1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
|
%% -*- erlang-indent-level: 2 -*-
%%
%% %CopyrightBegin%
%%
%% Copyright Ericsson AB 2008-2016. All Rights Reserved.
%%
%% Licensed under the Apache License, Version 2.0 (the "License");
%% you may not use this file except in compliance with the License.
%% You may obtain a copy of the License at
%%
%% http://www.apache.org/licenses/LICENSE-2.0
%%
%% Unless required by applicable law or agreed to in writing, software
%% distributed under the License is distributed on an "AS IS" BASIS,
%% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
%% See the License for the specific language governing permissions and
%% limitations under the License.
%%
%% %CopyrightEnd%
%%
%% ====================================================================
%% Authors : Dogan Yazar and Erdem Aksu (KT2 project of 2008)
%% ====================================================================
-ifdef(HIPE_AMD64).
-define(HIPE_X86_SPILL_RESTORE, hipe_amd64_spill_restore).
-define(HIPE_X86_LIVENESS, hipe_amd64_liveness).
-define(HIPE_X86_SPECIFIC, hipe_amd64_specific).
-define(HIPE_X86_REGISTERS, hipe_amd64_registers).
-define(X86STR, "amd64").
-else.
-define(HIPE_X86_SPILL_RESTORE, hipe_x86_spill_restore).
-define(HIPE_X86_LIVENESS, hipe_x86_liveness).
-define(HIPE_X86_SPECIFIC, hipe_x86_specific).
-define(HIPE_X86_REGISTERS, hipe_x86_registers).
-define(X86STR, "x86").
-endif.
-module(?HIPE_X86_SPILL_RESTORE).
-export([spill_restore/2]).
%% controls which set library is used to keep temp variables.
-define(SET_MODULE, ordsets).
%% Turn on instrumentation.
-define(HIPE_INSTRUMENT_COMPILER, true).
-include("../main/hipe.hrl").
-include("../x86/hipe_x86.hrl"). % Added for the definition of #pseudo_call{}
-include("../flow/cfg.hrl"). % Added for the definition of #cfg{}
%% Main function
spill_restore(Defun, Options) ->
CFG = ?option_time(firstPass(Defun), ?X86STR" First Pass", Options),
CFGFinal = ?option_time(secondPass(CFG), ?X86STR" Second Pass", Options),
hipe_x86_cfg:linearise(CFGFinal).
%% Performs the first pass of the algorithm.
%% By working bottom up, introduce the pseudo_spills.
firstPass(Defun) ->
CFG0 = ?HIPE_X86_SPECIFIC:defun_to_cfg(Defun),
%% get the labels bottom up
Labels = hipe_x86_cfg:postorder(CFG0),
Liveness = ?HIPE_X86_LIVENESS:analyse(CFG0),
%% spill around the function will be introduced below the move
%% formals, so get all labels except it.
LabelsExceptMoveFormals = lists:sublist(Labels, length(Labels)-1),
%% all work is done by the helper function firstPassHelper
%% saveTree keeps the all newly introduced spills. Keys are the labels.
{CFG1, SaveTree} = firstPassHelper(LabelsExceptMoveFormals, Liveness, CFG0),
case hipe_x86_cfg:reverse_postorder(CFG0) of
[Label1, Label2|_] ->
SaveTreeElement = saveTreeLookup(Label2, SaveTree),
%% FilteredSaveTreeElement is the to be spilled temps around the
%% function call. They are spilled just before move formals.
FilteredSaveTreeElement = [T || T <- SaveTreeElement, temp_is_pseudo(T)],
Block = hipe_x86_cfg:bb(CFG1, Label1),
Code = hipe_bb:code(Block),
%% The following statements are tedious but work ok.
%% Put spills between move formals and the jump code.
%% This disgusting thing is done because spills should be
%% introduced after move formals.
%% Another solution may be to introduce another block.
MoveCodes = lists:sublist(Code, length(Code)-1),
JumpCode = lists:last(Code),
hipe_x86_cfg:bb_add(CFG1, Label1, hipe_bb:mk_bb(MoveCodes ++ [hipe_x86:mk_pseudo_spill(FilteredSaveTreeElement), JumpCode]));
_ ->
CFG1
end.
%% helper function of firstPass
%% processes all labels recursively and decides the spills to be put.
%% spills are introduced before each function call (pseudo_call) as well as
%% global spill is found
firstPassHelper(Labels, Liveness, CFG) ->
firstPassHelper(Labels, Liveness, CFG, gb_trees:empty()).
firstPassHelper([Label|Labels], Liveness, CFG, SaveTree) ->
LiveOut = from_list(?HIPE_X86_LIVENESS:liveout(Liveness, Label)),
Block = hipe_x86_cfg:bb(CFG, Label),
Code = hipe_bb:code(Block),
Succ = hipe_x86_cfg:succ(CFG, Label),
IntersectedSaveList = findIntersectedSaveList(Succ,SaveTree),
%% call firstPassDoBlock which will give the updated block
%% code(including spills) as well as Intersected Save List which
%% should be passed above blocks
{_,NewIntersectedList,NewCode} =
firstPassDoBlock(Code, LiveOut,IntersectedSaveList),
NewBlock = hipe_bb:code_update(Block, NewCode),
NewCFG = hipe_x86_cfg:bb_add(CFG, Label, NewBlock),
SizeOfSet = setSize(NewIntersectedList),
%% if the Intersected Save List is not empty, insert it in the save tree.
if SizeOfSet =/= 0 ->
UpdatedSaveTree = gb_trees:insert(Label, NewIntersectedList, SaveTree),
firstPassHelper(Labels, Liveness, NewCFG, UpdatedSaveTree);
true ->
firstPassHelper(Labels, Liveness, NewCFG, SaveTree)
end;
firstPassHelper([], _, CFG, SaveTree) ->
{CFG, SaveTree}.
%% handle each instruction in the block bottom up
firstPassDoBlock(Insts, LiveOut, IntersectedSaveList) ->
lists:foldr(fun firstPassDoInsn/2, {LiveOut,IntersectedSaveList,[]}, Insts).
firstPassDoInsn(I, {LiveOut,IntersectedSaveList,PrevInsts}) ->
case I of
#pseudo_call{} ->
do_pseudo_call(I, {LiveOut,IntersectedSaveList,PrevInsts});
_ -> % other instructions
DefinedList = from_list( ?HIPE_X86_LIVENESS:defines(I)),
UsedList = from_list(?HIPE_X86_LIVENESS:uses(I)),
NewLiveOut = subtract(union(LiveOut, UsedList), DefinedList),
NewIntersectedSaveList = subtract(IntersectedSaveList, DefinedList),
{NewLiveOut, NewIntersectedSaveList, [I|PrevInsts]}
end.
do_pseudo_call(I, {LiveOut,IntersectedSaveList,PrevInsts}) ->
LiveTemps = [Temp || Temp <- to_list(LiveOut), temp_is_pseudo(Temp)],
NewIntersectedSaveList = union(IntersectedSaveList, LiveOut),
{LiveOut, NewIntersectedSaveList, [hipe_x86:mk_pseudo_spill(LiveTemps), I | PrevInsts]}.
findIntersectedSaveList(LabelList, SaveTree) ->
findIntersectedSaveList([saveTreeLookup(Label,SaveTree) || Label <- LabelList]).
findIntersectedSaveList([]) ->
[];
findIntersectedSaveList([List1]) ->
List1;
findIntersectedSaveList([List1,List2|Rest]) ->
findIntersectedSaveList([intersection(List1, List2)|Rest]).
saveTreeLookup(Label, SaveTree) ->
case gb_trees:lookup(Label, SaveTree) of
{value, SaveList} ->
SaveList;
_ ->
[]
end.
%% Performs the second pass of the algorithm.
%% It basically eliminates the unnecessary spills and introduces restores.
%% Works top down
secondPass(CFG0) ->
Labels = hipe_x86_cfg:reverse_postorder(CFG0),
Liveness = ?HIPE_X86_LIVENESS:analyse(CFG0),
secondPassHelper(Labels,Liveness,CFG0).
%% helper function of secondPass.
%% recursively handle all labels given.
secondPassHelper(Labels, Liveness, CFG) ->
secondPassHelper(Labels, Liveness, CFG, gb_trees:empty(), CFG).
%% AccumulatedCFG stands for the CFG that has restore edges incrementally.
%% UnmodifiedCFG is the CFG created after first pass.
%% AccumulatedSaveTree is used to eliminate the unnecessary saves. The
%% saves (spills) in above blocks are traversed down (if still live
%% and not redefined) and redundant saves are eliminated in the lower
%% blocks.
%% For memory efficiency, it may be better not to maintain the
%% AccumulatedSaveTree but traverse the tree recursively and pass the
%% save lists to the childs individually.
%% But current approach may be faster even though it needs bigger memory.
secondPassHelper([Label|RestOfLabels], Liveness,
AccumulatedCFG, AccumulatedSaveTree, UnmodifiedCFG) ->
LiveOut = ?HIPE_X86_LIVENESS:liveout(Liveness, Label),
Block = hipe_x86_cfg:bb(AccumulatedCFG, Label),
Code = hipe_bb:code(Block),
%% UnmodifiedCFG is needed for getting the correct predecessors.
%% (i.e. not to get the restore edge blocks)
PredList = hipe_x86_cfg:pred(UnmodifiedCFG, Label),
%% find the spills coming from all the parents by intersecting
InitialAccumulatedSaveList =
findIntersectedSaveList(PredList, AccumulatedSaveTree),
AccumulatedSaveList =
keepLiveVarsInAccumSaveList(InitialAccumulatedSaveList, LiveOut),
{NewCode, CFGUpdateWithRestores, NewAccumulatedSaveList} =
secondPassDoBlock(Label, Code, AccumulatedCFG, AccumulatedSaveList),
UpdatedAccumulatedSaveTree =
gb_trees:insert(Label, NewAccumulatedSaveList, AccumulatedSaveTree),
NewBlock = hipe_bb:code_update(Block, NewCode),
NewCFG = hipe_x86_cfg:bb_add(CFGUpdateWithRestores, Label, NewBlock),
secondPassHelper(RestOfLabels, Liveness, NewCFG,
UpdatedAccumulatedSaveTree, UnmodifiedCFG);
secondPassHelper([], _, AccumulatedCFG, _, _) ->
AccumulatedCFG.
secondPassDoBlock(CurrentLabel, Insts, CFG, AccumulatedSaveList) ->
{NewAccumulatedSaveList,NewInsts,_,_,CFGUpdateWithRestores} =
lists:foldl(fun secondPassDoInsn/2, {AccumulatedSaveList,[],[],CurrentLabel,CFG}, Insts),
{NewInsts, CFGUpdateWithRestores, NewAccumulatedSaveList}.
secondPassDoInsn(I, {AccumulatedSaveList,PrevInsts,SpillList,CurrentLabel,CFG}) ->
case I of
#pseudo_spill{} ->
%% spill variables that are not accumulated from top down
%% (which are not already saved)
VariablesAlreadySaved = [X || {X,_} <- to_list(AccumulatedSaveList)],
VariablesToBeSpilled = I#pseudo_spill.args -- VariablesAlreadySaved,
NewSpillList = [{Temp, hipe_x86:mk_new_temp(Temp#x86_temp.type)} || Temp <- VariablesToBeSpilled],
%% update accumulated saved list by adding the newly spilled variables.
NewAccumulatedSaveList = union(AccumulatedSaveList, from_list(NewSpillList)),
{NewAccumulatedSaveList, PrevInsts ++ secondPassDoPseudoSpill(NewSpillList), NewSpillList, CurrentLabel, CFG};
#pseudo_call{} ->
{CFGUpdateWithRestores, NewPseudoCall} =
secondPassDoPseudoCall(I, AccumulatedSaveList, CFG),
%% spill list is emptied after use
{AccumulatedSaveList, PrevInsts ++ [NewPseudoCall], CurrentLabel, [], CFGUpdateWithRestores};
_ ->
%% remove the defined variables from the accumulated save
%% list since they need to be saved again in later occasions.
DefinedList = from_list(?HIPE_X86_LIVENESS:defines(I)),
NewAccumulatedSaveList = removeRedefVarsFromAccumSaveList(AccumulatedSaveList, DefinedList),
{NewAccumulatedSaveList, PrevInsts ++ [I], SpillList, CurrentLabel, CFG}
end.
%% remove dead vars from accumulated save list so that they are not restored.
keepLiveVarsInAccumSaveList([], _) ->
[];
keepLiveVarsInAccumSaveList([{Var,Temp}|Rest], DefinedList) ->
IsDefined = is_element(Var, DefinedList),
case IsDefined of
true -> [{Var,Temp}|keepLiveVarsInAccumSaveList(Rest, DefinedList)];
false -> keepLiveVarsInAccumSaveList(Rest, DefinedList)
end.
%% remove the redefined variables from accumulated save list since
%% they are changed.
removeRedefVarsFromAccumSaveList([], _) ->
[];
removeRedefVarsFromAccumSaveList([{Var,Temp}|Rest], DefinedList) ->
IsDefined = is_element(Var, DefinedList),
case IsDefined of
true -> removeRedefVarsFromAccumSaveList(Rest, DefinedList);
false -> [{Var,Temp}|removeRedefVarsFromAccumSaveList(Rest, DefinedList)]
end.
%% convert pseudo_spills to move instructions.
secondPassDoPseudoSpill(SpillList) ->
lists:foldl(fun convertPseudoSpillToMov/2, [], SpillList).
%% if there are variables to be restored, then call addRestoreBlockToEdge to
%% place them in a new block on the edge of the blocks.
secondPassDoPseudoCall(I, RestoreList, CFG) ->
ContLabel = I#pseudo_call.contlab,
SizeOfSet = setSize(RestoreList),
if SizeOfSet =/= 0 ->
addRestoreBlockToEdge(I, ContLabel, CFG, RestoreList);
true ->
{CFG, I}
end.
%% prepares the moves for the spills.
convertPseudoSpillToMov({Temp, NewTemp}, OtherMoves) ->
OtherMoves ++ [mkMove(Temp, NewTemp)].
%% prepares the moves for the restores.
%% Called by addRestoreBlockToEdge while introducing the restores.
convertPseudoRestoreToMov({Temp, NewTemp}, OtherMoves) ->
OtherMoves ++ [mkMove(NewTemp, Temp)].
%% makes the move record, special care is taken for doubles.
mkMove(NewTemp,Temp) ->
if Temp#x86_temp.type =:= 'double' ->
hipe_x86:mk_fmove(NewTemp, Temp);
true ->
hipe_x86:mk_move(NewTemp, Temp)
end.
%% adds a new block (on the edge) that includes introduced restore moves.
addRestoreBlockToEdge(PseudoCall, ContLabel, CFG, TempArgsList) ->
NextLabel = hipe_gensym:get_next_label(x86),
NewCode = lists:foldl(fun convertPseudoRestoreToMov/2, [], TempArgsList) ++ [hipe_x86:mk_jmp_label(ContLabel)],
NewBlock = hipe_bb:mk_bb(NewCode),
NewPseudoCall = redirect_pseudo_call(PseudoCall, ContLabel, NextLabel),
NewCFG = hipe_x86_cfg:bb_add(CFG, NextLabel, NewBlock),
{NewCFG, NewPseudoCall}.
%% used instead of hipe_x86_cfg:redirect_jmp since it does not handle
%% pseudo_call calls.
redirect_pseudo_call(I = #pseudo_call{contlab=ContLabel}, Old, New) ->
case Old =:= ContLabel of
true -> I#pseudo_call{contlab=New};
false -> I
end.
temp_is_pseudo(Temp) ->
case hipe_x86:is_temp(Temp) of
true -> not(?HIPE_X86_REGISTERS:is_precoloured(hipe_x86:temp_reg(Temp)));
false -> false
end.
%%---------------------------------------------------------------------
%% Set operations where the module name is an easily changeable macro
%%---------------------------------------------------------------------
union(Set1, Set2) ->
?SET_MODULE:union(Set1, Set2).
setSize(Set) ->
?SET_MODULE:size(Set).
from_list(List) ->
?SET_MODULE:from_list(List).
to_list(Set) ->
?SET_MODULE:to_list(Set).
subtract(Set1, Set2) ->
?SET_MODULE:subtract(Set1, Set2).
intersection(Set1, Set2) ->
?SET_MODULE:intersection(Set1, Set2).
is_element(Element, Set) ->
?SET_MODULE:is_element(Element, Set).
|