1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
|
/* dump.c -- dump es's internal state as a c program ($Revision: 1.1.1.1 $) */
#include "es.h"
#include "var.h"
#include "term.h"
#define MAXVARNAME 20
/*
* the $&dumpstate prints the appropriate C data structures for
* representing the parts of es's memory that can be stored in
* the text (read-only) segment of the program. (some liberties
* are taken with regard to what the initial.es routines can do
* regarding changing lexically bound values in order that more
* things can be here.)
*
* since these things are read-only they cannot point to structures
* that need to be garbage collected. (think of this like a very
* old generation in a generational collector.)
*
* to simplify matters, all values are stored in C variables with
* idiosyncratic names:
* S_string "string"
* X_address string at address, when name wouldn't fit
* L_address List at address
* E_address Term at address
* T_address Tree at address
* B_address Binding at address
* C_address Closure at address
*
* in order that addresses are internally consistent, garbage collection
* is disabled during the dumping process.
*/
static Dict *cvars, *strings;
static Boolean allprintable(const char *s) {
int c;
for (; (c = *(unsigned char *) s) != '\0'; s++)
if (!isprint(c) || c == '"' || c == '\\')
return FALSE;
return TRUE;
}
static char *dumpstring(char *string) {
char *name;
if (string == NULL)
return "NULL";
name = dictget(strings, string);
if (name == NULL) {
name = str("S_%F", string);
if (strlen(name) > MAXVARNAME)
name = str("X_%ulx", string);
print("static const char %s[] = ", name);
if (allprintable(string))
print("\"%s\";\n", string);
else {
int c;
char *s;
print("{ ");
for (s = string; (c = *(unsigned char *) s) != '\0'; s++) {
switch (c) {
case '\a': print("'\\a'"); break;
case '\b': print("'\\b'"); break;
case '\f': print("'\\f'"); break;
case '\n': print("'\\n'"); break;
case '\r': print("'\\r'"); break;
case '\t': print("'\\t'"); break;
case '\'': print("'\\''"); break;
case '\\': print("'\\\\'"); break;
default: print(isprint(c) ? "'%c'" :"%d", c); break;
}
print(", ");
}
print("'\\0', };\n");
}
strings = dictput(strings, string, name);
}
return name;
}
static char *dumplist(List *list);
static const char *nodename(NodeKind k) {
switch(k) {
default: panic("nodename: bad node kind %d", k);
case nAssign: return "Assign";
case nCall: return "Call";
case nClosure: return "Closure";
case nConcat: return "Concat";
case nFor: return "For";
case nLambda: return "Lambda";
case nLet: return "Let";
case nList: return "List";
case nLocal: return "Local";
case nMatch: return "Match";
case nExtract: return "Extract";
case nPrim: return "Prim";
case nQword: return "Qword";
case nThunk: return "Thunk";
case nVar: return "Var";
case nVarsub: return "Varsub";
case nWord: return "Word";
}
}
static char *dumptree(Tree *tree) {
char *name;
if (tree == NULL)
return "NULL";
name = str("&T_%ulx", tree);
if (dictget(cvars, name) == NULL) {
switch (tree->kind) {
default:
panic("dumptree: bad node kind %d", tree->kind);
case nWord: case nQword: case nPrim:
print("static const Tree_s %s = { n%s, { { (char *) %s } } };\n",
name + 1, nodename(tree->kind), dumpstring(tree->u[0].s));
break;
case nCall: case nThunk: case nVar:
print("static const Tree_p %s = { n%s, { { (Tree *) %s } } };\n",
name + 1, nodename(tree->kind), dumptree(tree->u[0].p));
break;
case nAssign: case nConcat: case nClosure: case nFor:
case nLambda: case nLet: case nList: case nLocal:
case nVarsub: case nMatch: case nExtract:
print("static const Tree_pp %s = { n%s, { { (Tree *) %s }, { (Tree *) %s } } };\n",
name + 1, nodename(tree->kind), dumptree(tree->u[0].p), dumptree(tree->u[1].p));
}
cvars = dictput(cvars, name, tree);
}
return name;
}
static char *dumpbinding(Binding *binding) {
char *name;
if (binding == NULL)
return "NULL";
name = str("&B_%ulx", binding);
if (dictget(cvars, name) == NULL) {
print(
"static const Binding %s = { (char *) %s, (List *) %s, (Binding *) %s };\n",
name + 1,
dumpstring(binding->name),
dumplist(binding->defn),
dumpbinding(binding->next)
);
cvars = dictput(cvars, name, binding);
}
return name;
}
static char *dumpclosure(Closure *closure) {
char *name;
if (closure == NULL)
return "NULL";
name = str("&C_%ulx", closure);
if (dictget(cvars, name) == NULL) {
print(
"static const Closure %s = { (Binding *) %s, (Tree *) %s };\n",
name + 1,
dumpbinding(closure->binding),
dumptree(closure->tree)
);
cvars = dictput(cvars, name, closure);
}
return name;
}
static char *dumpterm(Term *term) {
char *name;
if (term == NULL)
return "NULL";
name = str("&E_%ulx", term);
if (dictget(cvars, name) == NULL) {
print(
"static const Term %s = { (char *) %s, (Closure *) %s };\n",
name + 1,
dumpstring(term->str),
dumpclosure(term->closure)
);
cvars = dictput(cvars, name, term);
}
return name;
}
static char *dumplist(List *list) {
char *name;
if (list == NULL)
return "NULL";
name = str("&L_%ulx", list);
if (dictget(cvars, name) == NULL) {
print(
"static const List %s = { (Term *) %s, (List *) %s };\n",
name + 1,
dumpterm(list->term),
dumplist(list->next)
);
cvars = dictput(cvars, name, list);
}
return name;
}
static void dumpvar(void *ignore, char *key, void *value) {
Var *var = value;
dumpstring(key);
dumplist(var->defn);
}
static void dumpdef(char *name, Var *var) {
print("\t{ %s, (const List *) %s },\n", dumpstring(name), dumplist(var->defn));
}
static void dumpfunctions(void *ignore, char *key, void *value) {
if (hasprefix(key, "fn-"))
dumpdef(key, value);
}
static void dumpsettors(void *ignore, char *key, void *value) {
if (hasprefix(key, "set-"))
dumpdef(key, value);
}
static void dumpvariables(void *ignore, char *key, void *value) {
if (!hasprefix(key, "fn-") && !hasprefix(key, "set-"))
dumpdef(key, value);
}
#define TreeTypes \
typedef struct { NodeKind k; struct { char *s; } u[1]; } Tree_s; \
typedef struct { NodeKind k; struct { Tree *p; } u[1]; } Tree_p; \
typedef struct { NodeKind k; struct { Tree *p; } u[2]; } Tree_pp;
TreeTypes
#define PPSTRING(s) STRING(s)
static void printheader(List *title) {
if (
offsetof(Tree, u[0].s) != offsetof(Tree_s, u[0].s)
|| offsetof(Tree, u[0].p) != offsetof(Tree_p, u[0].p)
|| offsetof(Tree, u[0].p) != offsetof(Tree_pp, u[0].p)
|| offsetof(Tree, u[1].p) != offsetof(Tree_pp, u[1].p)
)
panic("dumpstate: Tree union sizes do not match struct sizes");
print("/* %L */\n\n#include \"es.h\"\n#include \"term.h\"\n\n", title, " ");
print("%s\n\n", PPSTRING(TreeTypes));
}
extern void runinitial(void) {
List *title = runfd(0, "initial.es", 0);
gcdisable();
cvars = mkdict();
strings = mkdict();
printheader(title);
dictforall(vars, dumpvar, NULL);
/* these must be assigned in this order, or things just won't work */
print("\nstatic const struct { const char *name; const List *value; } defs[] = {\n");
dictforall(vars, dumpfunctions, NULL);
dictforall(vars, dumpsettors, NULL);
dictforall(vars, dumpvariables, NULL);
print("\t{ NULL, NULL }\n");
print("};\n\n");
print("\nextern void runinitial(void) {\n");
print("\tint i;\n");
print("\tfor (i = 0; defs[i].name != NULL; i++)\n");
print("\t\tvardef((char *) defs[i].name, NULL, (List *) defs[i].value);\n");
print("}\n");
exit(0);
}
|