1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
|
<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE chapter SYSTEM "chapter.dtd">
<chapter>
<header>
<copyright>
<year>2001</year><year>2017</year>
<holder>Ericsson AB. All Rights Reserved.</holder>
</copyright>
<legalnotice>
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
</legalnotice>
<title>List Handling</title>
<prepared>Bjorn Gustavsson</prepared>
<docno></docno>
<date>2007-11-16</date>
<rev></rev>
<file>listHandling.xml</file>
</header>
<section>
<title>Creating a List</title>
<p>Lists can only be built starting from the end and attaching list
elements at the beginning. If you use the "<c>++</c>" operator as
follows, a new list is created that is a copy of the elements in
<c>List1</c>, followed by <c>List2</c>:</p>
<code type="erl">
List1 ++ List2</code>
<p>Looking at how <c>lists:append/1</c> or <c>++</c> would be
implemented in plain Erlang, clearly the first list is copied:</p>
<code type="erl">
append([H|T], Tail) ->
[H|append(T, Tail)];
append([], Tail) ->
Tail.</code>
<p>When recursing and building a list, it is important to ensure
that you attach the new elements to the beginning of the list. In
this way, you will build <em>one</em> list, not hundreds or thousands
of copies of the growing result list.</p>
<p>Let us first see how it is not to be done:</p>
<p><em>DO NOT</em></p>
<code type="erl"><![CDATA[
bad_fib(N) ->
bad_fib(N, 0, 1, []).
bad_fib(0, _Current, _Next, Fibs) ->
Fibs;
bad_fib(N, Current, Next, Fibs) ->
bad_fib(N - 1, Next, Current + Next, Fibs ++ [Current]).]]></code>
<p>Here more than one list is built. In each iteration step a new list
is created that is one element longer than the new previous list.</p>
<p>To avoid copying the result in each iteration, build the list in
reverse order and reverse the list when you are done:</p>
<p><em>DO</em></p>
<code type="erl"><![CDATA[
tail_recursive_fib(N) ->
tail_recursive_fib(N, 0, 1, []).
tail_recursive_fib(0, _Current, _Next, Fibs) ->
lists:reverse(Fibs);
tail_recursive_fib(N, Current, Next, Fibs) ->
tail_recursive_fib(N - 1, Next, Current + Next, [Current|Fibs]).]]></code>
</section>
<section>
<title>List Comprehensions</title>
<p>Lists comprehensions still have a reputation for being slow.
They used to be implemented using funs, which used to be slow.</p>
<p>A list comprehension:</p>
<code type="erl"><![CDATA[
[Expr(E) || E <- List]]]></code>
<p>is basically translated to a local function:</p>
<code type="erl">
'lc^0'([E|Tail], Expr) ->
[Expr(E)|'lc^0'(Tail, Expr)];
'lc^0'([], _Expr) -> [].</code>
<p>If the result of the list comprehension will <em>obviously</em>
not be used, a list will not be constructed. For example, in this code:</p>
<code type="erl"><![CDATA[
[io:put_chars(E) || E <- List],
ok.]]></code>
<p>or in this code:</p>
<code type="erl"><![CDATA[
...
case Var of
... ->
[io:put_chars(E) || E <- List];
... ->
end,
some_function(...),
...]]></code>
<p>the value is not assigned to a variable, not passed to another function,
and not returned. This means that there is no need to construct a list and
the compiler will simplify the code for the list comprehension to:</p>
<code type="erl">
'lc^0'([E|Tail], Expr) ->
Expr(E),
'lc^0'(Tail, Expr);
'lc^0'([], _Expr) -> [].</code>
<p>The compiler also understands that assigning to '_' means that
the value will not used. Therefore, the code in the following example
will also be optimized:</p>
<code type="erl"><![CDATA[
_ = [io:put_chars(E) || E <- List],
ok.]]></code>
</section>
<section>
<title>Deep and Flat Lists</title>
<p><seealso marker="stdlib:lists#flatten/1">lists:flatten/1</seealso>
builds an entirely new list. It is therefore expensive, and even
<em>more</em> expensive than the <c>++</c> operator (which copies its
left argument, but not its right argument).</p>
<p>In the following situations, you can easily avoid calling
<c>lists:flatten/1</c>:</p>
<list type="bulleted">
<item>When sending data to a port. Ports understand deep lists
so there is no reason to flatten the list before sending it to
the port.</item>
<item>When calling BIFs that accept deep lists, such as
<seealso marker="erts:erlang#list_to_binary/1">list_to_binary/1</seealso> or
<seealso marker="erts:erlang#iolist_to_binary/1">iolist_to_binary/1</seealso>.</item>
<item>When you know that your list is only one level deep, you can use
<seealso marker="stdlib:lists#append/1">lists:append/1</seealso>.</item>
</list>
<section>
<title>Port Example</title>
<p><em>DO</em></p>
<pre>
...
port_command(Port, DeepList)
...</pre>
<p><em>DO NOT</em></p>
<pre>
...
port_command(Port, lists:flatten(DeepList))
...</pre>
<p>A common way to send a zero-terminated string to a port is the following:</p>
<p><em>DO NOT</em></p>
<pre>
...
TerminatedStr = String ++ [0], % String="foo" => [$f, $o, $o, 0]
port_command(Port, TerminatedStr)
...</pre>
<p>Instead:</p>
<p><em>DO</em></p>
<pre>
...
TerminatedStr = [String, 0], % String="foo" => [[$f, $o, $o], 0]
port_command(Port, TerminatedStr)
...</pre>
</section>
<section>
<title>Append Example</title>
<p><em>DO</em></p>
<pre>
> lists:append([[1], [2], [3]]).
[1,2,3]
></pre>
<p><em>DO NOT</em></p>
<pre>
> lists:flatten([[1], [2], [3]]).
[1,2,3]
></pre>
</section>
</section>
<section>
<title>Recursive List Functions</title>
<p>In section about myths, the following myth was exposed:
<seealso marker="myths#tail_recursive">Tail-Recursive Functions
are Much Faster Than Recursive Functions</seealso>.</p>
<p>There is usually not much difference between
a body-recursive list function and tail-recursive function that reverses
the list at the end. Therefore, concentrate on writing beautiful code
and forget about the performance of your list functions. In the
time-critical parts of your code (and only there), <em>measure</em>
before rewriting your code.</p>
<note><p>This section is about list functions that <em>construct</em>
lists. A tail-recursive function that does not construct a list runs
in constant space, while the corresponding body-recursive function
uses stack space proportional to the length of the list.</p></note>
<p>For example, a function that sums a list of integers, is
<em>not</em> to be written as follows:</p>
<p><em>DO NOT</em></p>
<code type="erl">
recursive_sum([H|T]) -> H+recursive_sum(T);
recursive_sum([]) -> 0.</code>
<p>Instead:</p>
<p><em>DO</em></p>
<code type="erl">
sum(L) -> sum(L, 0).
sum([H|T], Sum) -> sum(T, Sum + H);
sum([], Sum) -> Sum.</code>
</section>
</chapter>
|