1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
|
%% -*- erlang-indent-level: 2 -*-
%%
%% %CopyrightBegin%
%%
%% Copyright Ericsson AB 2004-2011. All Rights Reserved.
%%
%% The contents of this file are subject to the Erlang Public License,
%% Version 1.1, (the "License"); you may not use this file except in
%% compliance with the License. You should have received a copy of the
%% Erlang Public License along with this software. If not, it can be
%% retrieved online at http://www.erlang.org/.
%%
%% Software distributed under the License is distributed on an "AS IS"
%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
%% the License for the specific language governing rights and limitations
%% under the License.
%%
%% %CopyrightEnd%
%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% File : hipe_rtl_lcm.erl
%% Author : Henrik Nyman and Erik Cedheim
%% Description : Performs Lazy Code Motion on RTL
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% @doc
%%
%% This module implements Lazy Code Motion on RTL.
%%
%% @end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-module(hipe_rtl_lcm).
-export([rtl_lcm/2]).
-define(SETS, ordsets). %% Which set implementation module to use
%% We have tried gb_sets, sets and ordsets and
%% ordsets seems to be a lot faster according to
%% our test runs.
-include("../main/hipe.hrl").
-include("hipe_rtl.hrl").
-include("../flow/cfg.hrl").
%%-define(LCM_DEBUG, true). %% When defined and true, produces debug printouts
%%=============================================================================
%%
%% @doc Performs Lazy Code Motion on RTL.
%%
-spec rtl_lcm(cfg(), comp_options()) -> cfg().
rtl_lcm(CFG, Options) ->
%% Perform pre-calculation of the data sets.
?opt_start_timer("RTL LCM precalc"),
{NodeInfo, EdgeInfo, AllExpr, ExprMap, IdMap, Labels} = lcm_precalc(CFG, Options),
?opt_stop_timer("RTL LCM precalc"),
%% {NodeInfo, EdgeInfo, AllExpr, ExprMap, Labels} =
%% ?option_time(lcm_precalc(CFG, Options), "RTL LCM precalc", Options),
pp_debug("-------------------------------------------------~n",[]),
%% pp_debug( "~w~n", [MFA]),
%% A check if we should pretty print the result.
case proplists:get_bool(pp_rtl_lcm, Options) of
true->
pp_debug("-------------------------------------------------~n",[]),
%% pp_debug("AllExpr: ~w~n", [AllExpr]),
pp_debug("AllExpr:~n", []),
pp_exprs(ExprMap, IdMap, ?SETS:to_list(AllExpr)),
%% pp_sets(ExprMap, NodeInfo, EdgeInfo, AllExpr, CFG2<-ERROR!, Labels);
pp_sets(ExprMap, IdMap, NodeInfo, EdgeInfo, AllExpr, CFG, Labels);
_ ->
ok
end,
pp_debug("-------------------------------------------------~n",[]),
?option_time({CFG1, MoveSet} = perform_lcm(CFG, NodeInfo, EdgeInfo, ExprMap,
IdMap, AllExpr, mk_edge_bb_map(),
?SETS:new(), Labels),
"RTL LCM perform_lcm", Options),
%% Scan through list of moved expressions and replace their
%% assignments with the new temporary created for that expression
MoveList = ?SETS:to_list(MoveSet),
?option_time(CFG2 = moved_expr_replace_assignments(CFG1, ExprMap, IdMap,
MoveList),
"RTL LCM moved_expr_replace_assignments", Options),
pp_debug("-------------------------------------------------~n~n",[]),
CFG2.
%%=============================================================================
%% Performs lazy code motion given the pre-calculated data sets.
perform_lcm(CFG, _, _, _, _, _, _, MoveSet, []) ->
{CFG, MoveSet};
perform_lcm(CFG0, NodeInfo, EdgeInfo, ExprMap, IdMap, AllExp, BetweenMap,
MoveSet0, [Label|Labels]) ->
Code0 = hipe_bb:code(hipe_rtl_cfg:bb(CFG0, Label)),
DeleteSet = delete(NodeInfo, Label),
%% Check if something should be deleted from this block.
{CFG1, MoveSet1} =
case ?SETS:size(DeleteSet) > 0 of
true ->
pp_debug("Label ~w: Expressions Deleted: ~n", [Label]),
Code1 = delete_exprs(Code0, ExprMap, IdMap, ?SETS:to_list(DeleteSet)),
BB = hipe_bb:mk_bb(Code1),
{hipe_rtl_cfg:bb_add(CFG0, Label, BB),
?SETS:union(MoveSet0, DeleteSet)};
false ->
{CFG0, MoveSet0}
end,
Succs = hipe_rtl_cfg:succ(CFG1, Label),
%% Go through the list of successors and insert expression where needed.
%% Also collect a list of expressions that are inserted somewhere
{CFG2, NewBetweenMap, MoveSet2} =
lists:foldl(fun(Succ, {CFG, BtwMap, MoveSet}) ->
InsertSet = calc_insert_edge(NodeInfo, EdgeInfo,
Label, Succ),
%% Check if something should be inserted on this edge.
case ?SETS:size(InsertSet) > 0 of
true ->
pp_debug("Label ~w: Expressions Inserted for Successor: ~w~n", [Label, Succ]),
InsertList = ?SETS:to_list(InsertSet),
{NewCFG, NewBtwMap} =
insert_exprs(CFG, Label, Succ, ExprMap, IdMap,
BtwMap, InsertList),
{NewCFG, NewBtwMap, ?SETS:union(MoveSet, InsertSet)};
false ->
{CFG, BtwMap, MoveSet}
end
end,
{CFG1, BetweenMap, MoveSet1}, Succs),
perform_lcm(CFG2, NodeInfo, EdgeInfo, ExprMap, IdMap, AllExp, NewBetweenMap,
MoveSet2, Labels).
%%=============================================================================
%% Scan through list of moved expressions and replace their
%% assignments with the new temporary created for that expression.
moved_expr_replace_assignments(CFG, _, _, []) ->
CFG;
moved_expr_replace_assignments(CFG0, ExprMap, IdMap, [ExprId|Exprs]) ->
Expr = expr_id_map_get_expr(IdMap, ExprId),
case expr_map_lookup(ExprMap, Expr) of
{value, {_, ReplaceList, NewReg}} ->
CFG1 = lists:foldl(fun({Label, Reg}, CFG) ->
%% Find and replace expression in block
pp_debug("Label ~w: Expressions Replaced:~n", [Label]),
Code0 = hipe_bb:code(hipe_rtl_cfg:bb(CFG, Label)),
Code1 =
moved_expr_do_replacement(expr_set_dst(Expr, Reg),
Reg, NewReg, Code0),
hipe_rtl_cfg:bb_add(CFG, Label, hipe_bb:mk_bb(Code1))
end, CFG0, ReplaceList),
moved_expr_replace_assignments(CFG1, ExprMap, IdMap, Exprs);
none ->
moved_expr_replace_assignments(CFG0, ExprMap, IdMap, Exprs)
end.
moved_expr_do_replacement(_, _, _, []) ->
[];
moved_expr_do_replacement(Expr, Reg, NewReg, [Expr|Instrs]) ->
NewExpr = expr_set_dst(Expr, NewReg),
Move = mk_expr_move_instr(Reg, NewReg),
pp_debug(" Replacing:~n", []),
pp_debug_instr(Expr),
pp_debug(" With:~n", []),
pp_debug_instr(NewExpr),
pp_debug_instr(Move),
[NewExpr, Move | moved_expr_do_replacement(Expr, Reg, NewReg, Instrs)];
moved_expr_do_replacement(Expr, Reg, NewReg, [Instr|Instrs]) ->
[Instr | moved_expr_do_replacement(Expr, Reg, NewReg, Instrs)].
%%=============================================================================
%% Goes through the given list of expressions and deletes them from the code.
%% NOTE We do not actually delete an expression, but instead we replace it
%% with an assignment from the new temporary containing the result of the
%% expressions which is guaranteed to have been calculated earlier in
%% the code.
delete_exprs(Code, _, _, []) ->
Code;
delete_exprs(Code, ExprMap, IdMap, [ExprId|Exprs]) ->
Expr = expr_id_map_get_expr(IdMap, ExprId),
%% Perform a foldl that goes through the code and deletes all
%% occurences of the expression.
NewCode =
lists:reverse
(lists:foldl(fun(CodeExpr, Acc) ->
case is_expr(CodeExpr) of
true ->
case expr_clear_dst(CodeExpr) =:= Expr of
true ->
pp_debug(" Deleting: ", []),
pp_debug_instr(CodeExpr),
%% Lookup expression entry.
Defines =
case expr_map_lookup(ExprMap, Expr) of
{value, {_, _, Defs}} ->
Defs;
none ->
exit({?MODULE, expr_map_lookup,
"expression missing"})
end,
MoveCode =
mk_expr_move_instr(hipe_rtl:defines(CodeExpr),
Defines),
pp_debug(" Replacing with: ", []),
pp_debug_instr(MoveCode),
[MoveCode|Acc];
false ->
[CodeExpr|Acc]
end;
false ->
[CodeExpr|Acc]
end
end,
[], Code)),
delete_exprs(NewCode, ExprMap, IdMap, Exprs).
%%=============================================================================
%% Goes through the given list of expressions and inserts them at
%% appropriate places in the code.
insert_exprs(CFG, _, _, _, _, BetweenMap, []) ->
{CFG, BetweenMap};
insert_exprs(CFG, Pred, Succ, ExprMap, IdMap, BetweenMap, [ExprId|Exprs]) ->
Expr = expr_id_map_get_expr(IdMap, ExprId),
Instr = expr_map_get_instr(ExprMap, Expr),
case hipe_rtl_cfg:succ(CFG, Pred) of
[_] ->
pp_debug(" Inserted last: ", []),
pp_debug_instr(Instr),
NewCFG = insert_expr_last(CFG, Pred, Instr),
insert_exprs(NewCFG, Pred, Succ, ExprMap, IdMap, BetweenMap, Exprs);
_ ->
case hipe_rtl_cfg:pred(CFG, Succ) of
[_] ->
pp_debug(" Inserted first: ", []),
pp_debug_instr(Instr),
NewCFG = insert_expr_first(CFG, Succ, Instr),
insert_exprs(NewCFG, Pred, Succ, ExprMap, IdMap, BetweenMap, Exprs);
_ ->
pp_debug(" Inserted between: ", []),
pp_debug_instr(Instr),
{NewCFG, NewBetweenMap} =
insert_expr_between(CFG, BetweenMap, Pred, Succ, Instr),
insert_exprs(NewCFG, Pred, Succ, ExprMap, IdMap, NewBetweenMap, Exprs)
end
end.
%%=============================================================================
%% Recursively goes through the code in a block and returns a new block
%% with the new code inserted second to last (assuming the last expression
%% is a branch operation).
insert_expr_last(CFG0, Label, Instr) ->
Code0 = hipe_bb:code(hipe_rtl_cfg:bb(CFG0, Label)),
%% FIXME: Use hipe_bb:butlast() instead?
Code1 = insert_expr_last_work(Label, Instr, Code0),
hipe_rtl_cfg:bb_add(CFG0, Label, hipe_bb:mk_bb(Code1)).
%%=============================================================================
%% Recursively goes through the code in a block and returns a new block
%% with the new code inserted second to last (assuming the last expression
%% is a branch operation).
insert_expr_last_work(_, Instr, []) ->
%% This case should not happen since this means that block was completely
%% empty when the function was called. For compatibility we insert it last.
[Instr];
insert_expr_last_work(_, Instr, [Code1]) ->
%% We insert the code next to last.
[Instr, Code1];
insert_expr_last_work(Label, Instr, [Code|Codes]) ->
[Code|insert_expr_last_work(Label, Instr, Codes)].
%%=============================================================================
%% Inserts expression first in the block for the given label.
insert_expr_first(CFG0, Label, Instr) ->
%% The first instruction is always a label
[Lbl|Code0] = hipe_bb:code(hipe_rtl_cfg:bb(CFG0, Label)),
Code1 = [Lbl, Instr | Code0],
hipe_rtl_cfg:bb_add(CFG0, Label, hipe_bb:mk_bb(Code1)).
%%=============================================================================
%% Inserts an expression on and edge between two existing blocks.
%% It creates a new basic block to hold the expression.
%% Created bbs are inserted into BetweenMap to be able to reuse them for
%% multiple inserts on the same edge.
%% NOTE Currently creates multiple blocks for identical expression with the
%% same successor. Since the new bb usually contains very few instructions
%% this should not be a problem.
insert_expr_between(CFG0, BetweenMap, Pred, Succ, Instr) ->
PredSucc = {Pred, Succ},
case edge_bb_map_lookup(BetweenMap, PredSucc) of
none ->
NewLabel = hipe_rtl:mk_new_label(),
NewLabelName = hipe_rtl:label_name(NewLabel),
pp_debug(" Creating new bb ~w~n", [NewLabel]),
Code = [Instr, hipe_rtl:mk_goto(Succ)],
CFG1 = hipe_rtl_cfg:bb_add(CFG0, NewLabelName, hipe_bb:mk_bb(Code)),
CFG2 = hipe_rtl_cfg:redirect(CFG1, Pred, Succ, NewLabelName),
NewBetweenMap = edge_bb_map_insert(BetweenMap, PredSucc, NewLabelName),
pp_debug(" Mapping edge (~w,~w) to label ~w~n",
[Pred, Succ, NewLabelName]),
{CFG2, NewBetweenMap};
{value, Label} ->
pp_debug(" Using existing new bb for edge (~w,~w) with label ~w~n",
[Pred, Succ, Label]),
{insert_expr_last(CFG0, Label, Instr), BetweenMap}
end.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%% GENERAL UTILITY FUNCTIONS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%=============================================================================
%% Returns true if the list of registers only contains virtual registers and
%% no machine registers.
no_machine_regs([]) ->
true;
no_machine_regs([Reg|Regs]) ->
case hipe_rtl:is_reg(Reg) of
true ->
N = hipe_rtl:reg_index(Reg),
(N >= hipe_rtl_arch:first_virtual_reg()) andalso no_machine_regs(Regs);
_ ->
case hipe_rtl:is_fpreg(Reg) of
true ->
N = hipe_rtl:fpreg_index(Reg),
(N >= hipe_rtl_arch:first_virtual_reg()) andalso no_machine_regs(Regs);
_ ->
no_machine_regs(Regs)
end
end.
%%=============================================================================
%% Returns true if an RTL instruction is an expression.
%%
is_expr(I) ->
Defines = hipe_rtl:defines(I),
Uses = hipe_rtl:uses(I),
%% We don't cosider something that doesn't define anything as an expression.
%% Also we don't consider machine registers to be expressions.
case length(Defines) > 0 andalso no_machine_regs(Defines)
andalso no_machine_regs(Uses) of
true ->
case I of
#alu{} -> true;
%% #alu{} ->
%% Dst = hipe_rtl:alu_dst(I),
%% Src1 = hipe_rtl:alu_src1(I),
%% Src2 = hipe_rtl:alu_src2(I),
%% Check if dst updates src
%% case Dst =:= Src1 orelse Dst =:= Src2 of
%% true ->
%% false;
%% false ->
%% true
%% end;
%% Check if alu expression is untagging of boxed (rX <- vX sub 2)
%% case hipe_rtl:is_reg(Dst) andalso hipe_rtl:is_var(Src1) andalso
%% (hipe_rtl:alu_op(I) =:= sub) andalso hipe_rtl:is_imm(Src2) of
%% true ->
%% case hipe_rtl:imm_value(Src2) of
%% 2 -> false; %% Tag for boxed. TODO: Should not be hardcoded...
%% _ -> true
%% end;
%% false ->
%% true
%% end;
#alub{} -> false; %% TODO: Split instruction to consider alu expression?
#branch{} -> false;
#call{} -> false; %% We cannot prove that a call has no side-effects
#comment{} -> false;
#enter{} -> false;
%% #fail_to{} -> false; %% Deprecated?
#fconv{} -> true;
#fixnumop{} -> true;
#fload{} -> true;
#fmove{} -> false;
#fp{} -> true;
#fp_unop{} -> true;
#fstore{} -> false;
#goto{} -> false;
#goto_index{} -> false;
#gctest{} -> false;
#label{} -> false;
#load{} -> true;
#load_address{} ->
case hipe_rtl:load_address_type(I) of
c_const -> false;
closure -> false; %% not sure whether safe to move;
%% also probably not worth it
constant -> true
end;
#load_atom{} -> true;
#load_word_index{} -> true;
#move{} -> false;
#multimove{} -> false;
#phi{} -> false;
#return{} -> false;
#store{} -> false;
#switch{} -> false
end;
false ->
false
end.
%%=============================================================================
%% Replaces destination of RTL expression with empty list.
%%
expr_set_dst(I, [Dst|_Dsts] = DstList) ->
case I of
#alu{} -> hipe_rtl:alu_dst_update(I, Dst);
#call{} -> hipe_rtl:call_dstlist_update(I, DstList);
#fconv{} -> hipe_rtl:fconv_dst_update(I, Dst);
#fixnumop{} -> hipe_rtl:fixnumop_dst_update(I, Dst);
#fload{} -> hipe_rtl:fload_dst_update(I, Dst);
%% #fmove{} -> hipe_rtl:fmove_dst_update(I, Dst);
#fp{} -> hipe_rtl:fp_dst_update(I, Dst);
#fp_unop{} -> hipe_rtl:fp_unop_dst_update(I, Dst);
#load{} -> hipe_rtl:load_dst_update(I, Dst);
#load_address{} -> hipe_rtl:load_address_dst_update(I, Dst);
#load_atom{} -> hipe_rtl:load_atom_dst_update(I, Dst);
#load_word_index{} -> hipe_rtl:load_word_index_dst_update(I, Dst);
%% #move{} -> hipe_rtl:move_dst_update(I, Dst);
_ -> exit({?MODULE, expr_set_dst, "bad expression"})
end.
%%=============================================================================
%% Replaces destination of RTL expression with empty list.
%%
expr_clear_dst(I) ->
case I of
#alu{} -> hipe_rtl:alu_dst_update(I, nil);
#call{} -> hipe_rtl:call_dstlist_update(I, nil);
#fconv{} -> hipe_rtl:fconv_dst_update(I, nil);
#fixnumop{} -> hipe_rtl:fixnumop_dst_update(I, nil);
#fload{} -> hipe_rtl:fload_dst_update(I, nil);
%% #fmove{} -> hipe_rtl:fmove_dst_update(I, nil);
#fp{} -> hipe_rtl:fp_dst_update(I, nil);
#fp_unop{} -> hipe_rtl:fp_unop_dst_update(I, nil);
#load{} -> hipe_rtl:load_dst_update(I, nil);
#load_address{} -> hipe_rtl:load_address_dst_update(I, nil);
#load_atom{} -> hipe_rtl:load_atom_dst_update(I, nil);
#load_word_index{} -> hipe_rtl:load_word_index_dst_update(I, nil);
%% #move{} -> hipe_rtl:move_dst_update(I, nil);
_ -> exit({?MODULE, expr_clear_dst, "bad expression"})
end.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%% PRECALC FUNCTIONS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%=============================================================================
%% Pre-calculates the flow analysis and puts the calculated sets in maps for
%% easy access later.
lcm_precalc(CFG, Options) ->
%% Calculate use map and expression map.
?option_time({ExprMap, IdMap} = mk_expr_map(CFG),
"RTL LCM mk_expr_map", Options),
?option_time(UseMap = mk_use_map(CFG, ExprMap),
"RTL LCM mk_use_map", Options),
%% Labels = hipe_rtl_cfg:reverse_postorder(CFG),
Labels = hipe_rtl_cfg:labels(CFG),
%% StartLabel = hipe_rtl_cfg:start_label(CFG),
%% AllExpr = all_exprs(CFG, Labels),
AllExpr = ?SETS:from_list(gb_trees:keys(IdMap)),
%% Calculate the data sets.
?option_time(NodeInfo0 = mk_node_info(Labels), "RTL LCM mk_node_info",
Options),
%% ?option_time(EdgeInfo0 = mk_edge_info(), "RTL LCM mk_edge_info",
%% Options),
EdgeInfo0 = mk_edge_info(),
?option_time(NodeInfo1 = calc_up_exp(CFG, ExprMap, NodeInfo0, Labels),
"RTL LCM calc_up_exp", Options),
?option_time(NodeInfo2 = calc_down_exp(CFG, ExprMap, NodeInfo1, Labels),
"RTL LCM calc_down_exp", Options),
?option_time(NodeInfo3 = calc_killed_expr(CFG, NodeInfo2, UseMap, AllExpr,
IdMap, Labels),
"RTL LCM calc_killed_exp", Options),
?option_time(NodeInfo4 = calc_avail(CFG, NodeInfo3),
"RTL LCM calc_avail", Options),
?option_time(NodeInfo5 = calc_antic(CFG, NodeInfo4, AllExpr),
"RTL LCM calc_antic", Options),
?option_time(EdgeInfo1 = calc_earliest(CFG, NodeInfo5, EdgeInfo0, Labels),
"RTL LCM calc_earliest", Options),
?option_time({NodeInfo6, EdgeInfo2} = calc_later(CFG, NodeInfo5, EdgeInfo1),
"RTL LCM calc_later", Options),
?option_time(NodeInfo7 = calc_delete(CFG, NodeInfo6, Labels),
"RTL LCM calc_delete", Options),
{NodeInfo7, EdgeInfo2, AllExpr, ExprMap, IdMap, Labels}.
%%%%%%%%%%%%%%%%%%% AVAILABLE IN/OUT FLOW ANALYSIS %%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Fixpoint calculation of anticipated in/out sets.
%% Uses a worklist algorithm.
%% Performs the avail in/out flow analysis.
%%=============================================================================
%% Calculates the available in/out sets, and returns an updated NodeInfo.
calc_avail(CFG, NodeInfo) ->
StartLabel = hipe_rtl_cfg:start_label(CFG),
Work = init_work([StartLabel]),
%% Initialize start node
NewNodeInfo = set_avail_in(NodeInfo, StartLabel, ?SETS:new()),
calc_avail_fixpoint(Work, CFG, NewNodeInfo).
calc_avail_fixpoint(Work, CFG, NodeInfo) ->
case get_work(Work) of
fixpoint ->
NodeInfo;
{Label, NewWork} ->
{NewNodeInfo, NewLabels} = calc_avail_node(Label, CFG, NodeInfo),
NewWork2 = add_work(NewWork, NewLabels),
calc_avail_fixpoint(NewWork2, CFG, NewNodeInfo)
end.
calc_avail_node(Label, CFG, NodeInfo) ->
%% Get avail in
AvailIn = avail_in(NodeInfo, Label),
%% Calculate avail out
AvailOut = ?SETS:union(down_exp(NodeInfo, Label),
?SETS:subtract(AvailIn,
killed_expr(NodeInfo, Label))),
{Changed, NodeInfo2} =
case avail_out(NodeInfo, Label) of
none ->
%% If there weren't any old avail out we use this one.
{true, set_avail_out(NodeInfo, Label, AvailOut)};
OldAvailOut ->
%% Check if the avail outs are equal.
case AvailOut =:= OldAvailOut of
true ->
{false, NodeInfo};
false ->
{true, set_avail_out(NodeInfo, Label, AvailOut)}
end
end,
case Changed of
true ->
%% Update AvailIn-sets of successors and add them to worklist
Succs = hipe_rtl_cfg:succ(CFG, Label),
NodeInfo3 =
lists:foldl
(fun(Succ, NewNodeInfo) ->
case avail_in(NewNodeInfo, Succ) of
none ->
%% Initialize avail in to all expressions
set_avail_in(NewNodeInfo, Succ, AvailOut);
OldAvailIn ->
set_avail_in(NewNodeInfo, Succ,
?SETS:intersection(OldAvailIn, AvailOut))
end
end,
NodeInfo2, Succs),
{NodeInfo3, Succs};
false ->
{NodeInfo2, []}
end.
%%%%%%%%%%%%%%%%%% ANTICIPATED IN/OUT FLOW ANALYSIS %%%%%%%%%%%%%%%%%%%%%%%%%%
%% Fixpoint calculation of anticipated in/out sets.
%% Uses a worklist algorithm.
%%=============================================================================
%% Calculates the anicipated in/out sets, and returns an updated NodeInfo.
calc_antic(CFG, NodeInfo, AllExpr) ->
%% Initialize worklist with all nodes in postorder
Labels = hipe_rtl_cfg:postorder(CFG),
Work = init_work(Labels),
calc_antic_fixpoint(Work, CFG, NodeInfo, AllExpr).
calc_antic_fixpoint(Work, CFG, NodeInfo, AllExpr) ->
case get_work(Work) of
fixpoint ->
NodeInfo;
{Label, NewWork} ->
{NewNodeInfo, NewLabels} = calc_antic_node(Label, CFG, NodeInfo, AllExpr),
NewWork2 = add_work(NewWork, NewLabels),
calc_antic_fixpoint(NewWork2, CFG, NewNodeInfo, AllExpr)
end.
calc_antic_node(Label, CFG, NodeInfo, AllExpr) ->
%% Get antic out
AnticOut =
case antic_out(NodeInfo, Label) of
none ->
case is_exit_label(CFG, Label) of
true ->
?SETS:new();
false ->
AllExpr
end;
AnticOutTemp -> AnticOutTemp
end,
%% Calculate antic in
AnticIn = ?SETS:union(up_exp(NodeInfo, Label),
?SETS:subtract(AnticOut,
killed_expr(NodeInfo, Label))),
{Changed, NodeInfo2} =
case antic_in(NodeInfo, Label) of
%% If there weren't any old antic in we use this one.
none ->
{true, set_antic_in(NodeInfo, Label, AnticIn)};
OldAnticIn ->
%% Check if the antic in:s are equal.
case AnticIn =:= OldAnticIn of
true ->
{false, NodeInfo};
false ->
{true,
set_antic_in(NodeInfo, Label, AnticIn)}
end
end,
case Changed of
true ->
%% Update AnticOut-sets of predecessors and add them to worklist
Preds = hipe_rtl_cfg:pred(CFG, Label),
NodeInfo3 =
lists:foldl
(fun(Pred, NewNodeInfo) ->
case antic_out(NewNodeInfo, Pred) of
none ->
%% Initialize antic out to all expressions
set_antic_out(NewNodeInfo, Pred, AnticIn);
OldAnticOut ->
set_antic_out(NewNodeInfo, Pred,
?SETS:intersection(OldAnticOut, AnticIn))
end
end,
NodeInfo2, Preds),
{NodeInfo3, Preds};
false ->
{NodeInfo2, []}
end.
%%%%%%%%%%%%%%%%%%%%% LATER / LATER IN FLOW ANALYSIS %%%%%%%%%%%%%%%%%%%%%%%%%%
%% Fixpoint calculations of Later and LaterIn sets.
%% Uses a worklist algorithm.
%% Note that the Later set is calculated on edges.
%%=============================================================================
%% Calculates the Later and LaterIn sets, and returns updates of both
%% NodeInfo (with LaterIn sets) and EdgeInfo (with Later sets).
calc_later(CFG, NodeInfo, EdgeInfo) ->
StartLabel = hipe_rtl_cfg:start_label(CFG),
Work = init_work([{node, StartLabel}]),
%% Initialize start node
NewNodeInfo = set_later_in(NodeInfo, StartLabel, ?SETS:new()),
calc_later_fixpoint(Work, CFG, NewNodeInfo, EdgeInfo).
calc_later_fixpoint(Work, CFG, NodeInfo, EdgeInfo) ->
case get_work(Work) of
{{edge, From, To}, Work2} ->
{NewNodeInfo, NewEdgeInfo, AddWork} =
calc_later_edge(From, To, CFG, NodeInfo, EdgeInfo),
Work3 = add_work(Work2, AddWork),
calc_later_fixpoint(Work3, CFG, NewNodeInfo, NewEdgeInfo);
{{node, Label}, Work2} ->
AddWork = calc_later_node(Label, CFG),
Work3 = add_work(Work2, AddWork),
calc_later_fixpoint(Work3, CFG, NodeInfo, EdgeInfo);
fixpoint ->
{NodeInfo, EdgeInfo}
end.
calc_later_node(Label, CFG) ->
Succs = hipe_rtl_cfg:succ(CFG, Label),
[{edge, Label, Succ} || Succ <- Succs].
calc_later_edge(From, To, _CFG, NodeInfo, EdgeInfo) ->
FromTo = {From, To},
Earliest = earliest(EdgeInfo, FromTo),
LaterIn = later_in(NodeInfo, From),
UpExp = up_exp(NodeInfo, From),
Later = ?SETS:union(Earliest, ?SETS:subtract(LaterIn, UpExp)),
{Changed, EdgeInfo2} =
case lookup_later(EdgeInfo, FromTo) of
none -> {true, set_later(EdgeInfo, FromTo, Later)};
Later -> {false, EdgeInfo};
_Old -> {true, set_later(EdgeInfo, FromTo, Later)}
end,
case Changed of
true ->
%% Update later in set of To-node
case lookup_later_in(NodeInfo, To) of
%% If the data isn't set initialize to all expressions
none ->
{set_later_in(NodeInfo, To, Later), EdgeInfo2, [{node, To}]};
OldLaterIn ->
NewLaterIn = ?SETS:intersection(OldLaterIn, Later),
%% Check if something changed
%% FIXME: Implement faster equality test?
case NewLaterIn =:= OldLaterIn of
true ->
{NodeInfo, EdgeInfo2, []};
false ->
{set_later_in(NodeInfo, To, NewLaterIn),
EdgeInfo2, [{node, To}]}
end
end;
false ->
{NodeInfo, EdgeInfo2, []}
end.
%%%%%%%%%%%%%%%%%% UPWARDS/DOWNWARDS EXPOSED EXPRESSIONS %%%%%%%%%%%%%%%%%%%%%%
%% Calculates upwards and downwards exposed expressions.
%%=============================================================================
%% Calculates the downwards exposed expression sets for the given labels in
%% the CFG.
calc_down_exp(_, _, NodeInfo, []) ->
NodeInfo;
calc_down_exp(CFG, ExprMap, NodeInfo, [Label|Labels]) ->
Code = hipe_bb:code(hipe_rtl_cfg:bb(CFG, Label)),
%% Data = ?SETS:from_list(lists:map(fun expr_clear_dst/1, exp_work(Code))),
Data = ?SETS:from_list(get_expr_ids(ExprMap, exp_work(Code))),
NewNodeInfo = set_down_exp(NodeInfo, Label, Data),
calc_down_exp(CFG, ExprMap, NewNodeInfo, Labels).
%%=============================================================================
%% Calculates the upwards exposed expressions sets for the given labels in
%% the CFG.
calc_up_exp(_, _, NodeInfo, []) ->
NodeInfo;
calc_up_exp(CFG, ExprMap, NodeInfo, [Label|Labels]) ->
BB = hipe_rtl_cfg:bb(CFG, Label),
RevCode = lists:reverse(hipe_bb:code(BB)),
Data = ?SETS:from_list(get_expr_ids(ExprMap, exp_work(RevCode))),
NewNodeInfo = set_up_exp(NodeInfo, Label, Data),
calc_up_exp(CFG, ExprMap, NewNodeInfo, Labels).
%%=============================================================================
%% Given a list of expression instructions, gets a list of expression ids
%% from an expression map.
get_expr_ids(ExprMap, Instrs) ->
[expr_map_get_id(ExprMap, expr_clear_dst(I)) || I <- Instrs].
%%=============================================================================
%% Does the work of the calc_*_exp functions.
exp_work(Code) ->
exp_work([], Code).
exp_work([], [Instr|Instrs]) ->
case is_expr(Instr) of
true ->
exp_work([Instr], Instrs);
false ->
exp_work([], Instrs)
end;
exp_work(Exprs, []) ->
Exprs;
exp_work(Exprs, [Instr|Instrs]) ->
NewExprs = case is_expr(Instr) of
true ->
exp_kill_expr(Instr, [Instr|Exprs]);
false ->
exp_kill_expr(Instr, Exprs)
end,
exp_work(NewExprs, Instrs).
%%=============================================================================
%% Checks if the given instruction redefines any operands of
%% instructions in the instruction list.
%% It returns the list of expressions with those instructions that has
%% operands redefined removed.
exp_kill_expr(_Instr, []) ->
[];
exp_kill_expr(Instr, [CheckedExpr|Exprs]) ->
%% Calls, gctests and stores potentially clobber everything
case Instr of
#call{} -> [];
#gctest{} -> [];
#store{} -> []; %% FIXME: Only regs and vars clobbered, not fregs...
#fstore{} ->
%% fstore potentially clobber float expressions
[ExprDefine|_] = hipe_rtl:defines(CheckedExpr),
case hipe_rtl:is_fpreg(ExprDefine) of
true ->
exp_kill_expr(Instr, Exprs);
false ->
[CheckedExpr | exp_kill_expr(Instr, Exprs)]
end;
_ ->
InstrDefines = hipe_rtl:defines(Instr),
ExprUses = hipe_rtl:uses(CheckedExpr),
Diff = ExprUses -- InstrDefines,
case length(Diff) < length(ExprUses) of
true ->
exp_kill_expr(Instr, Exprs);
false ->
[CheckedExpr | exp_kill_expr(Instr, Exprs)]
end
end.
%%%%%%%%%%%%%%%%%%%%%%%% KILLED EXPRESSIONS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%=============================================================================
%% Calculates the killed expression sets for all given labels.
calc_killed_expr(_, NodeInfo, _, _, _, []) ->
NodeInfo;
calc_killed_expr(CFG, NodeInfo, UseMap, AllExpr, IdMap, [Label|Labels]) ->
Code = hipe_bb:code(hipe_rtl_cfg:bb(CFG, Label)),
KilledExprs = calc_killed_expr_bb(Code, UseMap, AllExpr, IdMap, ?SETS:new()),
NewNodeInfo = set_killed_expr(NodeInfo, Label, KilledExprs),
calc_killed_expr(CFG, NewNodeInfo, UseMap, AllExpr, IdMap, Labels).
%%=============================================================================
%% Calculates the killed expressions set for one basic block.
calc_killed_expr_bb([], _UseMap, _AllExpr, _IdMap, KilledExprs) ->
KilledExprs;
calc_killed_expr_bb([Instr|Instrs], UseMap, AllExpr, IdMap, KilledExprs) ->
%% Calls, gctests and stores potentially clobber everything
case Instr of
#call{} -> AllExpr;
#gctest{} -> AllExpr;
#store{} -> AllExpr; %% FIXME: Only regs and vars clobbered, not fregs...
#fstore{} ->
%% Kill all float expressions
%% FIXME: Make separate function is_fp_expr
?SETS:from_list
(lists:foldl(fun(ExprId, Fexprs) ->
Expr = expr_id_map_get_expr(IdMap, ExprId),
[Define|_] = hipe_rtl:defines(Expr),
case hipe_rtl:is_fpreg(Define) of
true ->
[Expr|Fexprs];
false ->
Fexprs
end
end, [], ?SETS:to_list(AllExpr)));
_ ->
case hipe_rtl:defines(Instr) of
[] ->
calc_killed_expr_bb(Instrs, UseMap, AllExpr, IdMap, KilledExprs);
[Define|_] ->
NewKilledExprs = use_map_get_expr_uses(UseMap, Define),
calc_killed_expr_bb(Instrs, UseMap, AllExpr, IdMap,
?SETS:union(NewKilledExprs, KilledExprs))
end
end.
%%%%%%%%%%%%%%%%%%%%%%%%%%%% EARLIEST %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%=============================================================================
%% Calculates the earliest set for all edges in the CFG.
calc_earliest(_, _, EdgeInfo, []) ->
EdgeInfo;
calc_earliest(CFG, NodeInfo, EdgeInfo, [To|Labels]) ->
EmptySet = ?SETS:new(),
Preds = hipe_rtl_cfg:pred(CFG, To),
NewEdgeInfo =
case EmptySet =:= antic_in(NodeInfo, To) of
true ->
%% Earliest is empty for all edges into this block.
lists:foldl(fun(From, EdgeInfoAcc) ->
set_earliest(EdgeInfoAcc, {From, To}, EmptySet)
end, EdgeInfo, Preds);
false ->
lists:foldl(fun(From, EdgeInfoAcc) ->
IsStartLabel = (From =:= hipe_rtl_cfg:start_label(CFG)),
Earliest =
calc_earliest_edge(NodeInfo, IsStartLabel, From, To),
set_earliest(EdgeInfoAcc, {From, To}, Earliest)
end, EdgeInfo, Preds)
end,
calc_earliest(CFG, NodeInfo, NewEdgeInfo, Labels).
%%=============================================================================
%% Calculates the earliest set for one edge.
calc_earliest_edge(NodeInfo, IsStartLabel, From, To) ->
AnticIn = antic_in(NodeInfo, To),
AvailOut = avail_out(NodeInfo, From),
case IsStartLabel of
true ->
?SETS:subtract(AnticIn, AvailOut);
false ->
AnticOut = antic_out(NodeInfo, From),
ExprKill = killed_expr(NodeInfo, From),
?SETS:subtract(?SETS:subtract(AnticIn, AvailOut),
?SETS:subtract(AnticOut, ExprKill))
end.
%% The above used to be:
%%
%% ?SETS:intersection(?SETS:subtract(AnticIn, AvailOut),
%% ?SETS:union(ExprKill, ?SETS:subtract(AllExpr, AnticOut)))
%%
%% But it is costly to use the AllExpr, so let's do some tricky set algebra.
%%
%% Let A = AnticIn, B = AvailOut, C = ExprKill, D = AnticOut, U = AllExpr
%% Let n = intersection, u = union, ' = inverse
%%
%% Then
%% (A - B) n (C u (U - D)) = <Remove D unless it is in C>
%% = (A - B) n ((C u U) - (D - C)) = <But U is the whole universe>
%% = (A - B) n (U - (D - C)) = <We are really meaning the complement>
%% = (A - B) n (D - C)' = <Intersection w complement is subtraction>
%% = (A - B) - (D - C) <Simple enough, let's stop>
%%
%% or in other words
%% ?SETS:subtract(?SETS:subtract(AnticIn, AvailOut),
%% ?SETS:subtract(AnticOut, ExprKill))
%%%%%%%%%%%%%%%%%%%%%%%% INSERT / DELETE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%=============================================================================
%% Calculates the insert set for one edge and returns the resulting set.
%% NOTE This does not modify the EdgeInfo set, since the resulting set is
%% returned and used immediately, instead of being pre-calculated as are
%% the other sets.
calc_insert_edge(NodeInfo, EdgeInfo, From, To) ->
Later = later(EdgeInfo, {From, To}),
LaterIn = later_in(NodeInfo, To),
?SETS:subtract(Later, LaterIn).
%%=============================================================================
%% Calculates the delete set for all given labels in a CFG.
calc_delete(_, NodeInfo, []) ->
NodeInfo;
calc_delete(CFG, NodeInfo, [Label|Labels]) ->
case Label =:= hipe_rtl_cfg:start_label(CFG) of
true ->
NewNodeInfo = set_delete(NodeInfo, Label, ?SETS:new());
false ->
UpExp = up_exp(NodeInfo, Label),
LaterIn = later_in(NodeInfo, Label),
Delete = ?SETS:subtract(UpExp, LaterIn),
NewNodeInfo = set_delete(NodeInfo, Label, Delete)
end,
calc_delete(CFG, NewNodeInfo, Labels).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%% FIXPOINT FUNCTIONS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%=============================================================================
%% Worklist used by the fixpoint calculations.
%%
%% We use gb_sets here, which is optimized for continuous inserts and
%% membership tests.
init_work(Labels) ->
{Labels, [], gb_sets:from_list(Labels)}.
get_work({[Label|Left], List, Set}) ->
NewWork = {Left, List, gb_sets:delete(Label, Set)},
{Label, NewWork};
get_work({[], [], _Set}) ->
fixpoint;
get_work({[], List, Set}) ->
get_work({lists:reverse(List), [], Set}).
add_work(Work = {List1, List2, Set}, [Label|Labels]) ->
case gb_sets:is_member(Label, Set) of
true ->
add_work(Work, Labels);
false ->
%%io:format("Adding work: ~w\n", [Label]),
add_work({List1, [Label|List2], gb_sets:insert(Label, Set)}, Labels)
end;
add_work(Work, []) ->
Work.
%%=============================================================================
%% Calculates the labels that are the exit labels.
%% FIXME We do not detect dead-end loops spanning more than one block.
%% This could potentially cause a bug in the future...
%% exit_labels(CFG) ->
%% Labels = hipe_rtl_cfg:labels(CFG),
%% lists:foldl(fun(Label, ExitLabels) ->
%% Succs = hipe_rtl_cfg:succ(CFG, Label),
%% case Succs of
%% [] ->
%% [Label|ExitLabels];
%% [Label] -> %% Count single bb dead-end loops as exit labels
%% [Label|ExitLabels];
%% _ ->
%% ExitLabels
%% end
%% end, [], Labels ).
%%=============================================================================
%% Return true if label is an exit label,
%% i.e. its bb has no successors or itself as only successor.
is_exit_label(CFG, Label) ->
case hipe_rtl_cfg:succ(CFG, Label) of
[] -> true;
[Label] -> true;
_ -> false
end.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%% DATASET FUNCTIONS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% The dataset is a collection of data about the CFG.
%% It is divided into two parts, NodeInfo and EdgeInfo.
%% The pre-calculation step stores the calculated sets here.
-record(node_data, {up_exp = none,
down_exp = none,
killed_expr = none,
avail_in = none,
avail_out = none,
antic_in = none,
antic_out = none,
later_in = none,
delete = none}).
-record(edge_data, {earliest = none,
later = none,
insert = none}).
%%=============================================================================
%% Creates a node info from a CFG (one entry for each Label).
mk_node_info(Labels) ->
lists:foldl(fun(Label, DataTree) ->
gb_trees:insert(Label, #node_data{}, DataTree)
%%gb_trees:enter(Label, #node_data{}, DataTree)
end,
gb_trees:empty(), Labels).
%%mk_edge_info(Labels) ->
%% FIXME Should we traverse cfg and initialize edges?
mk_edge_info() ->
gb_trees:empty().
%%=============================================================================
%% Get methods
up_exp(NodeInfo, Label) ->
Data = gb_trees:get(Label, NodeInfo),
Data#node_data.up_exp.
down_exp(NodeInfo, Label) ->
Data = gb_trees:get(Label, NodeInfo),
Data#node_data.down_exp.
killed_expr(NodeInfo, Label) ->
Data = gb_trees:get(Label, NodeInfo),
Data#node_data.killed_expr.
avail_in(NodeInfo, Label) ->
Data = gb_trees:get(Label, NodeInfo),
Data#node_data.avail_in.
avail_out(NodeInfo, Label) ->
Data = gb_trees:get(Label, NodeInfo),
Data#node_data.avail_out.
antic_in(NodeInfo, Label) ->
Data = gb_trees:get(Label, NodeInfo),
Data#node_data.antic_in.
antic_out(NodeInfo, Label) ->
Data = gb_trees:get(Label, NodeInfo),
Data#node_data.antic_out.
later_in(NodeInfo, Label) ->
Data = gb_trees:get(Label, NodeInfo),
Data#node_data.later_in.
lookup_later_in(NodeInfo, Label) ->
case gb_trees:lookup(Label, NodeInfo) of
none ->
none;
{value, #node_data{later_in = Data}} ->
Data
end.
delete(NodeInfo, Label) ->
Data = gb_trees:get(Label, NodeInfo),
Data#node_data.delete.
earliest(EdgeInfo, Edge) ->
Data = gb_trees:get(Edge, EdgeInfo),
Data#edge_data.earliest.
-ifdef(LOOKUP_EARLIEST_NEEDED).
lookup_earliest(EdgeInfo, Edge) ->
case gb_trees:lookup(Edge, EdgeInfo) of
none ->
none;
{value, #edge_data{earliest = Data}} ->
Data
end.
-endif.
later(EdgeInfo, Edge) ->
Data = gb_trees:get(Edge, EdgeInfo),
Data#edge_data.later.
lookup_later(EdgeInfo, Edge) ->
case gb_trees:lookup(Edge, EdgeInfo) of
none ->
none;
{value, #edge_data{later = Data}} ->
Data
end.
%% insert(EdgeInfo, Edge) ->
%% case gb_trees:lookup(Edge, EdgeInfo) of
%% none ->
%% exit({?MODULE, insert, "edge info not found"}),
%% none;
%% {value, #edge_data{insert = Data}} ->
%% Data
%% end.
%%=============================================================================
%% Set methods
set_up_exp(NodeInfo, Label, Data) ->
NodeData =
case gb_trees:lookup(Label, NodeInfo) of
none ->
#node_data{up_exp = Data};
{value, OldNodeData} ->
OldNodeData#node_data{up_exp = Data}
end,
gb_trees:enter(Label, NodeData, NodeInfo).
set_down_exp(NodeInfo, Label, Data) ->
NodeData =
case gb_trees:lookup(Label, NodeInfo) of
none ->
#node_data{down_exp = Data};
{value, OldNodeData} ->
OldNodeData#node_data{down_exp = Data}
end,
gb_trees:enter(Label, NodeData, NodeInfo).
set_killed_expr(NodeInfo, Label, Data) ->
NodeData =
case gb_trees:lookup(Label, NodeInfo) of
none ->
#node_data{killed_expr = Data};
{value, OldNodeData} ->
OldNodeData#node_data{killed_expr = Data}
end,
gb_trees:enter(Label, NodeData, NodeInfo).
set_avail_in(NodeInfo, Label, Data) ->
NodeData =
case gb_trees:lookup(Label, NodeInfo) of
none ->
#node_data{avail_in = Data};
{value, OldNodeData} ->
OldNodeData#node_data{avail_in = Data}
end,
gb_trees:enter(Label, NodeData, NodeInfo).
set_avail_out(NodeInfo, Label, Data) ->
NodeData =
case gb_trees:lookup(Label, NodeInfo) of
none ->
#node_data{avail_out = Data};
{value, OldNodeData} ->
OldNodeData#node_data{avail_out = Data}
end,
gb_trees:enter(Label, NodeData, NodeInfo).
set_antic_in(NodeInfo, Label, Data) ->
NodeData =
case gb_trees:lookup(Label, NodeInfo) of
none ->
#node_data{antic_in = Data};
{value, OldNodeData} ->
OldNodeData#node_data{antic_in = Data}
end,
gb_trees:enter(Label, NodeData, NodeInfo).
set_antic_out(NodeInfo, Label, Data) ->
NodeData =
case gb_trees:lookup(Label, NodeInfo) of
none ->
#node_data{antic_out = Data};
{value, OldNodeData} ->
OldNodeData#node_data{antic_out = Data}
end,
gb_trees:enter(Label, NodeData, NodeInfo).
set_later_in(NodeInfo, Label, Data) ->
NodeData =
case gb_trees:lookup(Label, NodeInfo) of
none ->
#node_data{later_in = Data};
{value, OldNodeData} ->
OldNodeData#node_data{later_in = Data}
end,
gb_trees:enter(Label, NodeData, NodeInfo).
set_delete(NodeInfo, Label, Data) ->
NodeData =
case gb_trees:lookup(Label, NodeInfo) of
none ->
#node_data{delete = Data};
{value, OldNodeData} ->
OldNodeData#node_data{delete = Data}
end,
gb_trees:enter(Label, NodeData, NodeInfo).
set_earliest(EdgeInfo, Edge, Data) ->
EdgeData =
case gb_trees:lookup(Edge, EdgeInfo) of
none ->
#edge_data{earliest = Data};
{value, OldEdgeData} ->
OldEdgeData#edge_data{earliest = Data}
end,
gb_trees:enter(Edge, EdgeData, EdgeInfo).
set_later(EdgeInfo, Edge, Data) ->
EdgeData =
case gb_trees:lookup(Edge, EdgeInfo) of
none ->
#edge_data{later = Data};
{value, OldEdgeData} ->
OldEdgeData#edge_data{later = Data}
end,
gb_trees:enter(Edge, EdgeData, EdgeInfo).
%% set_insert(EdgeInfo, Edge, Data) ->
%% EdgeData =
%% case gb_trees:lookup(Edge, EdgeInfo) of
%% none ->
%% #edge_data{insert = Data};
%% {value, OldEdgeData} ->
%% OldEdgeData#edge_data{insert = Data}
%% end,
%% gb_trees:enter(Edge, EdgeData, EdgeInfo).
%%%%%%%%%%%%%%%%%%%%%%%%%%%% USE MAP %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% The use map is a mapping from "use" (which is an rtl register/variable)
%% to a set of expressions (IDs) where that register/variable is used.
%% It is used by calc_killed_expr to know what expressions are affected by
%% a definition.
%%=============================================================================
%% Creates and calculates the use map for a CFG.
%% It uses ExprMap to lookup the expression IDs.
mk_use_map(CFG, ExprMap) ->
Labels = hipe_rtl_cfg:reverse_postorder(CFG),
NewMap = mk_use_map(gb_trees:empty(), CFG, ExprMap, Labels),
gb_trees:balance(NewMap).
mk_use_map(Map, _, _, []) ->
Map;
mk_use_map(Map, CFG, ExprMap, [Label|Labels]) ->
Code = hipe_bb:code(hipe_rtl_cfg:bb(CFG, Label)),
NewMap = mk_use_map_bb(Map, ExprMap, Code),
mk_use_map(NewMap, CFG, ExprMap, Labels).
mk_use_map_bb(UseMap, _, []) ->
UseMap;
mk_use_map_bb(UseMap, ExprMap, [Instr|Instrs]) ->
case is_expr(Instr) of
true ->
Uses = hipe_rtl:uses(Instr),
ExprId = expr_map_get_id(ExprMap, expr_clear_dst(Instr)),
NewUseMap = mk_use_map_insert_uses(UseMap, ExprId, Uses),
mk_use_map_bb(NewUseMap, ExprMap, Instrs);
false ->
mk_use_map_bb(UseMap, ExprMap, Instrs)
end.
%%=============================================================================
%% Worker function for mk_use_map that inserts the expression id for every
%% rtl register the expression uses in a use map.
mk_use_map_insert_uses(Map, _, []) ->
Map;
mk_use_map_insert_uses(Map, Expr, [Use|Uses]) ->
case gb_trees:lookup(Use, Map) of
{value, UseSet} ->
NewUseSet = ?SETS:add_element(Expr, UseSet),
mk_use_map_insert_uses(gb_trees:update(Use, NewUseSet, Map), Expr, Uses);
none ->
UseSet = ?SETS:new(),
NewUseSet = ?SETS:add_element(Expr, UseSet),
mk_use_map_insert_uses(gb_trees:insert(Use, NewUseSet, Map), Expr, Uses)
end.
%%=============================================================================
%% Gets a set of expressions where the given rtl register is used.
use_map_get_expr_uses(Map, Reg) ->
case gb_trees:lookup(Reg, Map) of
{value, UseSet} ->
UseSet;
none ->
?SETS:new()
end.
%%%%%%%%%%%%%%%%%%%%%% EXPRESSION MAP %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% The expression map is a mapping from expression to
%% (1) Expression Id (Integer used to speed up set operations)
%% (2) List of definitions (labels where the expression is defined and the
%% list of registers or variables defined by an instruction in that label,
%% represented as a tuple {Label, Defines})
%% (3) The list of replacement registers created for the expression
%%=============================================================================
%% Creates and calculates the expression map for a CFG.
mk_expr_map(CFG) ->
init_expr_id(),
Labels = hipe_rtl_cfg:reverse_postorder(CFG),
{ExprMap, IdMap} = mk_expr_map(gb_trees:empty(), gb_trees:empty(),
CFG, Labels),
{gb_trees:balance(ExprMap), gb_trees:balance(IdMap)}.
mk_expr_map(ExprMap, IdMap, _, []) ->
{ExprMap, IdMap};
mk_expr_map(ExprMap, IdMap, CFG, [Label|Labels]) ->
Code = hipe_bb:code(hipe_rtl_cfg:bb(CFG, Label)),
{NewExprMap, NewIdMap} = mk_expr_map_bb(ExprMap, IdMap, Label, Code),
mk_expr_map(NewExprMap, NewIdMap, CFG, Labels).
mk_expr_map_bb(ExprMap, IdMap, _, []) ->
{ExprMap, IdMap};
mk_expr_map_bb(ExprMap, IdMap, Label, [Instr|Instrs]) ->
case is_expr(Instr) of
true ->
Expr = expr_clear_dst(Instr),
Defines = hipe_rtl:defines(Instr),
case gb_trees:lookup(Expr, ExprMap) of
{value, {ExprId, DefinesList, ReplRegs}} ->
NewExprMap = gb_trees:update(Expr, {ExprId,
[{Label, Defines}|DefinesList],
ReplRegs}, ExprMap),
mk_expr_map_bb(NewExprMap, IdMap, Label, Instrs);
none ->
NewExprId = new_expr_id(),
NewReplRegs = mk_replacement_regs(Defines),
NewExprMap = gb_trees:insert(Expr, {NewExprId,
[{Label, Defines}],
NewReplRegs}, ExprMap),
NewIdMap = gb_trees:insert(NewExprId, Expr, IdMap),
mk_expr_map_bb(NewExprMap, NewIdMap, Label, Instrs)
end;
false ->
mk_expr_map_bb(ExprMap, IdMap, Label, Instrs)
end.
%%=============================================================================
%% Creates new temporaries to replace defines in moved expressions.
mk_replacement_regs([]) ->
[];
mk_replacement_regs(Defines) ->
mk_replacement_regs(Defines, []).
mk_replacement_regs([], NewRegs) ->
lists:reverse(NewRegs);
mk_replacement_regs([Define|Defines], NewRegs) ->
case hipe_rtl:is_reg(Define) of
true ->
NewReg =
case hipe_rtl:reg_is_gcsafe(Define) of
true -> hipe_rtl:mk_new_reg_gcsafe();
false -> hipe_rtl:mk_new_reg()
end,
mk_replacement_regs(Defines, [NewReg|NewRegs]);
false ->
case hipe_rtl:is_var(Define) of
true ->
mk_replacement_regs(Defines, [hipe_rtl:mk_new_var()|NewRegs]);
false ->
true = hipe_rtl:is_fpreg(Define),
mk_replacement_regs(Defines, [hipe_rtl:mk_new_fpreg()|NewRegs])
end
end.
%%=============================================================================
%% Performs a lookup, which returns a tuple
%% {expression ID, list of definitions, list of replacement registers}
expr_map_lookup(Map, Expr) ->
gb_trees:lookup(Expr, Map).
%%=============================================================================
%% Gets the actual RTL instruction to be generated for insertions of an
%% expression.
expr_map_get_instr(Map, Expr) ->
case gb_trees:lookup(Expr, Map) of
{value, {_, _, Regs}} ->
expr_set_dst(Expr, Regs);
none ->
exit({?MODULE, expr_map_get_instr, "expression missing"})
end.
%%=============================================================================
%% Gets expression id.
expr_map_get_id(Map, Expr) ->
case gb_trees:lookup(Expr, Map) of
{value, {ExprId, _, _}} ->
ExprId;
none ->
exit({?MODULE, expr_map_get_instr, "expression missing"})
end.
%%=============================================================================
%% Creates an rtl instruction that moves a value
mk_expr_move_instr([Reg], [Define]) ->
case hipe_rtl:is_fpreg(Reg) of
true ->
hipe_rtl:mk_fmove(Reg, Define);
false ->
%% FIXME Check is_var() orelse is_reg() ?
hipe_rtl:mk_move(Reg, Define)
end;
mk_expr_move_instr([_Reg|_Regs] = RegList, Defines) ->
%% FIXME Does this really work? What about floats...
%% (Multiple defines does not seem to be used by any of the
%% instructions considered by rtl_lcm at the moment so this is pretty much
%% untested/unused.)
hipe_rtl:mk_multimove(RegList, Defines);
mk_expr_move_instr(_, []) ->
exit({?MODULE, mk_expr_move_instr, "bad match"}).
%%=============================================================================
%% Returns a set of all expressions in the code.
%% all_exprs(_CFG, []) ->
%% ?SETS:new();
%% all_exprs(CFG, [Label|Labels]) ->
%% BB = hipe_rtl_cfg:bb(CFG, Label),
%% Code = hipe_bb:code(BB),
%% ?SETS:union(all_exprs_bb(Code),
%% all_exprs(CFG, Labels)).
%%=============================================================================
%% Returns a set of expressions in a basic block.
%% all_exprs_bb([]) ->
%% ?SETS:new();
%% all_exprs_bb([Instr|Instrs]) ->
%% case is_expr(Instr) of
%% true ->
%% Expr = expr_clear_dst(Instr),
%% ExprSet = all_exprs_bb(Instrs),
%% ?SETS:add_element(Expr, ExprSet);
%% false ->
%% all_exprs_bb(Instrs)
%% end.
%%%%%%%%%%%%%%%%%% EXPRESSION ID -> EXPRESSION MAP %%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Map from expression IDs to expressions.
%%=============================================================================
%% mk_expr_id_map() ->
%% gb_trees:empty().
%% expr_id_map_insert(Map, ExprId, Expr) ->
%% gb_trees:insert(ExprId, Expr, Map).
%% expr_id_map_lookup(Map, ExprId) ->
%% gb_trees:lookup(ExprId, Map).
%%=============================================================================
%% Given expression id, gets expression.
expr_id_map_get_expr(Map, ExprId) ->
case gb_trees:lookup(ExprId, Map) of
{value, Expr} ->
Expr;
none ->
exit({?MODULE, expr_id_map_get_expr, "expression id missing"})
end.
%%=============================================================================
%% Expression ID counter
init_expr_id() ->
put({rtl_lcm,expr_id_count}, 0),
ok.
-spec new_expr_id() -> non_neg_integer().
new_expr_id() ->
Obj = {rtl_lcm, expr_id_count},
V = get(Obj),
put(Obj, V+1),
V.
%%%%%%%%%%%%%%%%%% EDGE BB (INSERT BETWEEN) MAP %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Map from edges to labels.
%% This is used by insert_expr_between to remember what new bbs it has created
%% for insertions on edges, and thus for multiple insertions on the same edge
%% to end up in the same bb.
%%=============================================================================
mk_edge_bb_map() ->
gb_trees:empty().
edge_bb_map_insert(Map, Edge, Label) ->
gb_trees:enter(Edge, Label, Map).
edge_bb_map_lookup(Map, Edge) ->
gb_trees:lookup(Edge, Map).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% PRETTY-PRINTING %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%=============================================================================
%% Prints debug messages.
-ifdef(LCM_DEBUG).
pp_debug(Str, Args) ->
case ?LCM_DEBUG of
true ->
io:format(standard_io, Str, Args);
false ->
ok
end.
pp_debug_instr(Instr) ->
case ?LCM_DEBUG of
true ->
hipe_rtl:pp_instr(standard_io, Instr);
false ->
ok
end.
-else.
pp_debug(_, _) ->
ok.
pp_debug_instr(_) ->
ok.
-endif. %% DEBUG
%%=============================================================================
%% Pretty-prints the calculated sets for the lazy code motion.
pp_sets(_, _, _, _, _, _, []) ->
ok;
pp_sets(ExprMap, IdMap, NodeInfo, EdgeInfo, AllExpr, CFG, [Label|Labels]) ->
Preds = hipe_rtl_cfg:pred(CFG, Label),
Succs = hipe_rtl_cfg:succ(CFG, Label),
io:format(standard_io, "Label ~w~n", [Label]),
io:format(standard_io, " Preds: ~w~n", [Preds]),
io:format(standard_io, " Succs: ~w~n", [Succs]),
case up_exp(NodeInfo, Label) of
none -> ok;
UpExp ->
case ?SETS:size(UpExp) =:= 0 of
false ->
io:format(standard_io, " UEExpr: ~n", []),
pp_exprs(ExprMap, IdMap, ?SETS:to_list(UpExp));
true -> ok
end
end,
case down_exp(NodeInfo, Label) of
none -> ok;
DownExp ->
case ?SETS:size(DownExp) =:= 0 of
false ->
io:format(standard_io, " DEExpr: ~n", []),
pp_exprs(ExprMap, IdMap, ?SETS:to_list(DownExp));
true -> ok
end
end,
case killed_expr(NodeInfo, Label) of
none -> ok;
KilledExpr ->
case ?SETS:size(KilledExpr) =:= 0 of
false ->
io:format(standard_io, " ExprKill: ~n", []),
pp_exprs(ExprMap, IdMap, ?SETS:to_list(KilledExpr));
true -> ok
end
end,
case avail_in(NodeInfo, Label) of
none -> ok;
AvailIn ->
case ?SETS:size(AvailIn) =:= 0 of
false ->
io:format(standard_io, " AvailIn: ~n", []),
pp_exprs(ExprMap, IdMap, ?SETS:to_list(AvailIn));
true -> ok
end
end,
case avail_out(NodeInfo, Label) of
none -> ok;
AvailOut ->
case ?SETS:size(AvailOut) =:= 0 of
false ->
io:format(standard_io, " AvailOut: ~n", []),
pp_exprs(ExprMap, IdMap, ?SETS:to_list(AvailOut));
true -> ok
end
end,
case antic_in(NodeInfo, Label) of
none -> ok;
AnticIn ->
case ?SETS:size(AnticIn) =:= 0 of
false ->
io:format(standard_io, " AnticIn: ~n", []),
pp_exprs(ExprMap, IdMap, ?SETS:to_list(AnticIn));
true -> ok
end
end,
case antic_out(NodeInfo, Label) of
none -> ok;
AnticOut ->
case ?SETS:size(AnticOut) =:= 0 of
false ->
io:format(standard_io, " AnticOut: ~n", []),
pp_exprs(ExprMap, IdMap, ?SETS:to_list(AnticOut));
true -> ok
end
end,
case later_in(NodeInfo, Label) of
none -> ok;
LaterIn ->
case ?SETS:size(LaterIn) =:= 0 of
false ->
io:format(standard_io, " LaterIn: ~n", []),
pp_exprs(ExprMap, IdMap, ?SETS:to_list(LaterIn));
true -> ok
end
end,
pp_earliest(ExprMap, IdMap, EdgeInfo, Label, Succs),
pp_later(ExprMap, IdMap, EdgeInfo, Label, Succs),
case delete(NodeInfo, Label) of
none -> ok;
Delete ->
case ?SETS:size(Delete) =:= 0 of
false ->
io:format(standard_io, " Delete: ~n", []),
pp_exprs(ExprMap, IdMap, ?SETS:to_list(Delete));
true -> ok
end
end,
pp_sets(ExprMap, IdMap, NodeInfo, EdgeInfo, AllExpr, CFG, Labels).
%%=============================================================================
%% Pretty-prints the later set.
pp_later(_, _, _, _, []) ->
ok;
pp_later(ExprMap, IdMap, EdgeInfo, Pred, [Succ|Succs]) ->
case later(EdgeInfo, {Pred, Succ}) of
none -> ok;
Later ->
case ?SETS:size(Later) =:= 0 of
false ->
io:format(standard_io, " Later(~w->~w): ~n", [Pred,Succ]),
pp_exprs(ExprMap, IdMap, ?SETS:to_list(Later));
true -> ok
end
end,
pp_later(ExprMap, IdMap, EdgeInfo, Pred, Succs).
%%=============================================================================
%% Pretty-prints the earliest set.
pp_earliest(_, _, _, _, []) ->
ok;
pp_earliest(ExprMap, IdMap, EdgeInfo, Pred, [Succ|Succs]) ->
case earliest(EdgeInfo, {Pred, Succ}) of
none -> ok;
Earliest ->
case ?SETS:size(Earliest) =:= 0 of
false ->
io:format(standard_io, " Earliest(~w->~w): ~n", [Pred,Succ]),
pp_exprs(ExprMap, IdMap, ?SETS:to_list(Earliest));
true -> ok
end
end,
pp_earliest(ExprMap, IdMap, EdgeInfo, Pred, Succs).
%%=============================================================================
%% Pretty-prints an expression
pp_expr(ExprMap, IdMap, ExprId) ->
Expr = expr_id_map_get_expr(IdMap, ExprId),
hipe_rtl:pp_instr(standard_io, expr_map_get_instr(ExprMap, Expr)).
pp_exprs(_, _, []) ->
ok;
pp_exprs(ExprMap, IdMap, [E|Es]) ->
pp_expr(ExprMap, IdMap, E),
pp_exprs(ExprMap, IdMap, Es).
|