1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
|
/*
* %CopyrightBegin%
*
* SPDX-License-Identifier: Apache-2.0
*
* Copyright Ericsson AB 2001-2025. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* %CopyrightEnd%
*/
/* Description: A dynamic lock order checker.
* A global locking order is recorded during runtime
* and continuously checked against itself.
*
* Author: Sverker Eriksson
*/
/*
* The primary objective is to check the order in which locks are seized
* to avoid deadlocks. The strategy is to continuously construct a directed
* graph describing the order in which locks have been seized. Each edge A->B in
* the graph describes a locking order; I held lock A while locking B. Trylocks
* do not introduce edges in the graph. For each added edge we check that we
* don't introduce cycles in the graph. A cycle would indicate a potential
* deadlock bug, waiting to happen.
*
* We assume that locks are primarily ordered by their lock _types_
* and secondarily by instance information of locks of the same type. No lock
* order checking is implemented between lock instances of the same type (yet).
*
* The name given when a lock is created is used as identifying its type.
* The '[' character can be used as a delimiter between lock type and
* instance information. Example: "esock.wrt[17]" is of type "esock.wrt".
*
*/
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#include "erl_dyn_lock_check.h"
#ifdef ERTS_DYN_LOCK_CHECK
#include "sys.h"
#include "erl_threads.h"
#define DLC_ASSERT(X) ERTS_ASSERT(X)
#ifdef ERTS_DYN_LOCK_CHECK_INTERNAL
# define MAX_LOCK_TYPES (64*2)
#else
# define MAX_LOCK_TYPES (32)
#endif
#define BITS_PER_WORD (sizeof(UWord)*8)
#define LOCK_TYPE_WORDS ((MAX_LOCK_TYPES-1)/BITS_PER_WORD + 1)
#define MAX_LOCK_NAME_SZ 64
static erts_atomic_t n_lock_types;
static erts_mtx_t lock_types_mtx;
struct lock_type
{
char name[MAX_LOCK_NAME_SZ];
};
static struct lock_type lock_types[MAX_LOCK_TYPES];
static erts_tsd_key_t dlc_thread_key;
/* Thread specific data */
typedef struct
{
UWord locked_now[LOCK_TYPE_WORDS];
/* Bit vector with all lock types currently held by this thread */
UWord locked_before[LOCK_TYPE_WORDS];
/* Bit vector same as 'locked_now' PLUS all unlocked locks that were locked
* by this thread ~before~ the locks in 'locked_now'.
* A lock in 'locked_before' is only cleared when all locked after it
* have been unlocked.
*
* Example 1:
* 1. Lock A: locked_now = A locked_before = A
* 2. Lock B: locked_now = A|B locked_before = A|B
* 3. Unlock A: locked_now = B locked_before = A|B
* 4. Lock C: locked_now = B|C locked_before = A|B|C
* 5. Unlock B: locked_now = C locked_before = A|B|C
* 6. Unlock C: locked_now = locked_before =
*
* Example 2:
* 1. Lock A: locked_now = A locked_before = A
* 2. Trylock B: locked_now = A|B locked_before = A|B
* 3. Unlock A: locked_now = B locked_before = B
* 4. Lock C: locked_now = B|C locked_before = B|C
* 5. Unlock B: locked_now = C locked_before = B|C
* 6. Unlock C: locked_now = locked_before =
*
* The trylock of B imposes no ordering dependency to A (locked before B),
* but it will have a dependency to C (locked after B).
*/
struct {
unsigned ix; /* lock type id (bit index) */
unsigned cnt; /* nr of locked instances of this type (may be 0) */
unsigned trylock; /* true if only trylocked instances */
} lock_order[MAX_LOCK_TYPES];
/* The locks in 'locked_before' ordered the way they were locked by this thread */
unsigned n_locked;
/* Number or lock types in 'locked_before' and 'lock_order' */
} dlc_thread_t;
static erts_atomic_t locked_before[MAX_LOCK_TYPES][LOCK_TYPE_WORDS];
/* The recorded global lock order as a bit matrix.
*
* Bit A is set in locked_before[B] if A has been locked before B.
*/
static int check_lock_order(dlc_thread_t*, erts_dlc_t*);
/*#define DLC_UNIT_TEST*/
#ifdef DLC_UNIT_TEST
static int is_dlc_unit_test = 0;
static void dlc_unit_test(void);
# define DLC_IS_UNIT_TEST() (is_dlc_unit_test)
#else
# define DLC_IS_UNIT_TEST() (0)
#endif
static int dlc_initialized = 0;
void erts_dlc_init(void)
{
int i, j;
erts_atomic_init_nob(&n_lock_types, 0);
erts_tsd_key_create(&dlc_thread_key, "dyn_lock_check");
for (i = 0; i < MAX_LOCK_TYPES; i++) {
for (j = 0; j < LOCK_TYPE_WORDS; j++)
erts_atomic_init_nob(&locked_before[i][j], 0);
}
erts_mtx_init(&lock_types_mtx, "dyn_lock_check", NIL,
(ERTS_LOCK_FLAGS_PROPERTY_STATIC |
ERTS_LOCK_FLAGS_CATEGORY_GENERIC));
dlc_initialized = 1;
#ifdef DLC_UNIT_TEST
dlc_unit_test();
#endif
}
void erts_dlc_create_lock(erts_dlc_t* dlc, const char* name)
{
erts_aint_t i, n = erts_atomic_read_nob(&n_lock_types);
int name_len;
for (i = 0; name[i]; i++) {
if (name[i] == '[')
break;
}
name_len = i;
for (i=0; i < n; i++) {
if (sys_strncmp(name, lock_types[i].name, name_len) == 0) {
dlc->ix = i;
return; /* already exists */
}
}
if (dlc_initialized)
erts_mtx_lock(&lock_types_mtx);
else
DLC_ASSERT(n == 0);
n = erts_atomic_read_nob(&n_lock_types);
for ( ; i < n; i++) {
if (sys_strncmp(name, lock_types[i].name, name_len) == 0) {
dlc->ix = i;
goto done; /* already exists (race) */
}
}
ERTS_ASSERT(n < MAX_LOCK_TYPES);
ERTS_ASSERT(name_len < MAX_LOCK_NAME_SZ);
sys_strncpy(lock_types[n].name, name, name_len);
lock_types[n].name[name_len] = 0;
erts_atomic_set_nob(&n_lock_types, n+1);
dlc->ix = n;
done:
if (dlc_initialized)
erts_mtx_unlock(&lock_types_mtx);
}
#define IX_TO_BIT(IX) ((UWord)1 << ((IX) % BITS_PER_WORD))
#define IX_TO_WORD(IX) ((IX) / BITS_PER_WORD)
static dlc_thread_t *get_thr(void)
{
dlc_thread_t *thr = (dlc_thread_t*) erts_tsd_get(dlc_thread_key);
int i;
if (!thr) {
thr = malloc(sizeof(dlc_thread_t));
for (i = 0; i < LOCK_TYPE_WORDS; i++) {
thr->locked_now[i] = 0;
thr->locked_before[i] = 0;
}
thr->n_locked = 0;
erts_tsd_set(dlc_thread_key, thr);
}
return thr;
}
static ERTS_INLINE int is_bit_set(unsigned ix, const UWord* words)
{
DLC_ASSERT(ix < MAX_LOCK_TYPES);
return (words[IX_TO_WORD(ix)] & IX_TO_BIT(ix)) != (UWord)0;
}
static ERTS_INLINE int is_any_bit_set(const UWord* words)
{
UWord bor = 0;
int i=0;
for (i = 0; i < LOCK_TYPE_WORDS; i++)
bor |= words[i];
return bor != (UWord)0;
}
static ERTS_INLINE void set_bit(unsigned ix, UWord* words)
{
DLC_ASSERT(ix < MAX_LOCK_TYPES);
words[IX_TO_WORD(ix)] |= IX_TO_BIT(ix);
}
static ERTS_INLINE void clr_bit(unsigned ix, UWord* words)
{
DLC_ASSERT(ix < MAX_LOCK_TYPES);
words[IX_TO_WORD(ix)] &= ~IX_TO_BIT(ix);
}
int erts_dlc_lock(erts_dlc_t* dlc)
{
dlc_thread_t *thr = get_thr();
if (thr->n_locked) {
int i;
DLC_ASSERT(is_any_bit_set(thr->locked_now));
/*
* Check if we introduce new lock dependencies
*/
for (i=0; i < LOCK_TYPE_WORDS; i++) {
UWord before = erts_atomic_read_nob(&locked_before[dlc->ix][i]);
UWord new_before = (thr->locked_before[i] & ~before);
if (new_before) {
if (!check_lock_order(thr, dlc)) {
DLC_ASSERT(DLC_IS_UNIT_TEST());
return 0;
}
erts_atomic_read_bor_mb(&locked_before[dlc->ix][i],
new_before);
/* check again to detect racing deadlock */
if (!check_lock_order(thr, dlc)) {
DLC_ASSERT(DLC_IS_UNIT_TEST());
/* can't continue test as 'locked_before' is inconsistent */
abort();
}
}
}
if (is_bit_set(dlc->ix, thr->locked_now)) {
/*
* Lock of this type already held.
* Must be other instance of last locked lock
*/
DLC_ASSERT(is_bit_set(dlc->ix, thr->locked_before));
i = thr->n_locked-1;
while (dlc->ix != thr->lock_order[i].ix) {
DLC_ASSERT(thr->lock_order[i].trylock);
i--;
DLC_ASSERT(i >= 0);
}
thr->lock_order[i].cnt++;
thr->lock_order[i].trylock = 0;
return 1;
}
}
else {
DLC_ASSERT(!is_any_bit_set(thr->locked_now));
DLC_ASSERT(!is_any_bit_set(thr->locked_before));
}
set_bit(dlc->ix, thr->locked_now);
set_bit(dlc->ix, thr->locked_before);
thr->lock_order[thr->n_locked].ix = dlc->ix;
thr->lock_order[thr->n_locked].cnt = 1;
thr->lock_order[thr->n_locked].trylock = 0;
thr->n_locked++;
return 1;
}
static ERTS_INLINE int get_lock_order(dlc_thread_t* thr,
erts_dlc_t* dlc)
{
int i;
DLC_ASSERT(is_bit_set(dlc->ix, thr->locked_before));
for (i = 0; ; i++) {
DLC_ASSERT(i < thr->n_locked);
if (dlc->ix == thr->lock_order[i].ix)
return i;
}
}
void erts_dlc_trylock(erts_dlc_t* dlc, int locked)
{
dlc_thread_t *thr = get_thr();
if (!locked) {
/* We have no way to detect trylock of self-locked instance (yet)
* so nothing to do here. */
return;
}
if (is_bit_set(dlc->ix, thr->locked_now)) {
int i = get_lock_order(thr, dlc);
DLC_ASSERT(thr->lock_order[i].cnt > 0);
thr->lock_order[i].cnt++;
/* keep .trylock as is */
}
else {
set_bit(dlc->ix, thr->locked_now);
if (!is_bit_set(dlc->ix, thr->locked_before)) {
set_bit(dlc->ix, thr->locked_before);
thr->lock_order[thr->n_locked].ix = dlc->ix;
thr->lock_order[thr->n_locked].cnt = 1;
thr->lock_order[thr->n_locked].trylock = 1;
thr->n_locked++;
}
else {
int i = get_lock_order(thr, dlc);
DLC_ASSERT(thr->lock_order[i].cnt == 0);
thr->lock_order[i].cnt = 1;
thr->lock_order[i].trylock = 1;
}
}
}
void erts_dlc_unlock(erts_dlc_t* dlc)
{
dlc_thread_t *thr = (dlc_thread_t*) erts_tsd_get(dlc_thread_key);
int i;
ERTS_ASSERT(thr);
ERTS_ASSERT(is_bit_set(dlc->ix, thr->locked_now));
DLC_ASSERT(is_bit_set(dlc->ix, thr->locked_before));
DLC_ASSERT(thr->n_locked > 0);
i = get_lock_order(thr, dlc);
DLC_ASSERT(thr->lock_order[i].cnt > 0);
thr->lock_order[i].cnt--;
if (thr->lock_order[i].cnt > 0)
return; /* still locked by other instance */
clr_bit(dlc->ix, thr->locked_now);
/*
* Now clear and forget all our unlocked locks (including this one)
* THAT was not locked *before* any of our still held locked locks.
*/
for (i = thr->n_locked-1; i >= 0; i--) {
if (thr->lock_order[i].cnt) {
DLC_ASSERT(is_bit_set(thr->lock_order[i].ix, thr->locked_now));
if (!thr->lock_order[i].trylock) {
/* A locked lock, must remember it and all locked before it. */
break;
}
}
else { /* forget this unlocked lock */
int j;
DLC_ASSERT(!is_bit_set(thr->lock_order[i].ix, thr->locked_now));
DLC_ASSERT(is_bit_set(thr->lock_order[i].ix, thr->locked_before));
clr_bit(thr->lock_order[i].ix, thr->locked_before);
thr->n_locked--;
/* and compact all trylocks that we may have skipped over */
for (j = i; j < thr->n_locked; j++) {
DLC_ASSERT(thr->lock_order[j+1].trylock);
thr->lock_order[j] = thr->lock_order[j+1];
}
}
}
}
static int check_lock_order(dlc_thread_t *thr, erts_dlc_t* dlc)
{
const UWord lock_bit = IX_TO_BIT(dlc->ix % 64);
const unsigned lock_word = IX_TO_WORD(dlc->ix);
int i, error = 0;
for (i = 0; i < thr->n_locked; i++) {
const unsigned ix = thr->lock_order[i].ix;
if (ix != dlc->ix &&
lock_bit & erts_atomic_read_nob(&locked_before[ix][lock_word])) {
if (!error) {
error = 1;
erts_fprintf(stderr, "###### DYNAMIC LOCK ORDER VIOLATION ######\n");
erts_fprintf(stderr, "# Trying to lock '%s'\n", lock_types[dlc->ix].name);
}
erts_fprintf(stderr, "# while '%s' is held\n",
lock_types[thr->lock_order[i].ix].name);
}
}
if (error) {
if (DLC_IS_UNIT_TEST())
return 0;
abort();
}
return 1;
}
#ifdef DLC_UNIT_TEST
static void dlc_clear_order(void)
{
int i, j, n = erts_atomic_read_nob(&n_lock_types);
for (i = 0; i < n; i++) {
for (j = 0; j < LOCK_TYPE_WORDS; j++)
erts_atomic_set_nob(&locked_before[i][j], 0);
}
}
static void dlc_unit_test(void)
{
erts_aint_t save_n_lock_types = erts_atomic_read_nob(&n_lock_types);
dlc_thread_t* thr = get_thr();
dlc_thread_t save_thr = *thr;
erts_dlc_t A,B,C,D,E,F;
ERTS_ASSERT(save_n_lock_types <= 1); /* no need to save existing order */
is_dlc_unit_test = 1;
erts_dlc_create_lock(&A, "A");
erts_dlc_create_lock(&B, "B");
erts_dlc_create_lock(&C, "C");
erts_dlc_create_lock(&D, "D");
erts_dlc_create_lock(&E, "E");
erts_dlc_create_lock(&F, "F");
ERTS_ASSERT(erts_dlc_lock(&A));
ERTS_ASSERT(erts_dlc_lock(&C));
ERTS_ASSERT(!erts_dlc_lock(&A));
erts_dlc_unlock(&A);
ERTS_ASSERT(!erts_dlc_lock(&A));
erts_dlc_unlock(&C);
ERTS_ASSERT(erts_dlc_lock(&A));
ERTS_ASSERT(erts_dlc_lock(&B));
ERTS_ASSERT(erts_dlc_lock(&C));
erts_dlc_unlock(&A);
erts_dlc_unlock(&B);
erts_dlc_unlock(&C);
ERTS_ASSERT(erts_dlc_lock(&A));
ERTS_ASSERT(erts_dlc_lock(&C));
ERTS_ASSERT(!erts_dlc_lock(&B));
erts_dlc_unlock(&A);
erts_dlc_unlock(&C);
dlc_clear_order();
ERTS_ASSERT(erts_dlc_lock(&A));
ERTS_ASSERT(erts_dlc_lock(&B));
erts_dlc_unlock(&A);
ERTS_ASSERT(erts_dlc_lock(&C));
erts_dlc_unlock(&B);
ERTS_ASSERT(erts_dlc_lock(&D));
erts_dlc_unlock(&C);
ERTS_ASSERT(erts_dlc_lock(&E));
erts_dlc_unlock(&D);
ERTS_ASSERT(erts_dlc_lock(&F));
erts_dlc_unlock(&E);
erts_dlc_unlock(&F);
ERTS_ASSERT(erts_dlc_lock(&F));
ERTS_ASSERT(!erts_dlc_lock(&A));
erts_dlc_unlock(&F);
dlc_clear_order();
ERTS_ASSERT(erts_dlc_lock(&A));
erts_dlc_trylock(&B, 1);
erts_dlc_unlock(&A);
ERTS_ASSERT(erts_dlc_lock(&A));
erts_dlc_unlock(&A);
erts_dlc_unlock(&B);
dlc_clear_order();
ERTS_ASSERT(erts_dlc_lock(&A));
ERTS_ASSERT(erts_dlc_lock(&B));
ERTS_ASSERT(erts_dlc_lock(&C));
erts_dlc_trylock(&D, 1);
erts_dlc_trylock(&E, 1);
ERTS_ASSERT(erts_dlc_lock(&F));
erts_dlc_unlock(&C);
erts_dlc_unlock(&F);
ERTS_ASSERT(erts_dlc_lock(&B));
erts_dlc_unlock(&B);
ERTS_ASSERT(!erts_dlc_lock(&A));
erts_dlc_unlock(&B);
ERTS_ASSERT(erts_dlc_lock(&A));
erts_dlc_unlock(&A);
erts_dlc_unlock(&A);
erts_dlc_unlock(&D);
erts_dlc_unlock(&E);
dlc_clear_order();
ERTS_ASSERT(erts_dlc_lock(&A));
erts_dlc_trylock(&B, 1);
erts_dlc_trylock(&C, 1);
ERTS_ASSERT(erts_dlc_lock(&B));
erts_dlc_unlock(&B);
ERTS_ASSERT(!erts_dlc_lock(&C));
/* Restore */
is_dlc_unit_test = 0;
dlc_clear_order();
erts_atomic_set_nob(&n_lock_types, save_n_lock_types);
*thr = save_thr;
}
#endif /* DLC_UNIT_TEST */
#endif /* ERTS_DYN_LOCK_CHECK */
|