1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
|
%%
%% %CopyrightBegin%
%%
%% Copyright Ericsson AB 2022-2024. All Rights Reserved.
%%
%% Licensed under the Apache License, Version 2.0 (the "License");
%% you may not use this file except in compliance with the License.
%% You may obtain a copy of the License at
%%
%% http://www.apache.org/licenses/LICENSE-2.0
%%
%% Unless required by applicable law or agreed to in writing, software
%% distributed under the License is distributed on an "AS IS" BASIS,
%% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
%% See the License for the specific language governing permissions and
%% limitations under the License.
%%
%% %CopyrightEnd%
%%
%% -------------------------------------------------------------------------
%%
%% Module for an encrypted Erlang stream based only on
%% the cookie as a shared secret
%%
-module(cryptcookie).
-export([supported/0, start_keypair_server/0, init/1, init/2,
encrypt_and_send_chunk/4, recv_and_decrypt_chunk/2]).
%% For kTLS integration
-export([ktls_info/1, ktls_info/0]).
-include_lib("ssl/src/ssl_cipher.hrl").
-include_lib("ssl/src/ssl_internal.hrl").
-include_lib("ssl/src/ssl_record.hrl").
-define(PROTOCOL, (?MODULE)).
%% -------------------------------------------------------------------------
%% The curve choice greatly affects setup time,
%% we really want an Edwards curve but that would
%% require a very new openssl version.
%%
%% Twisted brainpool curves (*t1) are faster than
%% non-twisted (*r1), 256 is much faster than 384,
%% and so on...
%%
%%% -define(CURVE, brainpoolP384t1).
%%% -define(CURVE, brainpoolP256t1).
-define(CURVE, secp256r1). % Portability
-define(CIPHER, aes_256_gcm). % kTLS compatible
-define(HMAC, sha384).
%% kTLS integration
-define(TLS_VERSION, ?TLS_1_3).
-define(CIPHER_SUITE, (?TLS_AES_256_GCM_SHA384)).
supported() ->
maybe
true ?= crypto_supports(curves, ?CURVE),
true ?= crypto_supports(ciphers, ?CIPHER),
true ?= crypto_supports(macs, hmac),
true ?= crypto_supports(hashs, ?HMAC),
ok
end.
crypto_supports(Tag, Item) ->
lists:member(Item, crypto:supports(Tag))
orelse "Crypto does not support "
++ atom_to_list(Tag) ++ ": " ++ atom_to_list(Item).
%% -------------------------------------------------------------------------
-define(PACKET_SIZE, (1 bsl 16)). % 2 byte size header
%% Plenty of room for AEAD tag and chunk type
-define(CHUNK_SIZE, (?PACKET_SIZE - 256)).
-record(params,
{hmac_algorithm = ?HMAC,
aead_cipher = ?CIPHER,
iv,
key,
tag_len = 16,
rekey_count = 256 * 1024,
rekey_time = 2 * 3600, % (seconds): 2 hours
rekey_timestamp,
rekey_key
}).
params() ->
#{ iv_length := IVLen, key_length := KeyLen } =
crypto:cipher_info(?CIPHER),
#params{ iv = IVLen, key = KeyLen, rekey_timestamp = timestamp() }.
-record(keypair,
{type = ecdh,
params = ?CURVE,
public,
private,
life_count = 256, % Number of connection setups
life_time = 3600, % 1 hour
life_timestamp
}).
%% -------------------------------------------------------------------------
%% Keep the node's public/private key pair in the process state
%% of a key pair server linked to the net_kernel process.
%% Create the key pair the first time it is needed
%% so crypto gets time to start first.
%%
start_keypair_server() ->
Parent = self(),
Ref = make_ref(),
_ =
spawn_link(
fun () ->
try register(?MODULE, self()) of
true ->
Parent ! Ref,
keypair_server()
catch error : badarg ->
%% Already started - simply exit
%% and let the other run
Parent ! Ref,
ok
end
end),
receive Ref ->
?PROTOCOL
end.
keypair_server() ->
keypair_server(undefined, 1).
%%
keypair_server(KeyPair) ->
keypair_server(KeyPair, KeyPair#keypair.life_count).
%%
keypair_server(_KeyPair, 0) ->
keypair_server();
keypair_server(KeyPair, Count) ->
receive
{RefAlias, get_keypair} when is_reference(RefAlias) ->
case KeyPair of
undefined ->
KeyPair_1 = generate_keypair(),
RefAlias ! {RefAlias, KeyPair_1},
keypair_server(KeyPair_1);
#keypair{} ->
RefAlias ! {RefAlias, KeyPair},
keypair_server(KeyPair, Count - 1)
end;
{RefAlias, get_new_keypair} ->
KeyPair_1 = generate_keypair(),
RefAlias ! {RefAlias, KeyPair_1},
keypair_server(KeyPair_1)
end.
call_keypair_server(Request) ->
Pid = whereis(?MODULE),
RefAlias = erlang:monitor(process, Pid, [{alias, reply_demonitor}]),
Pid ! {RefAlias, Request},
receive
{RefAlias, Reply} ->
Reply;
{'DOWN', RefAlias, process, Pid, Reason} ->
error({keypair_server, Reason})
end.
generate_keypair() ->
#keypair{ type = Type, params = Params } = #keypair{},
{Public, Private} = crypto:generate_key(Type, Params),
#keypair{
public = Public, private = Private,
life_timestamp = timestamp() }.
get_keypair() ->
call_keypair_server(?FUNCTION_NAME).
get_new_keypair() ->
call_keypair_server(?FUNCTION_NAME).
compute_shared_secret(
#keypair{
type = PublicKeyType,
params = PublicKeyParams,
private = PrivKey }, PubKey) ->
%%
crypto:compute_key(PublicKeyType, PubKey, PrivKey, PublicKeyParams).
%% -------------------------------------------------------------------------
-define(DATA_CHUNK, 2).
-define(TICK_CHUNK, 3).
-define(REKEY_CHUNK, 4).
%% -------------------------------------------------------------------------
%% Crypto strategy
%% -------
%% The crypto strategy is as simple as possible to get an encrypted
%% connection as benchmark reference. It is geared around AEAD
%% ciphers in particular AES-GCM.
%%
%% The init message and the start message must fit in the TCP buffers
%% since both sides start with sending the init message, waits
%% for the other end's init message, sends the start message
%% and waits for the other end's start message. So if the send
%% blocks we have a deadlock.
%%
%% The init + start sequence tries to implement Password Encrypted
%% Key Exchange using a node public/private key pair and the
%% shared secret (the Cookie) to create session encryption keys
%% that can not be re-created if the shared secret is compromized,
%% which should create forward secrecy. You need both nodes'
%% key pairs and the shared secret to decrypt the traffic
%% between the nodes.
%%
%% All exchanged messages uses {packet, 2} i.e 16 bit size header.
%%
%% The init message contains a random number and encrypted: the public key
%% and two random numbers. The encryption is done with Key and IV hashed
%% from the unencrypted random number and the shared secret.
%%
%% The other node's public key is used with the own node's private
%% key to create a shared key that is hashed with one of the encrypted
%% random numbers from each side to create Key and IV for the session.
%%
%% The start message contains the two encrypted random numbers
%% this time encrypted with the session keys for verification
%% by the other side, plus the rekey count. The rekey count
%% is just there to get an early check for if the other side's
%% maximum rekey count is acceptable, it is just an embryo
%% of some better check. Any side may rekey earlier but if the
%% rekey count is exceeded the connection fails. Rekey is also
%% triggered by a timer.
%%
%% Subsequent encrypted messages has the sequence number and the length
%% of the message as AAD data, and an incrementing IV. These messages
%% has got a message type that differentiates data from ticks and rekeys.
%% Ticks have a random size in an attempt to make them less obvious to spot.
%%
%% Rekeying is done by the sender that creates a new key pair and
%% a new shared secret from the other end's public key and with
%% this and the current key and iv hashes a new key and iv.
%% The new public key is sent to the other end that uses it
%% and its old private key to create the same new shared
%% secret and from that a new key and iv.
%% So the receiver keeps its private key, and the sender keeps
%% the receivers public key for the connection's life time.
%% While the sender generates a new key pair at every rekey,
%% which changes the shared secret at every rekey.
%%
%% The only reaction to errors is to crash noisily (?) which will bring
%% down the connection and hopefully produce something useful
%% in the local log, but all the other end sees is a closed connection.
%% -------------------------------------------------------------------------
%% -------------------------------------------------------------------------
%% Initialize encryption on Stream; initial handshake
%%
%% init(Stream, Secret) ->
%% {NewStream, ChunkSize, [RecvSeq|RecvParams], [SendSeq|SendParams]}.
init(Stream) ->
Secret = atom_to_binary(auth:get_cookie(), latin1),
init(Stream, Secret).
init(Stream = {_, OutStream, _}, Secret) ->
#keypair{ public = PubKey } = KeyPair = get_keypair(),
Params = params(),
{R2, R3, Msg} = init_msg(Params, Secret, PubKey),
OutStream_1 = init_send_block(OutStream, Msg, iolist_size(Msg)),
Stream_1 = setelement(2, Stream, OutStream_1),
init_recv(Stream_1, Params, Secret, KeyPair, R2, R3).
init_recv(
{InStream, OutStream, ControllingProcessFun},
Params = #params{ iv = IVLen },
Secret, KeyPair, R2, R3) ->
%%
[InitMsg | InStream_1] = init_recv_block(InStream),
IVSaltLen = IVLen - 6,
try
case init_msg(Params, Secret, KeyPair, R2, R3, InitMsg) of
{SendParams =
#params{iv = <<IV2ASalt:IVSaltLen/binary, IV2ANo:48>> },
RecvParams,
SendStartMsg} ->
OutStream_1 =
init_send_block(
OutStream, SendStartMsg, iolist_size(SendStartMsg)),
[RecvStartMsg | InStream_2] = init_recv_block(InStream_1),
RecvParams_1 =
#params{
iv = <<IV2BSalt:IVSaltLen/binary, IV2BNo:48>> } =
start_msg(RecvParams, R2, R3, RecvStartMsg),
Stream_2 = {InStream_2, OutStream_1, ControllingProcessFun},
RecvSeqParams =
[0 | RecvParams_1#params{ iv = {IV2BSalt, IV2BNo} }],
SendSeqParams =
[0 | SendParams#params{ iv = {IV2ASalt, IV2ANo} }],
CipherState = {RecvSeqParams, SendSeqParams},
{Stream_2, ?CHUNK_SIZE, CipherState}
end
catch
Class : Reason : Stacktrace when Class =:= error ->
error_report(
[init_recv_exception,
{class, Class},
{reason, Reason},
{stacktrace, Stacktrace}]),
_ = trace({Reason, Stacktrace}),
exit(connection_closed)
end.
init_msg(
#params{
hmac_algorithm = HmacAlgo,
aead_cipher = AeadCipher,
key = KeyLen,
iv = IVLen,
tag_len = TagLen }, Secret, PubKeyA) ->
%%
RLen = KeyLen + IVLen,
<<R1A:RLen/binary, R2A:RLen/binary, R3A:RLen/binary>> =
crypto:strong_rand_bytes(3 * RLen),
{Key1A, IV1A} = hmac_key_iv(HmacAlgo, R1A, Secret, KeyLen, IVLen),
Plaintext = [R2A, R3A, PubKeyA],
MsgLen = byte_size(R1A) + TagLen + iolist_size(Plaintext),
AAD = [<<MsgLen:32>>, R1A],
{Ciphertext, Tag} =
crypto:crypto_one_time_aead(
AeadCipher, Key1A, IV1A, Plaintext, AAD, TagLen, true),
Msg = [R1A, Tag, Ciphertext],
{R2A, R3A, Msg}.
%%
init_msg(
#params{
hmac_algorithm = HmacAlgo,
aead_cipher = AeadCipher,
key = KeyLen,
iv = IVLen,
tag_len = TagLen,
rekey_count = RekeyCount } = Params,
Secret, KeyPair, R2A, R3A, Msg) ->
%%
RLen = KeyLen + IVLen,
case Msg of
<<R1B:RLen/binary, Tag:TagLen/binary, Ciphertext/binary>> ->
{Key1B, IV1B} = hmac_key_iv(HmacAlgo, R1B, Secret, KeyLen, IVLen),
MsgLen = byte_size(Msg),
AAD = [<<MsgLen:32>>, R1B],
case
crypto:crypto_one_time_aead(
AeadCipher, Key1B, IV1B, Ciphertext, AAD, Tag, false)
of
<<R2B:RLen/binary, R3B:RLen/binary, PubKeyB/binary>> ->
SharedSecret = compute_shared_secret(KeyPair, PubKeyB),
%%
{Key2A, IV2A} =
hmac_key_iv(
HmacAlgo, SharedSecret, [R2A, R3B], KeyLen, IVLen),
SendParams =
Params#params{
rekey_key = PubKeyB,
key = Key2A, iv = IV2A },
%%
StartCleartext = [R2B, R3B, <<RekeyCount:32>>],
StartMsgLen = TagLen + iolist_size(StartCleartext),
StartAAD = <<StartMsgLen:32>>,
{StartCiphertext, StartTag} =
crypto:crypto_one_time_aead(
AeadCipher, Key2A, IV2A,
StartCleartext, StartAAD, TagLen, true),
StartMsg = [StartTag, StartCiphertext],
%%
{Key2B, IV2B} =
hmac_key_iv(
HmacAlgo, SharedSecret, [R2B, R3A], KeyLen, IVLen),
RecvParams =
Params#params{
rekey_key = KeyPair,
key = Key2B, iv = IV2B },
%%
{SendParams, RecvParams, StartMsg}
end
end.
start_msg(
#params{
aead_cipher = AeadCipher,
key = Key2B,
iv = IV2B,
tag_len = TagLen,
rekey_count = RekeyCountA } = RecvParams, R2A, R3A, Msg) ->
%%
case Msg of
<<Tag:TagLen/binary, Ciphertext/binary>> ->
KeyLen = byte_size(Key2B),
IVLen = byte_size(IV2B),
RLen = KeyLen + IVLen,
MsgLen = byte_size(Msg),
AAD = <<MsgLen:32>>,
case
crypto:crypto_one_time_aead(
AeadCipher, Key2B, IV2B, Ciphertext, AAD, Tag, false)
of
<<R2A:RLen/binary, R3A:RLen/binary, RekeyCountB:32>>
when RekeyCountA =< (RekeyCountB bsl 2),
RekeyCountB =< (RekeyCountA bsl 2) ->
RecvParams#params{ rekey_count = RekeyCountB }
end
end.
hmac_key_iv(HmacAlgo, MacKey, Data, KeyLen, IVLen) ->
<<Key:KeyLen/binary, IV:IVLen/binary>> =
crypto:macN(hmac, HmacAlgo, MacKey, Data, KeyLen + IVLen),
{Key, IV}.
init_send_block(OutStream, Chunk, Size) ->
OutStream_1 = send_block(OutStream, Chunk, Size),
if
hd(OutStream_1) =:= closed ->
error_report(
[?FUNCTION_NAME,
{reason, closed}]),
_ = trace({?FUNCTION_NAME, closed}),
exit(connection_closed);
true ->
OutStream_1
end.
init_recv_block(InStream) ->
Result = [Data | _] = recv_block(InStream),
if
Data =:= closed ->
error_report(
[?FUNCTION_NAME,
{reason, closed}]),
_ = trace({?FUNCTION_NAME, closed}),
exit(connection_closed);
true ->
Result
end.
%% -------------------------------------------------------------------------
encrypt_and_send_chunk(
OutStream,
[Seq |
Params =
#params{ rekey_count = RekeyCount,
rekey_time = RekeyTime,
rekey_timestamp = RekeyTimestamp }],
Chunk, Size) ->
%%
Timestamp = timestamp(),
if
RekeyCount =< Seq;
RekeyTimestamp + RekeyTime =< Timestamp ->
{OutStream_1, Params_1} =
encrypt_and_send_rekey_chunk(
OutStream, Seq, Params, Timestamp),
if
hd(OutStream_1) =:= closed ->
{OutStream_1, [0 | Params_1]};
true ->
{encrypt_and_send_chunk(
OutStream_1, 0, Params_1, Chunk, Size),
[1 | Params_1]}
end;
true ->
{encrypt_and_send_chunk(OutStream, Seq, Params, Chunk, Size),
[Seq + 1 | Params]}
end.
encrypt_and_send_chunk(OutStream, Seq, Params, Chunk, 0) -> % Tick
<<>> = Chunk, % ASSERT
%% A ticks are sent as a somewhat random size block
%% to make it less obvious to spot
<<S:8>> = crypto:strong_rand_bytes(1),
TickSize = 8 + (S band 63),
TickData = crypto:strong_rand_bytes(TickSize),
encrypt_and_send_block(
OutStream, Seq, Params, [?TICK_CHUNK, TickData], 1 + TickSize);
encrypt_and_send_chunk(OutStream, Seq, Params, Chunk, Size) ->
encrypt_and_send_block(
OutStream, Seq, Params, [?DATA_CHUNK, Chunk], 1 + Size).
encrypt_and_send_rekey_chunk(
OutStream, Seq,
Params =
#params{
rekey_key = PubKeyB,
key = Key,
iv = {IVSalt, IVNo},
hmac_algorithm = HmacAlgo },
Timestamp) ->
%%
KeyLen = byte_size(Key),
IVSaltLen = byte_size(IVSalt),
#keypair{ public = PubKeyA } = KeyPair = get_new_keypair(),
SharedSecret = compute_shared_secret(KeyPair, PubKeyB),
IV = <<(IVNo + Seq):48>>,
{Key_1, <<IVSalt_1:IVSaltLen/binary, IVNo_1:48>>} =
hmac_key_iv(
HmacAlgo, SharedSecret, [Key, IVSalt, IV],
KeyLen, IVSaltLen + 6),
%%
{encrypt_and_send_block(
OutStream, Seq, Params,
[?REKEY_CHUNK, PubKeyA], 1 + byte_size(PubKeyA)),
Params#params{
key = Key_1, iv = {IVSalt_1, IVNo_1},
rekey_timestamp = Timestamp }}.
encrypt_and_send_block(OutStream, Seq, Params, Block, Size) ->
{EncryptedBlock, EncryptedSize} =
encrypt_block(Seq, Params, Block, Size),
send_block(OutStream, EncryptedBlock, EncryptedSize).
encrypt_block(
Seq,
#params{
aead_cipher = AeadCipher,
iv = {IVSalt, IVNo}, key = Key, tag_len = TagLen },
Block, Size) ->
%%
EncryptedSize = Size + TagLen,
AAD = <<Seq:32, EncryptedSize:32>>,
IVBin = <<IVSalt/binary, (IVNo + Seq):48>>,
{Ciphertext, CipherTag} =
crypto:crypto_one_time_aead(
AeadCipher, Key, IVBin, Block, AAD, TagLen, true),
EncryptedBlock = [Ciphertext, CipherTag],
{EncryptedBlock, EncryptedSize}.
%% Send packet=2
%%
send_block(OutStream, Block, Size) ->
Msg =
if
is_binary(Block) -> [<<Size:16>>, Block];
is_list(Block) -> [<<Size:16>> | Block]
end,
(hd(OutStream))(OutStream, Msg).
%% -------------------------------------------------------------------------
recv_and_decrypt_chunk(InStream, SeqParams = [Seq | Params]) ->
case recv_block(InStream) of
Result = [closed | _] ->
{Result, SeqParams};
[Ciphertext | InStream_1] ->
case decrypt_block(Seq, Params, Ciphertext) of
<<?DATA_CHUNK, DataChunk/binary>> ->
{[DataChunk | InStream_1], [Seq + 1 | Params]};
<<?TICK_CHUNK, _/binary>> ->
{[<<>> | InStream_1], [Seq + 1 | Params]};
<<?REKEY_CHUNK, RekeyChunk>> ->
case decrypt_rekey(Params, RekeyChunk) of
Params_1 = #params{} ->
recv_and_decrypt_chunk(
InStream_1, [0 | Params_1]);
Problem when is_atom(Problem) ->
error_report(
[?FUNCTION_NAME, {reason, Problem}]),
{[closed | InStream_1], [Seq + 1 | Params]}
end;
<<_UnknownChunk/binary>> ->
error_report([?FUNCTION_NAME, {reason, unknown_chunk}]),
{[closed | InStream_1], [Seq + 1 | Params]};
Problem when is_atom(Problem) ->
error_report([?FUNCTION_NAME, {reason, Problem}]),
{[closed | InStream_1], [Seq + 1 | Params]}
end
end.
%% Non-optimized receive packet=2
%%
recv_block(InStream) ->
Result_1 = [Data | InStream_1] = (hd(InStream))(InStream, 2),
if
Data =:= closed ->
Result_1;
is_binary(Data) ->
recv_block(InStream_1, Data);
is_list(Data) ->
recv_block(InStream_1, iolist_to_binary(Data))
end.
%%
recv_block(InStream, <<0:16>>) ->
[<<>> | InStream];
recv_block(InStream, <<Size:16>>) ->
case (hd(InStream))(InStream, Size) of
[Data | InStream_1] when is_list(Data) ->
[iolist_to_binary(Data) | InStream_1];
Result = [Data | _]
when is_binary(Data);
Data =:= closed ->
Result
end.
decrypt_block(
Seq, #params{ rekey_count = RekeyCount }, _Ciphertext)
when RekeyCount =:= Seq ->
%% This was one chunk too many without rekeying
rekey_overdue;
decrypt_block(
Seq,
#params{
aead_cipher = AeadCipher,
iv = {IVSalt, IVNo}, key = Key, tag_len = TagLen },
Ciphertext) ->
%%
CiphertextSize = byte_size(Ciphertext),
if
CiphertextSize < TagLen ->
decrypt_short_block;
true ->
AAD = <<Seq:32, CiphertextSize:32>>,
IV = <<IVSalt/binary, (IVNo + Seq):48>>,
Size = CiphertextSize - TagLen,
<<EncryptedBlock:Size/binary, CipherTag:TagLen/binary>> =
Ciphertext,
case
crypto:crypto_one_time_aead(
AeadCipher, Key, IV, EncryptedBlock, AAD, CipherTag,
false)
of
Block when is_binary(Block) ->
Block;
error ->
decrypt_error
end
end.
decrypt_rekey(
Params =
#params{
iv = IV,
key = Key,
rekey_key = #keypair{public = PubKeyA} = KeyPair,
hmac_algorithm = HmacAlgorithm},
RekeyChunk) ->
%%
PubKeyLen = byte_size(PubKeyA),
case RekeyChunk of
<<PubKeyB:PubKeyLen/binary>> ->
SharedSecret = compute_shared_secret(KeyPair, PubKeyB),
KeyLen = byte_size(Key),
IVLen = byte_size(IV),
IVSaltLen = IVLen - 6,
{Key_1, <<IVSalt_1:IVSaltLen/binary, IVNo_1:48>>} =
hmac_key_iv(
HmacAlgorithm, SharedSecret, [Key, IV], KeyLen, IVLen),
Params#params{
iv = {IVSalt_1, IVNo_1},
key = Key_1 };
_ ->
decrypt_bad_rekey_chunk
end.
%% -------------------------------------------------------------------------
ktls_info(
{[RecvSeq |
#params{
iv = {RecvSalt, RecvIV},
key = RecvKey,
aead_cipher = ?CIPHER } = _RecvParams],
[SendSeq |
#params{
iv = {SendSalt, SendIV},
key = SendKey,
aead_cipher = ?CIPHER } = _SendParams]}) ->
%%
RecvState =
#cipher_state{
key = <<RecvKey/bytes>>,
iv = <<RecvSalt/bytes, (RecvIV + RecvSeq):48>> },
SendState =
#cipher_state{
key = <<SendKey/bytes>>,
iv = <<SendSalt/bytes, (SendIV + SendSeq):48>> },
#{ tls_version => ?TLS_VERSION,
cipher_suite => ?CIPHER_SUITE,
read_state => RecvState,
read_seq => RecvSeq,
write_state => SendState,
write_seq => SendSeq }.
%% Dummy cipher parameters to use when checking if kTLS is supported.
%% Completely random to avoid accidentally creating an unsafe connection.
%%
ktls_info() ->
#params{ iv = IVLen, key = KeyLen } = params(),
<<RecvSeq:48, RecvKey:KeyLen/bytes, RecvIV:IVLen/bytes>> =
crypto:strong_rand_bytes(6 + KeyLen + IVLen),
<<SendSeq:48, SendKey:KeyLen/bytes, SendIV:IVLen/bytes>> =
crypto:strong_rand_bytes(6 + KeyLen + IVLen),
RecvState = #cipher_state{ key = RecvKey, iv = RecvIV },
SendState = #cipher_state{ key = SendKey, iv = SendIV },
#{ tls_version => ?TLS_VERSION,
cipher_suite => ?CIPHER_SUITE,
read_state => RecvState,
read_seq => RecvSeq,
write_state => SendState,
write_seq => SendSeq }.
%% -------------------------------------------------------------------------
-ifdef(undefined).
-define(RECORD_TO_MAP(Name),
record_to_map(Record) when element(1, (Record)) =:= (Name) ->
record_to_map(record_info(fields, Name), Record, 2, #{})).
?RECORD_TO_MAP(params).
%%
record_to_map([Field | Fields], Record, Index, Map) ->
record_to_map(
Fields, Record, Index + 1,
Map#{ Field => element(Index, Record) });
record_to_map([], _Record, _Index, Map) ->
Map.
-endif.
timestamp() ->
erlang:monotonic_time(second).
error_report(Report) ->
error_logger:error_report(Report).
-ifdef(undefined).
info_report(Report) ->
error_logger:info_report(Report).
-endif.
%% Trace point
trace(Term) -> Term.
|