1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
|
%%
%% %CopyrightBegin%
%%
%% Copyright Ericsson AB 2010-2016. All Rights Reserved.
%%
%% Licensed under the Apache License, Version 2.0 (the "License");
%% you may not use this file except in compliance with the License.
%% You may obtain a copy of the License at
%%
%% http://www.apache.org/licenses/LICENSE-2.0
%%
%% Unless required by applicable law or agreed to in writing, software
%% distributed under the License is distributed on an "AS IS" BASIS,
%% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
%% See the License for the specific language governing permissions and
%% limitations under the License.
%%
%% %CopyrightEnd%
%%
-module(diameter_enum).
%%
%% This module constructs finite enumerations.
%%
%% An enumeration is represented as a function on integers, 0 mapping
%% to the number of values enumerated and successive integers mapping
%% to enumerated values. The function will fail on anything but 0 and
%% positive integers less then or equal to the value of the function
%% at 0.
%%
%% The purpose of this is to provide a way of stepping through a large
%% number of values without explicitly constructing the list of all
%% possible values. For example, consider the following function that
%% given a list of lists constructs the list of all possible lists
%% constructed by choosing one element from each sublist.
%%
%% combine([H]) ->
%% [[X] || X <- H];
%% combine([H|T]) ->
%% Ys = combine(T),
%% [[X|Y] || X <- H, Y <- Ys].
%%
%% Eg. [[1,2],[3,4,5]] -> [[1,3],[1,4],[1,5],[2,3],[2,4],[2,5]]
%%
%% If L is a list of three 1000 element lists then combine(L) would
%% construct a list of length 10^9 which will likely exhaust available
%% memory. (Which is how this module came into being. A tail-recursive
%% implementation doesn't fare much better.) By contrast,
%%
%% F = enum:combine([enum:new(L) || L <- Lists])
%%
%% only maps existing lists. It may still be undesirable to step
%% through a very large number of values but it's possible, and easy
%% to step through a selection of values as an alternative.
%%
%% Functions that return enumerations.
-export([new/1,
combine/1,
reverse/1,
map/2,
append/1,
duplicate/2,
nthtail/2,
seq/2,
seq/3,
zip/1,
zip/2,
slice/3,
split/2]).
%% Functions that operate on existing enumerations.
-export([foreach/2,
foldl/3,
foldr/3,
all/2,
any/2,
member/2,
last/1,
nth/2,
to_list/1]).
%% ------------------------------------------------------------------------
%% new/1
%%
%% Turn a list/tuple of values into an enumeration that steps through
%% each element. Turn anything else into an enumeration of that single
%% value.
%% ------------------------------------------------------------------------
new(L)
when is_list(L) ->
new(list_to_tuple(L));
new(T)
when is_tuple(T) ->
enum(size(T), fun(N) -> element(N,T) end);
new(T) ->
fun(0) -> 1; (1) -> T end.
enum(Ord, F) ->
fun(0) -> Ord; (N) when 0 < N, N =< Ord -> F(N) end.
%% ------------------------------------------------------------------------
%% combine/1
%%
%% Map a list/tuple of enumerations to the enumeration of all
%% lists/tuples constructed by choosing one value from each
%% enumeration in the list/tuple.
%% ------------------------------------------------------------------------
combine(T)
when is_tuple(T) ->
F = combine(tuple_to_list(T)),
enum(F(0), fun(N) -> list_to_tuple(F(N)) end);
combine([]) ->
fun(0) -> 0 end;
%% Given positive integers n_1,...,n_k, construct a bijection from
%% {0,...,\prod_{i=1}^k} n_i - 1} to {0,...,n_1} x ... x {0,...,n_k}
%% that maps N to (N_1,...,N_k) where:
%%
%% N_1 = (N div 1) rem n_1
%% ...
%% N_k = (N div n_1*...*n_{k-1}) rem n_k
%%
%% That is:
%%
%% N_i = (N div \prod_{j=1}^{i-1} n_j) rem n_i
%%
%% This corresponds to looping through N_1, incrementing N_2 as N_1
%% loops, and so on up through N_k. The inverse map is as follows.
%%
%% (N_1,...,N_k) -> N = N_1 + N_2*n_1 + ... + N_k*n_{k-1}*...*n_1
%%
%% = \sum_{i=1}^k N_i*\prod_{j=i}^{i-1} n_j
%%
%% [Proof: Induction on k. For k=1 we have the identity map. If
%% g_k : (N_1,...,N_k) |-> N above is bijective then consider
%% the bijection
%%
%% G : (t,n) |--> t + n*K, K = n_k*...*n_1
%%
%% from {0,...,K-1} x {0,...,n_{k+1}-1} onto {0,...,n_{k+1}*K - 1}
%% with inverse F : n |--> (n rem K, n div K). Since
%%
%% g_{k+1}(N_1,...,N_{k+1}) = g_k(N_1,...,N_K) + N_{k+1}*K
%% = G(g_k(N_1,...,N_K), N_{k+1})
%%
%% and G, g_k and ((N-1,...,N_k),N_{k+1}) -> (N_1,...,N_{k+1})
%% are all bijections, so is g_{k+1}.]
combine([_|_] = L) ->
[Ord | Divs] = lists:foldl(fun(F,[D|_] = A) -> [F(0)*D | A] end, [1], L),
RL = lists:reverse(L),
enum(Ord, fun(N) -> combine(N, Ord, Divs, RL) end).
%% Since we use 0 to return the number of elements enumerated, use
%% bijections from {1,...,N} rather than {0,...,N-1}.
combine(N, Ord, Divs, L)
when 0 < N, N =< Ord ->
{Vs, []} = lists:foldl(fun(F, {A, [D|Ds]}) ->
{[F(1 + (((N-1) div D) rem F(0))) | A], Ds}
end,
{[], Divs},
L),
Vs.
%% ------------------------------------------------------------------------
%% reverse/1
%%
%% Construct the enumeration that reverses the order in which values
%% are traversed.
%% ------------------------------------------------------------------------
reverse(E) ->
Ord = E(0),
enum(Ord, fun(N) -> E(Ord + 1 - N) end).
%% ------------------------------------------------------------------------
%% map/2
%%
%% Construct an enumeration that maps enumerated values.
%% ------------------------------------------------------------------------
map(Fun, E) ->
enum(E(0), fun(N) -> Fun(E(N)) end).
%% ------------------------------------------------------------------------
%% append/2
%%
%% Construct an enumeration that successively steps through each of a
%% list of enumerations.
%% ------------------------------------------------------------------------
append(Es) ->
[Ord | Os] = lists:foldl(fun(E, [N|_] = A) -> [N+E(0)|A] end, [0], Es),
Rev = lists:reverse(Es),
enum(Ord, fun(N) -> append(N, Os, Rev) end).
append(N, [Ord | _], [E | _])
when N > Ord ->
E(N - Ord);
append(N, [_|Os], [_|Es]) ->
append(N, Os, Es).
%% ------------------------------------------------------------------------
%% duplicate/2
%%
%% Construct an enumeration that traverses an enumeration multiple
%% times. Equivalent to append(lists:duplicate(N, E)).
%% ------------------------------------------------------------------------
duplicate(N, E) ->
Ord = E(0),
enum(N*Ord, fun(M) -> E(1 + ((M-1) rem Ord)) end).
%% ------------------------------------------------------------------------
%% nthtail/2
%%
%% Construct an enumeration that omits values at the head of an
%% existing enumeration.
%% ------------------------------------------------------------------------
nthtail(N, E)
when 0 =< N ->
nthtail(E(0) - N, N, E).
nthtail(Ord, N, E)
when 0 =< Ord ->
enum(Ord, fun(M) -> E(M+N) end).
%% ------------------------------------------------------------------------
%% seq/[23]
%%
%% Construct an enumeration that steps through a sequence of integers.
%% ------------------------------------------------------------------------
seq(From, To) ->
seq(From, To, 1).
seq(From, To, Incr)
when From =< To ->
enum((To - From + Incr) div Incr, fun(N) -> From + (N-1)*Incr end).
%% ------------------------------------------------------------------------
%% zip/[12]
%%
%% Construct an enumeration whose nth value is the list of nth values
%% of a list of enumerations.
%% ------------------------------------------------------------------------
zip(Es) ->
zip(fun(T) -> T end, Es).
zip(_, []) ->
[];
zip(Fun, Es) ->
enum(lists:min([E(0) || E <- Es]), fun(N) -> Fun([E(N) || E <- Es]) end).
%% ------------------------------------------------------------------------
%% slice/3
%%
%% Construct an enumeration of a given length from a given starting point.
%% ------------------------------------------------------------------------
slice(N, Len, E)
when is_integer(N), N > 0, is_integer(Len), Len >= 0 ->
slice(N, Len, E(0) - (N - 1), E).
slice(_, _, Tail, _)
when Tail < 1 ->
fun(0) -> 0 end;
slice(N, Len, Tail, E) ->
enum(lists:min([Len, Tail]), fun(M) -> E(N-1+M) end).
%% ------------------------------------------------------------------------
%% split/2
%%
%% Split an enumeration into a list of enumerations of the specified
%% length. The last enumeration of the list may have order less than
%% this length.
%% ------------------------------------------------------------------------
split(Len, E)
when is_integer(Len), Len > 0 ->
split(1, E(0), Len, E, []).
split(N, Ord, _, _, Acc)
when N > Ord ->
lists:reverse(Acc);
split(N, Ord, Len, E, Acc) ->
split(N+Len, Ord, Len, E, [slice(N, Len, E) | Acc]).
%% ------------------------------------------------------------------------
%% foreach/2
%%
%% Apply a fun to each value of an enumeration.
%% ------------------------------------------------------------------------
foreach(Fun, E) ->
foldl(fun(N,ok) -> Fun(N), ok end, ok, E).
%% ------------------------------------------------------------------------
%% foldl/3
%% foldr/3
%%
%% Fold through values in an enumeration.
%% ------------------------------------------------------------------------
foldl(Fun, Acc, E) ->
foldl(E(0), 1, Fun, Acc, E).
foldl(M, N, _, Acc, _)
when N == M+1 ->
Acc;
foldl(M, N, Fun, Acc, E) ->
foldl(M, N+1, Fun, Fun(E(N), Acc), E).
foldr(Fun, Acc, E) ->
foldl(Fun, Acc, reverse(E)).
%% ------------------------------------------------------------------------
%% all/2
%%
%% Do all values of an enumeration satisfy a predicate?
%% ------------------------------------------------------------------------
all(Pred, E) ->
all(E(0), 1, Pred, E).
all(M, N, _, _)
when N == M+1 ->
true;
all(M, N, Pred, E) ->
Pred(E(N)) andalso all(M, N+1, Pred, E).
%% Note that andalso/orelse are tail-recusive as of R13A.
%% ------------------------------------------------------------------------
%% any/2
%%
%% Does any value of an enumeration satisfy a predicate?
%% ------------------------------------------------------------------------
any(Pred, E) ->
any(E(0), 1, Pred, E).
any(M, N, _, _)
when N == M+1 ->
false;
any(M, N, Pred, E) ->
Pred(E(N)) orelse any(M, N+1, Pred, E).
%% ------------------------------------------------------------------------
%% member/2
%%
%% Does a value match any in an enumeration?
%% ------------------------------------------------------------------------
member(X, E) ->
member(E(0), 1, X, E).
member(M, N, _, _)
when N == M+1 ->
false;
member(M, N, X, E) ->
match(E(N), X) orelse member(M, N+1, X, E).
match(X, X) ->
true;
match(_, _) ->
false.
%% ------------------------------------------------------------------------
%% last/1
%%
%% Return the last value of an enumeration.
%% ------------------------------------------------------------------------
last(E) ->
E(E(0)).
%% ------------------------------------------------------------------------
%% nth/2
%%
%% Return a selected value of an enumeration.
%% ------------------------------------------------------------------------
nth(N, E) ->
E(N).
%% ------------------------------------------------------------------------
%% to_list/1
%%
%% Turn an enumeration into a list. Not good if the very many values
%% are enumerated.
%% ------------------------------------------------------------------------
to_list(E) ->
foldr(fun(X,A) -> [X|A] end, [], E).
|