1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
|
# Exploratory Spatial Data Analysis in PySAL

[](https://github.com/pysal/esda/actions/workflows/testing.yml)
[](https://codecov.io/gh/pysal/esda)
[](https://zenodo.org/badge/latestdoi/81873636)
Methods for testing for global and local autocorrelation in areal unit data.
## Documentation
- [Home](https://pysal.org/esda)
- [Tutorial](https://pysal.org/esda/tutorial.html)
- [API](https://pysal.org/esda/api.html)
## Installation
Install `esda` by running:
### conda-forge
*preferred*
```
$ conda install -c conda-forge esda
```
### PyPI
```
$ pip install esda
```
### GitHub
```
$ pip install git+https://github.com/pysal/esda@main
```
## Requirements
- `geopandas>=0.12`
- `libpysal>=4.12`
- `numpy>=1.24`
- `pandas>1.5`
- `scikit-learn>=1.2`
- `scipy>=1.9`
- `shapely>=2.0`
### Optional dependencies
- `numba>=0.57` - used to accelerate computational geometry and permutation-based statistical inference.
- `rtree>=1.0` - required for `esda.topo.isolation()`
- `matplotlib` - required for `esda.moran.explore()`
## Contribute
PySAL-esda is under active development and contributors are welcome.
If you have any suggestion, feature request, or bug report, please open a new [issue](https://github.com/pysal/esda/issues) on GitHub. To submit patches, please follow the PySAL development [guidelines](https://github.com/pysal/pysal/wiki) and open a [pull request](https://github.com/pysal/esda). Once your changes get merged, you’ll automatically be added to the [Contributors List](https://github.com/pysal/esda/graphs/contributors).
## Support
If you are having issues, please talk to us in the [`esda` Discord channel](https://discord.gg/Re46DjyB9U).
## License
The project is licensed under the [BSD 3-Clause license](https://github.com/pysal/esda/blob/main/LICENSE).
## Funding
[<img align="middle" src="https://github.com/pysal/esda/blob/main/docs/_static/images/nsf_logo.jpg" width="100">](https://www.nsf.gov/index.jsp) National Science Foundation Award #1421935: [New Approaches to Spatial Distribution Dynamics](https://www.nsf.gov/awardsearch/showAward?AWD_ID=1421935)
|