1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
|
%%
%% %CopyrightBegin%
%%
%% Copyright Ericsson AB 2001-2009. All Rights Reserved.
%%
%% The contents of this file are subject to the Erlang Public License,
%% Version 1.1, (the "License"); you may not use this file except in
%% compliance with the License. You should have received a copy of the
%% Erlang Public License along with this software. If not, it can be
%% retrieved online at http://www.erlang.org/.
%%
%% Software distributed under the License is distributed on an "AS IS"
%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
%% the License for the specific language governing rights and limitations
%% under the License.
%%
%% %CopyrightEnd%
%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%
%% PRIORITY HANDLING AND PRIORITY CALCULATION
%%
%% Handling of ready nodes and priorities.
%% Priorities are mainly from the critical path. More priorities are added.
%% * One version is adding priorities just depending on the instr, so
%% for example loads get higher priority than stores, and ordered
%% after reg's and offset for better cache performance.
%% * The other version gives higher priority to a node that adds more new
%% nodes to the ready list. This one is maybe not so effectively
%% implemented, but was added too late for smarter solutions.
%% One version is commented away
-module(hipe_ultra_prio).
-export([init_ready/2,
init_instr_prio/2,
%% initial_ready_set/4,
next_ready/7,
add_ready_nodes/2,
insert_node/3
]).
-include("../sparc/hipe_sparc.hrl").
% At first, only nodes with no predecessors are selected.
% - if R is empty, there is an error (unless BB itself is empty)
%% Arguments : Size - size of ready-array
%% Preds - array with number of predecessors for each node
%% Returns : An array with list of ready-nodes for each cycle.
init_ready(Size, Preds) ->
P = hipe_vectors:size(Preds),
Ready = hipe_vectors:new(Size, []),
R = initial_ready_set(1, P, Preds, []),
hipe_vectors:set(Ready, 0, R).
init_instr_prio(N, DAG) ->
critical_path(N, DAG).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Function : initial_ready_set
%% Argument : M - current node-index
%% N - where to stop
%% Preds - array with number of predecessors for each node
%% Ready - list with ready-nodes
%% Returns : Ready - list with ready-nodes
%% Description : Finds all nodes with no predecessors and adds them to ready.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
initial_ready_set(M, N, Preds, Ready) ->
if
M > N ->
Ready;
true ->
case hipe_vectors:get(Preds, M-1) of
0 ->
initial_ready_set(M+1, N, Preds, [M|Ready]);
V when is_integer(V), V > 0 ->
initial_ready_set(M+1, N, Preds, Ready)
end
end.
%% The following handles the nodes ready to schedule:
%% 1. select the ready queue of given cycle
%% 2. if queue empty, return none
%% 3. otherwise, remove entry with highest priority
%% and return {next,Highest_Prio,NewReady}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Function : next_ready
%% Argument : C - current cycle
%% Ready - array with ready nodes
%% Prio - array with cpath-priorities for all nodes
%% Nodes - indexed list [{N, Instr}]
%% Returns : none / {next,Highest_Prio,NewReady}
%% Description : 1. select the ready queue of given cycle
%% 2. if queue empty, return none
%% 3. otherwise, remove entry with highest priority
%% and return {next,Highest_Prio,NewReady} where Highest_Prio
%% = Id of instr and NewReady = updated ready-array.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
next_ready(C, Ready, Prio, Nodes, DAG, Preds, Earl) ->
Curr = hipe_vectors:get(Ready, C-1),
case Curr of
[] ->
none;
Instrs ->
{BestI,RestIs} =
get_best_instr(Instrs, Prio, Nodes, DAG, Preds, Earl, C),
{next,BestI,hipe_vectors:set(Ready,C-1,RestIs)}
end.
% next_ready(C,Ready,Prio,Nodes) ->
% Curr = hipe_vectors:get(Ready,C-1),
% case Curr of
% [] ->
% none;
% Instrs ->
% {BestInstr,RestInstrs} = get_best_instr(Instrs, Prio, Nodes),
% {next,BestInstr,hipe_vectors:set(Ready,C-1,RestInstrs)}
% end.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Function : get_best_instr
%% Argument : Instrs - list of node-id's
%% Prio - array with cpath-priorities for the nodes
%% Nodes - indexed list [{Id, Instr}]
%% Returns : {BestSoFar, Rest} - Id of best instr and the rest of id's
%% Description : Returns the id of the instr that is the best choice.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
get_best_instr([Instr|Instrs], Prio, Nodes, DAG, Preds, Earl, C) ->
get_best_instr(Instrs, [], Instr, Prio, Nodes, DAG, Preds, Earl, C).
get_best_instr([], Rest, BestSoFar, _Prio, _Nodes, _DAG, _Preds, _Earl, _C) ->
{BestSoFar, Rest};
get_best_instr([Instr|Instrs], PassedInstrs, BestSoFar, Prio, Nodes,
DAG, Preds, Earl, C) ->
case better(Instr, BestSoFar, Prio, Nodes, DAG, Preds, Earl, C) of
true ->
get_best_instr(Instrs, [BestSoFar|PassedInstrs],
Instr, Prio, Nodes, DAG, Preds, Earl, C);
false ->
get_best_instr(Instrs, [Instr|PassedInstrs], BestSoFar, Prio,
Nodes, DAG, Preds, Earl, C)
end.
% get_best_instr([Instr|Instrs], Prio, Nodes) ->
% get_best_instr(Instrs, [], Instr, Prio, Nodes).
% get_best_instr([], Rest, BestSoFar, Prio, Nodes) -> {BestSoFar, Rest};
% get_best_instr([Instr|Instrs], PassedInstrs, BestSoFar, Prio, Nodes) ->
% case better(Instr, BestSoFar, Prio, Nodes) of
% true ->
% get_best_instr(Instrs, [BestSoFar|PassedInstrs],
% Instr, Prio, Nodes);
% false ->
% get_best_instr(Instrs, [Instr|PassedInstrs],BestSoFar, Prio, Nodes)
% end.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Function : better
%% Argument : Instr1 - Id of instr 1
%% Instr2 - Id of instr 2
%% Prio - array with cpath-priorities for the nodes
%% Nodes - indexed list [{Id, Instr}]
%% Returns : true if Instr1 has higher priority than Instr2
%% Description : Checks if Instr1 is a better choice than Instr2 for scheduling
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
better(Instr1, Instr2, Prio, Nodes, DAG, Preds, Earl, C) ->
better_hlp(priority(Instr1, Prio, Nodes, DAG, Preds, Earl, C),
priority(Instr2, Prio, Nodes, DAG, Preds, Earl, C)).
better_hlp([], []) -> false;
better_hlp([], [_|_]) -> false;
better_hlp([_|_], []) -> true;
better_hlp([X|Xs], [Y|Ys]) -> (X > Y) or ((X =:= Y) and better_hlp(Xs,Ys)).
%%
%% Returns the instr corresponding to id
%%
get_instr(InstrId, [{InstrId,Instr}|_]) -> Instr;
get_instr(InstrId, [_|Xs]) -> get_instr(InstrId, Xs).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Function : priority
%% Argument : InstrId - Id
%% Prio - array with cpath-priorities for the nodes
%% Nodes - indexed list [{Id, Instr}]
%% Returns : PrioList - list of priorities [MostSignificant, LessSign, ...]
%% Description : Returns a list of priorities where the first element is the
%% cpath-priority and the rest are added depending on what kind
%% of instr it is. Used to order loads/stores sequentially and
%% there is possibility to add whatever stuff...
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
priority(InstrId, Prio, Nodes, DAG, Preds, Earl, C) ->
{ReadyNodes,_,_,_} = hipe_schedule:delete_node(C,InstrId,DAG,Preds,Earl),
Instr = get_instr(InstrId, Nodes),
Prio1 = hipe_vectors:get(Prio, InstrId-1),
Prio2 = length(ReadyNodes),
PrioRest =
case Instr of
#load_atom{} ->
[3];
#move{} ->
[3];
#load{} ->
Src = hipe_sparc:load_src(Instr),
Off = hipe_sparc:load_off(Instr),
case hipe_sparc:is_reg(Off) of
false -> [3,
-(hipe_sparc:reg_nr(Src)),
-(hipe_sparc:imm_value(Off))];
true -> [1]
end;
#store{} ->
Src = hipe_sparc:store_dest(Instr),
Off = hipe_sparc:store_off(Instr),
case hipe_sparc:is_reg(Off) of
false -> [2,
-(hipe_sparc:reg_nr(Src)),
-(hipe_sparc:imm_value(Off))];
true -> [1]
end;
_ -> [0]
end,
[Prio1,Prio2|PrioRest].
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Function : add_ready_nodes
%% Argument : Nodes - list of [{Cycle,Id}]
%% Ready - array of ready nodes for all cycles
%% Returns : NewReady - updated ready-array
%% Description : Gets a list of instrs and adds them to the ready-array
%% to the corresponding cycle.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
add_ready_nodes([], Ready) -> Ready;
add_ready_nodes([{C,I}|Xs], Ready) ->
add_ready_nodes(Xs, insert_node(C, I, Ready)).
insert_node(C, I, Ready) ->
Old = hipe_vectors:get(Ready, C-1),
hipe_vectors:set(Ready, C-1, [I|Old]).
%%
%% Computes the latency for the "most expensive" way through the graph
%% for all nodes. Returns an array of priorities for all nodes.
%%
critical_path(N, DAG) ->
critical_path(1, N, DAG, hipe_vectors:new(N, -1)).
critical_path(M, N, DAG, Prio) ->
if
M > N ->
Prio;
true ->
critical_path(M+1, N, DAG, cpath(M, DAG, Prio))
end.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Function : cpath
%% Argument : M - current node id
%% DAG - the dependence graph
%% Prio - array of priorities for all nodes
%% Returns : Prio - updated prio array
%% Description : If node has prio -1, it has not been visited
%% - otherwise, compute priority as max of priorities of
%% successors (+ latency)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
cpath(M, DAG, Prio) ->
InitPrio = hipe_vectors:get(Prio, M-1),
if
InitPrio =:= -1 ->
cpath_node(M, DAG, Prio);
true ->
Prio
end.
cpath_node(N, DAG, Prio) ->
SuccL = dag_succ(DAG, N),
{Max, NewPrio} = cpath_succ(SuccL, DAG, Prio),
hipe_vectors:set(NewPrio, N-1, Max).
cpath_succ(SuccL, DAG, Prio) ->
cpath_succ(SuccL, DAG, Prio, 0).
%% performs an unnecessary lookup of priority of Succ, but that might
%% not be such a big deal
cpath_succ([], _DAG, Prio, NodePrio) -> {NodePrio,Prio};
cpath_succ([{Lat,Succ}|Xs], DAG, Prio, NodePrio) ->
NewPrio = cpath(Succ, DAG, Prio),
NewNodePrio = erlang:max(hipe_vectors:get(NewPrio, Succ - 1) + Lat, NodePrio),
cpath_succ(Xs, DAG, NewPrio, NewNodePrio).
dag_succ(DAG, N) when is_integer(N) ->
hipe_vectors:get(DAG, N-1).
|