1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
|
`plotPWmap` <-
function(object, pmap=FALSE, imap=TRUE, item.subset="all", person.subset="all",
mainitem="Item Map", mainperson="Person Map",
mainboth="Item/Person Map", latdim="Latent Dimension",
tlab="Infit t statistic", pp=NULL, cex.gen=0.6, cex.pch=1,
person.pch=1, item.pch=16, personCI=NULL, itemCI=NULL, horiz=FALSE)
{
def.par <- par(no.readonly = TRUE) ## save default, for resetting...
## Pathway map currently only for RM, PCM and RSM
## The next part of the code finds locations and standard errors for
## the item thresholds
if ((object$model == "LLTM") || (object$model == "LRSM") || (object$model == "LPCM"))
stop("Pathway Map can only be computed for RM, RSM, and PCM!")
if (!pmap && !imap)
stop("Pathway Map requires you to request at least one map (item or person)!")
## compute threshtable (from betapars for dichotomous models) and item names
if (object$model == "RM" || max(object$X, na.rm=TRUE) < 2 ) { # dichotomous model
dRm <- TRUE
## betapars are easiness parameters; only the pars need negating
threshtable<-cbind(object$betapar * -1, object$se.beta)
rownames(threshtable) <- colnames(object$X)
## shorter synonym
tt<-threshtable
} else { ## polytomous model
dRm <- FALSE
thresh <- thresholds(object)
threshtable <- cbind(thresh$threshpar, thresh$se.thresh)
tlevels<-apply(thresh$threshtable[[1]], 1,
function(x) length(na.exclude(x))) - 1
if (!(sum(tlevels)==nrow(threshtable)))
stop("Threshtable rows not equal to number of thresholds - oops!")
ttl<-NULL ## threshtable labels
for (i in rownames(as.matrix(tlevels)))
if (tlevels[i]==1)
ttl<-c(ttl,i)
else
ttl<-c(ttl,paste(i,1:tlevels[i],sep=":"))
rownames(threshtable)<-ttl
## shorter synonyms
tt<-threshtable
tl<-tlevels
}
if (is.null(pp))
suppressWarnings(pp<-person.parameter(object))
else if (class(pp) != "ppar" || !identical(pp$X,object$X))
stop("pp is not a person.parameter object which matches the main Rasch data object!")
## We will be plotting the infit data versus the parameters for
## both items and persons
iloc<-tt[,1]
ise<-tt[,2]
ifit <- itemfit(pp)
ifitZ <- ifit$i.infitZ
ploc <- as.matrix(pp$theta.table['Person Parameter'])[,1]
pse <- unlist(pp$se.theta, recursive=FALSE)
names(pse) <- sub("^NAgroup[0-9]*\\.","",names(pse))
pse <- pse[names(ploc)]
pfit <- personfit(pp)
pfitZ <- pfit$p.infitZ
## We can now do item and person subsetting; the item subsetting is
## pretty ugly as there are multiple cases. (We dare not do it earlier
## as we have to take items from all of iloc, ise and ifitZ.)
if (imap && is.character(item.subset)) {
## Case 1: item subsetting by item names
if (dRm) {
if (length(item.subset)>1 && all(item.subset %in% rownames(tt))) {
iloc <- iloc[item.subset]
ise <- ise[item.subset]
ifitZ <- ifitZ[item.subset]
tt <- tt[item.subset,]
}
else if(length(item.subset)!=1 || !(item.subset=="all"))
stop("item.subset misspecified. Use 'all' or vector of at least two valid item indices/names.")
} else {
if (length(item.subset)>1 && all(item.subset %in% rownames(as.matrix(tl)))) {
tl <- tl[item.subset]
keep.subset <- c()
for (i in rownames(as.matrix(tl)))
if (tl[i]==1)
keep.subset<-c(keep.subset,i)
else
keep.subset<-c(keep.subset,paste(i,1:tl[i],sep=":"))
iloc <- iloc[keep.subset]
ise <- ise[keep.subset]
ifitZ <- ifitZ[item.subset]
tt<-tt[keep.subset,]
}
else if(length(item.subset)!=1 || !(item.subset=="all"))
stop("item.subset misspecified. Use 'all' or vector of at least two valid item indices/names.")
}
} else if (imap) {
## Case 2: item subsetting by item numbers
if (dRm) {
if (length(item.subset)>1 && all(item.subset %in% 1:nrow(tt))) {
iloc <- iloc[item.subset]
ise <- ise[item.subset]
ifitZ <- ifitZ[item.subset]
tt <- tt[item.subset,]
}
else
stop("item.subset misspecified. Use 'all' or vector of at least two valid item indices/names.")
}
else {
if (length(item.subset)>1 && all(item.subset %in% 1:length(tl))) {
tl <- tl[item.subset]
keep.subset <- c()
for (i in rownames(as.matrix(tl)))
if (tl[i]==1)
keep.subset<-c(keep.subset,i)
else
keep.subset<-c(keep.subset,paste(i,1:tl[i],sep=":"))
iloc <- iloc[keep.subset]
ise <- ise[keep.subset]
ifitZ <- ifitZ[item.subset]
tt<-tt[keep.subset,]
}
else
stop("item.subset misspecified. Use 'all' or vector of at least two valid item indices/names.")
}
}
## We can now do person subsetting; this is significantly easier than
## item subsetting, as there is no dRM/eRm distinction.
if (pmap && is.character(person.subset)) {
## Case 1: person subsetting by person names
if (length(person.subset)>1 && all(person.subset %in% names(ploc))) {
ploc <- ploc[person.subset]
pse <- pse[person.subset]
pfitZ <- pfitZ[person.subset]
}
else if(length(person.subset)!=1 || !(person.subset=="all"))
stop("person.subset misspecified. Use 'all' or vector of at least two valid person indices/names.")
} else if (pmap) {
## Case 2: person subsetting by person numbers
if (length(person.subset)>1 && all(person.subset %in% 1:length(ploc))) {
ploc <- ploc[person.subset]
pse <- pse[person.subset]
pfitZ <- pfitZ[person.subset]
}
else
stop("person.subset misspecified. Use 'all' or vector of at least two valid person indices/names.")
}
## Confidence intervals for persons and items
##
## Need defaults for multiple of standard error for purpose of range
## calculation; these are zero as default is not to draw confidence
## intervals
pci=0
ici=0
## Our calculation is simplistic; we use the normal distribution to
## estimate our confidence interval from our standard error. However,
## since this is likely to only be approximate and indicative anyway, we
## are not concerned by this.
if(pmap && !is.null(personCI)) {
if(is.null(personCI$clevel)) personCI$clevel <- 0.95
if(is.null(personCI$col)) personCI$col <- "orange"
if(is.null(personCI$lty)) personCI$lty <- "dotted"
pci <- qnorm((1-personCI$clevel)/2, lower.tail=FALSE)
}
if(imap && !is.null(itemCI)) {
if(is.null(itemCI$clevel)) itemCI$clevel <- 0.95
if(is.null(itemCI$col)) itemCI$col <- "red"
if(is.null(itemCI$lty)) itemCI$lty <- "dotted"
ici <- qnorm((1-itemCI$clevel)/2, lower.tail=FALSE)
}
## Now we can plot the Pathway Map
if (pmap) { ## person map
xrange.pmap <- range(pfitZ,finite=TRUE)
xrange.pmap[1] <- min(-2.5,xrange.pmap[1])
xrange.pmap[2] <- max(2.5,xrange.pmap[2]+1) ## need space for labels
yrange.pmap<-range(ploc,finite=TRUE)
yrange.pmap[1]<-yrange.pmap[1]-pci*max(pse)
yrange.pmap[2]<-yrange.pmap[2]+pci*max(pse)
}
if (imap) { ## item map
xrange.imap <- range(ifitZ,finite=TRUE)
xrange.imap[1] <- min(-2.5,xrange.imap[1])
xrange.imap[2] <- max(2.5,xrange.imap[2]+1) ## need space for labels
yrange.imap<-range(iloc,finite=TRUE)
yrange.imap[1]<-yrange.imap[1]-ici*max(ise)
yrange.imap[2]<-yrange.imap[2]+ici*max(ise)
}
if (pmap && !imap) {
xrange <- xrange.pmap
yrange <- yrange.pmap
maintitle <- mainperson
} else if (!pmap && imap) {
xrange <- xrange.imap
yrange <- yrange.imap
maintitle <- mainitem
} else {
xrange <- numeric(2)
yrange <- numeric(2)
xrange[1] <- min(xrange.pmap[1], xrange.imap[1])
xrange[2] <- max(xrange.pmap[2], xrange.imap[2])
yrange[1] <- min(yrange.pmap[1], yrange.imap[1])
yrange[2] <- max(yrange.pmap[2], yrange.imap[2])
maintitle <- mainboth
}
par(mar=c(5,4,4,2))
if (!horiz){ # rh 2010-12-09
plot(xrange,yrange, xlim=xrange, ylim=yrange, main=maintitle,
ylab=latdim, xlab=tlab, type="n")
abline(v=c(-2,2),col="lightgreen")
} else {
plot(yrange,xrange, xlim=yrange, ylim=xrange, main=maintitle,
ylab=tlab, xlab=latdim, type="n")
abline(h=c(-2,2),col="lightgreen")
}
if (pmap) { ## person map
zt <- pfitZ
if (!horiz){
if (pci>0) ## draw confidence intervals
arrows(zt,ploc+pci*pse, zt,ploc-pci*pse, angle=90, code=3, length=0.04,
col=personCI$col, lty=personCI$lty)
points(zt,ploc,pch=person.pch,cex=cex.pch)
text(zt,ploc,names(ploc),cex=cex.gen,pos=4)
} else {
if (pci>0) ## draw confidence intervals
arrows(ploc+pci*pse, zt,ploc-pci*pse, zt, angle=90, code=3, length=0.04,
col=personCI$col, lty=personCI$lty)
points(ploc, zt, pch=person.pch,cex=cex.pch)
text(ploc, zt, names(ploc),cex=cex.gen,pos=4)
}
}
if (imap) { ## item map
if (dRm)
zt <- ifitZ
else
zt <- rep(ifitZ,times=tl)
if (!horiz){
if (ici>0) ## draw confidence intervals
arrows(zt,iloc+ici*ise, zt,iloc-ici*ise, angle=90, code=3, length=0.04,
col=itemCI$col, lty=itemCI$lty)
points(zt,iloc,pch=item.pch,cex=cex.pch)
text(zt,iloc,rownames(tt),cex=cex.gen,pos=4)
} else {
if (ici>0) ## draw confidence intervals
arrows(iloc+ici*ise, zt,iloc-ici*ise,zt, angle=90, code=3, length=0.04,
col=itemCI$col, lty=itemCI$lty)
points(iloc, zt,pch=item.pch,cex=cex.pch)
text(iloc,zt, rownames(tt),cex=cex.gen,pos=4)
}
}
par(def.par)
invisible(NULL)
}
|