env, Ren, Ctxt, S0),
{cerl:update_c_values(E, Es), S1};
cons ->
{E1, S1} = expr(cerl:cons_hd(E), Env, Ren, Ctxt, S0),
{E2, S2} = expr(cerl:cons_tl(E), Env, Ren, Ctxt, S1),
{cerl:update_c_cons(E, E1, E2), S2};
tuple ->
{Es, S1} = expr_list(cerl:tuple_es(E), Env, Ren, Ctxt, S0),
{cerl:update_c_tuple(E, Es), S1};
'let' ->
let_expr(E, Env, Ren, Ctxt, S0);
seq ->
{A, S1} = expr(cerl:seq_arg(E), Env, Ren, Ctxt, S0),
{B, S2} = expr(cerl:seq_body(E), Env, Ren, Ctxt, S1),
{cerl:update_c_seq(E, A, B), S2};
apply ->
{Op, S1} = expr(cerl:apply_op(E), Env, Ren, Ctxt, S0),
{As, S2} = expr_list(cerl:apply_args(E), Env, Ren, Ctxt, S1),
{cerl:update_c_apply(E, Op, As), S2};
call ->
{M, S1} = expr(cerl:call_module(E), Env, Ren, Ctxt, S0),
{N, S2} = expr(cerl:call_name(E), Env, Ren, Ctxt, S1),
{As, S3} = expr_list(cerl:call_args(E), Env, Ren, Ctxt, S2),
{rewrite_call(E, M, N, As, S3), S3};
primop ->
{As, S1} = expr_list(cerl:primop_args(E), Env, Ren, Ctxt, S0),
N = cerl:primop_name(E),
{rewrite_primop(E, N, As, S1), S1};
'case' ->
case_expr(E, Env, Ren, Ctxt, S0);
'fun' ->
Vs = cerl:fun_vars(E),
{Vs1, Env1, Ren1} = add_vars(Vs, Env, Ren),
{B, S1} = expr(cerl:fun_body(E), Env1, Ren1, Ctxt, S0),
{cerl:update_c_fun(E, Vs1, B), S1};
'receive' ->
receive_expr(E, Env, Ren, Ctxt, S0);
'try' ->
{A, S1} = expr(cerl:try_arg(E), Env, Ren, Ctxt, S0),
Vs = cerl:try_vars(E),
{Vs1, Env1, Ren1} = add_vars(Vs, Env, Ren),
{B, S2} = expr(cerl:try_body(E), Env1, Ren1, Ctxt, S1),
Evs = cerl:try_evars(E),
{Evs1, Env2, Ren2} = add_vars(Evs, Env, Ren),
{H, S3} = expr(cerl:try_handler(E), Env2, Ren2, Ctxt, S2),
{cerl:update_c_try(E, A, Vs1, B, Evs1, H), S3};
'catch' ->
catch_expr(E, Env, Ren, Ctxt, S0);
letrec ->
{Ds, Env1, Ren1} = add_defs(cerl:letrec_defs(E), Env, Ren),
{Ds1, S1} = defs(Ds, false, Env1, Ren1, S0),
{B, S2} = expr(cerl:letrec_body(E), Env1, Ren1, Ctxt, S1),
{cerl:update_c_letrec(E, Ds1, B), S2};
binary ->
{Segs, S1} = expr_list(cerl:binary_segments(E), Env, Ren,
Ctxt, S0),
{cerl:update_c_binary(E, Segs), S1};
bitstr ->
{E1,S1} = expr(cerl:bitstr_val(E), Env, Ren, Ctxt, S0),
{E2,S2} = expr(cerl:bitstr_size(E), Env, Ren, Ctxt, S1),
E3 = cerl:bitstr_unit(E),
E4 = cerl:bitstr_type(E),
E5 = cerl:bitstr_flags(E),
{cerl:update_c_bitstr(E, E1, E2, E3, E4, E5), S2}
end.
guard_expr(E, Env, Ren, Ctxt, S) ->
expr(E, Env, Ren, Ctxt#ctxt{class = guard}, S).
expr_list(Es, Env, Ren, Ctxt, S0) ->
list(Es, Env, Ren, Ctxt, S0, fun expr/5).
list([E | Es], Env, Ren, Ctxt, S0, F) ->
{E1, S1} = F(E, Env, Ren, Ctxt, S0),
{Es1, S2} = list(Es, Env, Ren, Ctxt, S1, F),
{[E1 | Es1], S2};
list([], _, _, _, S, _) ->
{[], S}.
pattern(E, Env, Ren) ->
case cerl:type(E) of
literal ->
E;
var ->
cerl:update_c_var(E, ren__map(cerl:var_name(E), Ren));
values ->
Es = pattern_list(cerl:values_es(E), Env, Ren),
cerl:update_c_values(E, Es);
cons ->
E1 = pattern(cerl:cons_hd(E), Env, Ren),
E2 = pattern(cerl:cons_tl(E), Env, Ren),
cerl:update_c_cons(E, E1, E2);
tuple ->
Es = pattern_list(cerl:tuple_es(E), Env, Ren),
cerl:update_c_tuple(E, Es);
alias ->
V = pattern(cerl:alias_var(E), Env, Ren),
P = pattern(cerl:alias_pat(E), Env, Ren),
cerl:update_c_alias(E, V, P);
binary ->
Segs = pattern_list(cerl:binary_segments(E), Env, Ren),
cerl:update_c_binary(E, Segs);
bitstr ->
E1 = pattern(cerl:bitstr_val(E), Env, Ren),
E2 = pattern(cerl:bitstr_size(E), Env, Ren),
E3 = cerl:bitstr_unit(E),
E4 = cerl:bitstr_type(E),
E5 = cerl:bitstr_flags(E),
cerl:update_c_bitstr(E, E1, E2, E3, E4, E5)
end.
pattern_list(ExprList, Env, Ren) ->
[pattern(E, Env, Ren) || E <- ExprList].
%% Visit the function body of each definition. We insert an explicit
%% reduction test at the start of each function.
defs(Ds, Top, Env, Ren, S) ->
defs(Ds, [], Top, Env, Ren, S).
defs([{V, F} | Ds], Ds1, Top, Env, Ren, S0) ->
S1 = case Top of
true -> s__enter_function(cerl:var_name(V), S0);
false -> S0
end,
{B, S2} = expr(cerl:fun_body(F), Env, Ren, #ctxt{}, S1),
B1 = cerl:c_seq(cerl:c_primop(cerl:c_atom(?PRIMOP_REDUCTION_TEST), []),
B),
F1 = cerl:update_c_fun(F, cerl:fun_vars(F), B1),
defs(Ds, [{V, F1} | Ds1], Top, Env, Ren, S2);
defs([], Ds, _Top, _Env, _Ren, S) ->
{lists:reverse(Ds), S}.
case_expr(E, Env, Ren, Ctxt, S0) ->
{A, S1} = expr(cerl:case_arg(E), Env, Ren, Ctxt, S0),
{Cs, S2} = clause_list(cerl:case_clauses(E), Env, Ren, Ctxt, S1),
case s__get_revisit(S2) of
false ->
{E1, Vs, S3} = pmatch(Cs, Env, Ren, Ctxt, S2),
{cerl:c_let(Vs, A, E1), S3};
true ->
{cerl:c_case(A, Cs), S2}
end.
%% Note: There is an ordering problem with switch-clauses and pattern
%% matching compilation. We must process any receive-clauses first,
%% making the message queue operations explicit, before we can do
%% pattern matching compilation. However, the latter can introduce new
%% expressions - in particular new guards - which also need processing.
%% Hence, we must process the clauses, then do pattern matching
%% compilation, and then re-visit the resulting expression with pattern
%% matching compilation disabled.
pmatch(Cs, Env, _Ren, Ctxt, S0) ->
{E, Vs} = case s__get_pmatch(S0) of
true ->
cerl_pmatch:clauses(Cs, Env);
no_duplicates ->
put('cerl_pmatch_duplicate_code', never),
cerl_pmatch:clauses(Cs, Env);
duplicate_all ->
put('cerl_pmatch_duplicate_code', always),
cerl_pmatch:clauses(Cs, Env);
false ->
Vs0 = new_vars(cerl:clause_arity(hd(Cs)), Env),
{cerl:c_case(cerl:c_values(Vs0), Cs), Vs0}
end,
%% Revisit the resulting expression. Pass an empty renaming, since
%% all variables in E have already been properly renamed and must
%% not be renamed again by accident.
{E1, S1} = expr(E, Env, ren__new(), Ctxt, s__set_revisit(true, S0)),
{E1, Vs, s__set_revisit(false, S1)}.
clause_list(Cs, Env, Ren, Ctxt, S) ->
list(Cs, Env, Ren, Ctxt, S, fun clause/5).
clause(E, Env, Ren, Ctxt, S0) ->
Vs = cerl:clause_vars(E),
{_, Env1, Ren1} = add_vars(Vs, Env, Ren),
%% Visit patterns to rename variables.
Ps = pattern_list(cerl:clause_pats(E), Env1, Ren1),
{G, S1} = guard_expr(cerl:clause_guard(E), Env1, Ren1, Ctxt, S0),
{B, S2} = expr(cerl:clause_body(E), Env1, Ren1, Ctxt, S1),
{cerl:update_c_clause(E, Ps, G, B), S2}.
%% We use the no-shadowing strategy, renaming variables on the fly and
%% only when necessary to uphold the invariant.
add_vars(Vs, Env, Ren) ->
add_vars(Vs, [], Env, Ren).
add_vars([V | Vs], Vs1, Env, Ren) ->
Name = cerl:var_name(V),
{Name1, Ren1} = rename(Name, Env, Ren),
add_vars(Vs, [cerl:update_c_var(V, Name1) | Vs1],
env__bind(Name1, variable, Env), Ren1);
add_vars([], Vs, Env, Ren) ->
{lists:reverse(Vs), Env, Ren}.
rename(Name, Env, Ren) ->
case env__is_defined(Name, Env) of
false ->
{Name, Ren};
true ->
New = env__new_name(Env),
{New, ren__add(Name, New, Ren)}
end.
%% Setting up the environment for a list of letrec-bound definitions.
add_defs(Ds, Env, Ren) ->
add_defs(Ds, [], Env, Ren).
add_defs([{V, F} | Ds], Ds1, Env, Ren) ->
Name = cerl:var_name(V),
{Name1, Ren1} =
case env__is_defined(Name, Env) of
false ->
{Name, Ren};
true ->
{N, A} = Name,
S = atom_to_list(N) ++ "_",
F1 = fun (Num) ->
{list_to_atom(S ++ integer_to_list(Num)), A}
end,
New = env__new_function_name(F1, Env),
{New, ren__add(Name, New, Ren)}
end,
add_defs(Ds, [{cerl:update_c_var(V, Name1), F} | Ds1],
env__bind(Name1, function, Env), Ren1);
add_defs([], Ds, Env, Ren) ->
{lists:reverse(Ds), Env, Ren}.
%% We change remote calls to important built-in functions into primop
%% calls. In some cases (e.g., for the boolean operators), this is
%% mainly to allow the cerl_to_icode module to handle them more
%% straightforwardly. In most cases however, it is simply because they
%% are supposed to be represented as primop calls on the Icode level.
rewrite_call(E, M, F, As, S) ->
case cerl:is_c_atom(M) andalso cerl:is_c_atom(F) of
true ->
case call_to_primop(cerl:atom_val(M),
cerl:atom_val(F),
length(As))
of
{yes, ?PRIMOP_IS_RECORD} ->
%% Needs additional testing
[_, Tag, Arity] = As,
case (cerl:is_c_atom(Tag) andalso
cerl:is_c_int(Arity)) of
true ->
%% The primop might need further handling
N1 = cerl:c_atom(?PRIMOP_IS_RECORD),
E1 = cerl:update_c_primop(E, N1, As),
rewrite_primop(E1, N1, As, S);
false ->
cerl:update_c_call(E, M, F, As)
end;
{yes, N} ->
%% The primop might need further handling
N1 = cerl:c_atom(N),
E1 = cerl:update_c_primop(E, N1, As),
rewrite_primop(E1, N1, As, S);
no ->
cerl:update_c_call(E, M, F, As)
end;
false ->
cerl:update_c_call(E, M, F, As)
end.
call_to_primop(erlang, 'not', 1) -> {yes, ?PRIMOP_NOT};
call_to_primop(erlang, 'and', 2) -> {yes, ?PRIMOP_AND};
call_to_primop(erlang, 'or', 2) -> {yes, ?PRIMOP_OR};
call_to_primop(erlang, 'xor', 2) -> {yes, ?PRIMOP_XOR};
call_to_primop(erlang, '+', 2) -> {yes, ?PRIMOP_ADD};
%%call_to_primop(erlang, '+', 1) -> {yes, ?PRIMOP_IDENTITY};
call_to_primop(erlang, '-', 2) -> {yes, ?PRIMOP_SUB};
call_to_primop(erlang, '-', 1) -> {yes, ?PRIMOP_NEG};
call_to_primop(erlang, '*', 2) -> {yes, ?PRIMOP_MUL};
call_to_primop(erlang, '/', 2) -> {yes, ?PRIMOP_DIV};
call_to_primop(erlang, 'div', 2) -> {yes, ?PRIMOP_INTDIV};
call_to_primop(erlang, 'rem', 2) -> {yes, ?PRIMOP_REM};
call_to_primop(erlang, 'band', 2) -> {yes, ?PRIMOP_BAND};
call_to_primop(erlang, 'bor', 2) -> {yes, ?PRIMOP_BOR};
call_to_primop(erlang, 'bxor', 2) -> {yes, ?PRIMOP_BXOR};
call_to_primop(erlang, 'bnot', 1) -> {yes, ?PRIMOP_BNOT};
call_to_primop(erlang, 'bsl', 2) -> {yes, ?PRIMOP_BSL};
call_to_primop(erlang, 'bsr', 2) -> {yes, ?PRIMOP_BSR};
call_to_primop(erlang, '==', 2) -> {yes, ?PRIMOP_EQ};
call_to_primop(erlang, '/=', 2) -> {yes, ?PRIMOP_NE};
call_to_primop(erlang, '=:=', 2) -> {yes, ?PRIMOP_EXACT_EQ};
call_to_primop(erlang, '=/=', 2) -> {yes, ?PRIMOP_EXACT_NE};
call_to_primop(erlang, '<', 2) -> {yes, ?PRIMOP_LT};
call_to_primop(erlang, '>', 2) -> {yes, ?PRIMOP_GT};
call_to_primop(erlang, '=<', 2) -> {yes, ?PRIMOP_LE};
call_to_primop(erlang, '>=', 2) -> {yes, ?PRIMOP_GE};
call_to_primop(erlang, is_atom, 1) -> {yes, ?PRIMOP_IS_ATOM};
call_to_primop(erlang, is_binary, 1) -> {yes, ?PRIMOP_IS_BINARY};
call_to_primop(erlang, is_float, 1) -> {yes, ?PRIMOP_IS_FLOAT};
call_to_primop(erlang, is_function, 1) -> {yes, ?PRIMOP_IS_FUNCTION};
call_to_primop(erlang, is_integer, 1) -> {yes, ?PRIMOP_IS_INTEGER};
call_to_primop(erlang, is_list, 1) -> {yes, ?PRIMOP_IS_LIST};
call_to_primop(erlang, is_number, 1) -> {yes, ?PRIMOP_IS_NUMBER};
call_to_primop(erlang, is_pid, 1) -> {yes, ?PRIMOP_IS_PID};
call_to_primop(erlang, is_port, 1) -> {yes, ?PRIMOP_IS_PORT};
call_to_primop(erlang, is_reference, 1) -> {yes, ?PRIMOP_IS_REFERENCE};
call_to_primop(erlang, is_tuple, 1) -> {yes, ?PRIMOP_IS_TUPLE};
call_to_primop(erlang, internal_is_record, 3) -> {yes, ?PRIMOP_IS_RECORD};
call_to_primop(erlang, is_record, 3) -> {yes, ?PRIMOP_IS_RECORD};
call_to_primop(erlang, element, 2) -> {yes, ?PRIMOP_ELEMENT};
call_to_primop(erlang, exit, 1) -> {yes, ?PRIMOP_EXIT};
call_to_primop(erlang, throw, 1) -> {yes, ?PRIMOP_THROW};
call_to_primop(erlang, error, 1) -> {yes, ?PRIMOP_ERROR};
call_to_primop(erlang, error, 2) -> {yes, ?PRIMOP_ERROR};
call_to_primop(M, F, A) when is_atom(M), is_atom(F), is_integer(A) -> no.
%% Also, some primops (introduced by Erlang to Core Erlang translation
%% and possibly other stages) must be recognized and rewritten.
rewrite_primop(E, N, As, S) ->
case {cerl:atom_val(N), As} of
{match_fail, [R]} ->
M = s__get_module_name(S),
{F, A} = s__get_function_name(S),
Stack = cerl:abstract([{M, F, A}]),
case cerl:type(R) of
tuple ->
%% Function clause failures have a special encoding
%% as '{function_clause, Arg1, ..., ArgN}'.
case cerl:tuple_es(R) of
[X | Xs] ->
case cerl:is_c_atom(X) of
true ->
case cerl:atom_val(X) of
function_clause ->
FStack = cerl:make_list(
[cerl:c_tuple(
[cerl:c_atom(M),
cerl:c_atom(F),
cerl:make_list(Xs)])]),
match_fail(E, X, FStack);
_ ->
match_fail(E, R, Stack)
end;
false ->
match_fail(E, R, Stack)
end;
_ ->
match_fail(E, R, Stack)
end;
_ ->
match_fail(E, R, Stack)
end;
_ ->
cerl:update_c_primop(E, N, As)
end.
match_fail(E, R, Stack) ->
cerl:update_c_primop(E, cerl:c_atom(?PRIMOP_ERROR), [R, Stack]).
%% Simple let-definitions (of degree 1) in guard context are always
%% inline expanded. This is allowable, since they cannot have side
%% effects, and it makes it easy to generate good code for boolean
%% expressions. It could cause repeated evaluations, but typically,
%% local definitions within guards are used exactly once.
let_expr(E, Env, Ren, Ctxt, S) ->
if Ctxt#ctxt.class =:= guard ->
case cerl:let_vars(E) of
[V] ->
{Name, Ren1} = rename(cerl:var_name(V), Env, Ren),
Env1 = env__bind(Name, {expr, cerl:let_arg(E)}, Env),
expr(cerl:let_body(E), Env1, Ren1, Ctxt, S);
_ ->
let_expr_1(E, Env, Ren, Ctxt, S)
end;
true ->
let_expr_1(E, Env, Ren, Ctxt, S)
end.
let_expr_1(E, Env, Ren, Ctxt, S0) ->
{A, S1} = expr(cerl:let_arg(E), Env, Ren, Ctxt, S0),
Vs = cerl:let_vars(E),
{Vs1, Env1, Ren1} = add_vars(Vs, Env, Ren),
{B, S2} = expr(cerl:let_body(E), Env1, Ren1, Ctxt, S1),
{cerl:update_c_let(E, Vs1, A, B), S2}.
variable(E, Env, Ren, Ctxt, S) ->
V = ren__map(cerl:var_name(E), Ren),
if Ctxt#ctxt.class =:= guard ->
case env__lookup(V, Env) of
{ok, {expr, E1}} ->
expr(E1, Env, Ren, Ctxt, S); % inline
_ ->
%% Since we don't track all bindings when we revisit
%% guards, some names will not be in the environment.
variable_1(E, V, S)
end;
true ->
variable_1(E, V, S)
end.
variable_1(E, V, S) ->
{cerl:update_c_var(E, V), S}.
%% A catch-expression 'catch Expr' is rewritten as:
%%
%% try Expr
%% of (V) -> V
%% catch (T, V, E) ->
%% letrec 'wrap'/1 = fun (V) -> {'EXIT', V}
%% in case T of
%% 'throw' when 'true' -> V
%% 'exit' when 'true' -> 'wrap'/1(V)
%% V when 'true' ->
%% 'wrap'/1({V, erlang:get_stacktrace()})
%% end
catch_expr(E, Env, Ren, Ctxt, S) ->
T = cerl:c_var('T'),
V = cerl:c_var('V'),
X = cerl:c_var('X'),
W = cerl:c_var({wrap,1}),
G = cerl:c_call(cerl:c_atom('erlang'),cerl:c_atom('get_stacktrace'),[]),
Cs = [cerl:c_clause([cerl:c_atom('throw')], V),
cerl:c_clause([cerl:c_atom('exit')], cerl:c_apply(W, [V])),
cerl:c_clause([T], cerl:c_apply(W, [cerl:c_tuple([V,G])]))
],
C = cerl:c_case(T, Cs),
F = cerl:c_fun([V], cerl:c_tuple([cerl:c_atom('EXIT'), V])),
H = cerl:c_letrec([{W,F}], C),
As = cerl:get_ann(E),
{B, S1} = expr(cerl:catch_body(E),Env, Ren, Ctxt, S),
{cerl:ann_c_try(As, B, [V], V, [T,V,X], H), S1}.
%% Receive-expressions are rewritten as follows:
%%
%% receive
%% P1 when G1 -> B1
%% ...
%% Pn when Gn -> Bn
%% after T -> A end
%% becomes:
%% receive
%% M when 'true' ->
%% case M of
%% P1 when G1 -> do primop RECEIVE_SELECT B1
%% ...
%% Pn when Gn -> do primop RECEIVE_SELECT Bn
%% Pn+1 when 'true' -> primop RECEIVE_NEXT()
%% end
%% after T -> A end
receive_expr(E, Env, Ren, Ctxt, S0) ->
case s__get_revisit(S0) of
false ->
Cs = receive_clauses(cerl:receive_clauses(E)),
{Cs1, S1} = clause_list(Cs, Env, Ren, Ctxt, S0),
{B, Vs, S2} = pmatch(Cs1, Env, Ren, Ctxt, S1),
{T, S3} = expr(cerl:receive_timeout(E), Env, Ren, Ctxt, S2),
{A, S4} = expr(cerl:receive_action(E), Env, Ren, Ctxt, S3),
{cerl:update_c_receive(E, [cerl:c_clause(Vs, B)], T, A), S4};
true ->
%% we should never enter a receive-expression twice
{E, S0}
end.
receive_clauses([C | Cs]) ->
Call = cerl:c_primop(cerl:c_atom(?PRIMOP_RECEIVE_SELECT), []),
B = cerl:c_seq(Call, cerl:clause_body(C)),
C1 = cerl:update_c_clause(C, cerl:clause_pats(C),
cerl:clause_guard(C), B),
[C1 | receive_clauses(Cs)];
receive_clauses([]) ->
Call = cerl:c_primop(cerl:c_atom(?PRIMOP_RECEIVE_NEXT), []),
V = cerl:c_var('X'), % any name is ok
[cerl:c_clause([V], Call)].
new_vars(N, Env) ->
[cerl:c_var(V) || V <- env__new_names(N, Env)].
%% ---------------------------------------------------------------------
%% Environment
env__new() ->
rec_env:empty().
env__bind(Key, Value, Env) ->
rec_env:bind(Key, Value, Env).
%% env__get(Key, Env) ->
%% rec_env:get(Key, Env).
env__lookup(Key, Env) ->
rec_env:lookup(Key, Env).
env__is_defined(Key, Env) ->
rec_env:is_defined(Key, Env).
env__new_name(Env) ->
rec_env:new_key(Env).
env__new_names(N, Env) ->
rec_env:new_keys(N, Env).
env__new_function_name(F, Env) ->
rec_env:new_key(F, Env).
%% ---------------------------------------------------------------------
%% Renaming
ren__new() ->
dict:new().
ren__add(Key, Value, Ren) ->
dict:store(Key, Value, Ren).
ren__map(Key, Ren) ->
case dict:find(Key, Ren) of
{ok, Value} ->
Value;
error ->
Key
end.
%% ---------------------------------------------------------------------
%% State
%% pmatch = 'true' | 'false' | 'no_duplicates' | 'duplicate_all'
-record(state, {module::atom(),
function::{atom(), 0..256},
pmatch=true,
revisit = false}).
s__new(Module) ->
#state{module = Module}.
s__get_module_name(S) ->
S#state.module.
s__enter_function(F, S) ->
S#state{function = F}.
s__get_function_name(S) ->
S#state.function.
s__set_pmatch(V, S) ->
S#state{pmatch = V}.
s__get_pmatch(S) ->
S#state.pmatch.
s__set_revisit(V, S) ->
S#state{revisit = V}.
s__get_revisit(S) ->
S#state.revisit.
|