File: asn-real.cpp

package info (click to toggle)
esnacc 1.8.1-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, trixie
  • size: 4,452 kB
  • sloc: ansic: 42,340; cpp: 13,880; yacc: 2,682; tcl: 1,587; lex: 688; sh: 573; makefile: 111
file content (1121 lines) | stat: -rw-r--r-- 30,666 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
// file: .../c++-lib/src/asn-real.C - AsnReal (ASN.1 REAL) type
//
//  Mike Sample
//  92/07/02
// Copyright (C) 1992 Michael Sample and the University of British Columbia
//
// This library is free software; you can redistribute it and/or
// modify it provided that this copyright/license information is retained
// in original form.
//
// If you modify this file, you must clearly indicate your changes.
//
// This source code is distributed in the hope that it will be
// useful, but WITHOUT ANY WARRANTY; without even the implied warranty
// of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
//

// $Log: asn-real.cpp,v $
// Revision 1.21  2004/03/22 20:04:18  gronej
// took IBM references out of the code (to the best of our knowledge, we don't use any of it anymore)
//
// Revision 1.20  2004/02/11 19:08:48  nicholar
// Updated Print() function so no longer uses global indent
//
// Revision 1.19  2004/02/06 00:39:13  nicholar
// Changed AsnList to use std::list<T> instead of List<T>
//
// Revision 1.18  2004/02/04 14:59:27  gronej
// Fixed a TON of memory leaks
//
// Revision 1.17  2004/02/03 14:44:32  gronej
// made all constraint lists static to avoid memory issues
//
// Revision 1.16  2003/12/17 19:05:03  gronej
// SNACC baseline merged with PER v1_7 tag
//

// Revision 1.14.2.5  2003/12/04 20:47:11  gronej
// Moved bAlign out of all PEnc calls and into AsnBufBits as a member
// An AsnBufBits is now invoked with a bAlign parameter defaulted to false
//
// Revision 1.14.2.4  2003/12/03 19:48:08  gronej
// Fixed bitsDecoded to return correct value on decode operations
//
// Revision 1.14.2.3  2003/11/04 14:21:21  gronej
// Update PER compiler with some PERGeneral functionality  11/04/03
//
// Revision 1.14.2.2  2003/10/22 12:45:58  gronej
// Updating PER compiler
//
// Revision 1.14.2.1  2003/10/02 17:15:24  gronej
// Updating PER compiler
//

// Revision 1.14  2003/01/17 01:16:04  leonberp
// FIXED A TON of warnings
//
// Revision 1.13  2003/01/06 16:20:07  leonberp
// Changed BDec() and BDecContent() to use const AsnBufs
//
// Revision 1.12  2002/12/17 20:27:40  leonberp
// made BEnc() and BEncContent() const
//
// Revision 1.11  2002/10/23 21:02:48  leonberp
// fixed AsnBuf references and fixed clock skew problem
//
// Revision 1.10  2002/10/23 10:51:10  mcphersc
// Changed BUF_TYPE to AsnBuf
//
// Revision 1.9  2002/05/10 16:39:36  leonberp
// latest changes for release 2.2
// includes integrating asn-useful into C & C++ runtime library, the compiler changes that go along with that, SnaccException changes for C++ runtime and compiler
//
// Revision 1.8  2002/03/01 14:03:37  vracarl
// added an INDEFINATE_LEN check on the primitive
//
// Revision 1.7  2001/08/29 22:04:19  leonberp
// enchanced Clone() to allocate a new pointe AND COPY the object
//
// Revision 1.6  2001/07/12 19:33:39  leonberp
// Changed namespace to SNACC and added compiler options: -ns and -nons.  Also removed dead code.
//
// Revision 1.5  2001/06/28 15:43:32  rwc
// ADDED "SNACCASN" namespace definition to all SNACC data structures.
// This should not affect most applications since we do not have any name
// conflicts.
// ALSO, combined all ASN primitive data type includes into asn-incl.h.
//
// Revision 1.4  2001/06/19 15:19:47  grafb
// Re-ordered includes and removed redundant includes for g++ 3.0 compile
// Also ifdef-ed out two macro definitions in asn-real.cpp due to conflict
// with this compiler version.
//
// Revision 1.3  2001/06/18 17:47:44  rwc
// Updated to reflect newly added C++ Exception error handling, instead of "C" longjmp and setjmp calls.
// Changes made to both the compiler and the SNACC C++ run-time library.
//
// Revision 1.2  2000/10/16 18:10:37  rwc
// removed most warnings from C++-lib, some C-lib.
//
// Revision 1.1.1.1  2000/08/21 20:36:09  leonberp
// First CVS Version of SNACC.
//
// Revision 1.7  1997/02/28 13:39:46  wan
// Modifications collected for new version 1.3: Bug fixes, tk4.2.
//
// Revision 1.6  1995/08/17 15:27:19  rj
// recognize and return "inf" for PLUS-INFINITY/MINUS-INFINITY.
//
// Revision 1.5  1995/07/24  20:29:24  rj
// #if TCL ... #endif wrapped into #if META ... #endif
//
// call constructor with additional pdu and create arguments.
//
// changed `_' to `-' in file names.
//
// Revision 1.4  1995/02/18  17:01:49  rj
// denote a long if we want a long.
// make the code work on little endian CPUs.
// ported to work with CPU/compiler combinations providing 64 bit longs.
//
// Revision 1.3  1994/10/08  04:18:29  rj
// code for meta structures added (provides information about the generated code itself).
//
// code for Tcl interface added (makes use of the above mentioned meta code).
//
// virtual inline functions (the destructor, the Clone() function, BEnc(), BDec() and Print()) moved from inc/*.h to src/*.C because g++ turns every one of them into a static non-inline function in every file where the .h file gets included.
//
// made Print() const (and some other, mainly comparison functions).
//
// several `unsigned long int' turned into `size_t'.
//
// Revision 1.2  1994/08/28  10:01:18  rj
// comment leader fixed.
//
// Revision 1.1  1994/08/28  09:21:07  rj
// first check-in. for a list of changes to the snacc-1.1 distribution please refer to the ChangeLog.

#include "asn-incl.h"
#include "math.h"

#include <stdlib.h>

_BEGIN_SNACC_NAMESPACE

#ifndef IEEE_REAL_LIB
/* ieee functions (in case not in math.h)*/
extern "C" {
extern int iszero (double);
#ifdef VDAIEEE_NOT_GPP_30
extern int isinf (double);
extern int signbit (double);
#endif
extern int ilogb (double);
extern double scalbn (double, int);
}
#endif

double AsnPlusInfinity();
double AsnMinusInfinity();

/*
 * Declare and init the PLUS and MINUS INFINITY values.
 *
 */
const AsnReal PLUS_INFINITY (AsnPlusInfinity());
const AsnReal MINUS_INFINITY (AsnMinusInfinity());

#define ENC_PLUS_INFINITY	0x40
#define ENC_MINUS_INFINITY	0x41

#define REAL_BINARY		0x80
#define REAL_SIGN		0x40
#define REAL_EXPLEN_MASK	0x03
#define REAL_EXPLEN_1		0x00
#define REAL_EXPLEN_2		0x01
#define REAL_EXPLEN_3		0x02
#define REAL_EXPLEN_LONG	0x03
#define REAL_FACTOR_MASK	0x0c
#define REAL_BASE_MASK		0x30
#define REAL_BASE_2		0x00
#define REAL_BASE_8		0x10
#define REAL_BASE_16		0x20

// Returns the smallest octet length needed to hold the given long int value
unsigned int
SignedIntOctetLen (long int val)
{
    unsigned long int mask = (0x7f80L << ((sizeof (long int) - 2) * 8));
    unsigned int retVal = sizeof (long int);

    if (val < 0)
        val = val ^ (~0L);  /* XOR val with all 1's */

    while ((retVal > 1) && ((val & mask) == 0))
    {
        mask >>= 8;
        retVal--;
    }

    return retVal;

} /* SignedIntOctetLen */



#ifdef IEEE_REAL_FMT

// Returns the PLUS INFINITY in double format
// This assumes that a C++ double is an IEEE double.
// The bits for IEEE double PLUS INFINITY are
// 0x7ff0000000000000
double AsnPlusInfinity()
{
    double d;
    unsigned char *c = (unsigned char *)&d;

#if WORDS_BIGENDIAN
    c[0] = 0x7f;
    c[1] = 0xf0;
    c[2] = 0x0;
    c[3] = 0x0;
    c[4] = 0x0;
    c[5] = 0x0;
    c[6] = 0x0;
    c[7] = 0x0;
#else
    c[7] = 0x7f;
    c[6] = 0xf0;
    c[5] = 0x0;
    c[4] = 0x0;
    c[3] = 0x0;
    c[2] = 0x0;
    c[1] = 0x0;
    c[0] = 0x0;
#endif

    return d;
} /* AsnPlusInfinity */

double AsnMinusInfinity()
{
    return -AsnPlusInfinity();
}

#if SIZEOF_DOUBLE != 8
  #error oops: doubles are expected to be 8 bytes in size!
#endif

/*
 * Use this routine if you system/compiler represents doubles in the IEEE format.
 */
AsnLen AsnReal::BEncContent (AsnBuf &b) const
{
    int	exponent;
    int isNeg;
#if SIZEOF_LONG == 8
    unsigned long mantissa, val, *p;
    int i;
#elif SIZEOF_LONG == 4
    unsigned char *dbl;
    unsigned long int *first4;
    unsigned long int *second4;
#else
  #error long neither 8 nor 4 bytes in size?
#endif

    /* no contents for 0.0 reals */
    if (value == 0.0) /* all bits zero, disregarding top/sign bit */
        return 0;

#if SIZEOF_LONG == 8
    /*
     * this part assumes that sizeof (long) == sizeof (double) == 8
     * It shouldn't be endian-dependent but I haven't verified that
     */

    p = (unsigned long*) &value;
    val = *p;

    isNeg = (val >> 63) & 1;
    /* special real values for +/- oo */
    if (!finite (value))
    {
        if (isNeg)
		{
			b.PutByteRvs(ENC_MINUS_INFINITY);
		}
		else
        {
			b.PutByteRvs(ENC_PLUS_INFINITY);
		}

		return 1;
    }
    else /* encode a binary real value */
    {
	exponent = (val >> 52) & 0x7ff;
	mantissa = (val & 0xfffffffffffffL) | 0x10000000000000L;

	for (i = 0; i < 7; i++)
	{
          b.PutByteRvs(mantissa & 0xff);
	  mantissa >>= 8;
        }
        exponent -= (1023 + 52);

#elif SIZEOF_LONG == 4
    /*
     * this part assumes that sizeof (long) == 4 and
     * that sizeof (double) == 8
     *
     * sign  exponent
     *     b 2-12 incl
     *  Sv-----------v----- rest is mantissa
     * -------------------------------------------
     * |         |
     * -------------------------------------------
     *  123456878 1234
     *
     * sign bit is 1 if real is < 0
     * exponent is an 11 bit unsigned value (subtract 1023 to get correct exp value)
     * decimal pt implied before mantissa (ie mantissa is all fractional)
     * and implicit 1 bit to left of decimal
     *
     * when given NaN (not a number - ie oo/oo) it encodes the wrong value
     * instead of checking for the error. If you want to check for it,
     *  a NaN is any sign bit with a max exponent (all bits a 1) followed
     *  by any non-zero mantissa. (a zero mantissa is used for infinity)
     *
     */

    first4 = (unsigned long int*) (dbl = (unsigned char*) &value);
    second4 = (unsigned long int *) (dbl + sizeof (long int));

    /* no contents for 0.0 reals */
    if (value == 0.0) /* all bits zero, disregarding top/sign bit */
        return 0;

    isNeg = dbl[0] & 0x80;

    /* special real values for +/- oo */
    if (((*first4 & 0x7fffffff) == 0x7ff00000) && (*second4 == 0))
    {
        if (isNeg)
            b.PutByteRvs (ENC_MINUS_INFINITY);
        else
            b.PutByteRvs (ENC_PLUS_INFINITY);

        return 1;
    }
    else  /* encode a binary real value */
    {
        exponent = (((*first4) >> 20) & 0x07ff);

        /* write the mantissa (N value) */
        b.PutSegRvs ((char*)(dbl+2), sizeof (double)-2);

        /*
         * The rightmost 4 bits of a double 2nd octet are the
         * most sig bits of the mantissa.
         * write the most signficant byte of the asn1 real manitssa,
         * adding implicit bit to 'left of decimal' if not de-normalized
         * (de normalized if exponent == 0)
         *
         * if the double is not in de-normalized form subtract 1023
         * from the exponent to get proper signed exponent.
         *
         * for both the normalized and de-norm forms
         * correct the exponent by subtracting 52 since:
         *   1. mantissa is 52 bits in the double (56 in ASN.1 REAL form)
         *   2. implicit decimal at the beginning of double's mantissa
         *   3. ASN.1 REAL's implicit decimal is after its mantissa
         * so converting the double mantissa to the ASN.1 form has the
         * effect of multiplying it by 2^52. Subtracting 52 from the
         * exponent corrects this.
         */
        if (exponent == 0) /* de-normalized - no implicit 1 to left of dec.*/
        {
            b.PutByteRvs (dbl[1] & 0x0f);
            exponent -= 52;
        }
        else
        {
            b.PutByteRvs ((dbl[1] & 0x0f) | 0x10); /* 0x10 adds implicit bit */
            exponent -= (1023 + 52);
        }

#else
  #error long neither 8 nor 4 bytes in size?
#endif

        /*  write the exponent  */
        b.PutByteRvs (exponent & 0xff);
        b.PutByteRvs (exponent >> 8);

        /* write format octet */
        /* bb is 00 since base is 2 so do nothing */
        /* ff is 00 since no other shifting is nec */
        if (isNeg)
            b.PutByteRvs (REAL_BINARY | REAL_EXPLEN_2 | REAL_SIGN);
        else
            b.PutByteRvs (REAL_BINARY | REAL_EXPLEN_2);

        return sizeof (double) + 2;
    }

    /* not reached */

}  /*  AsnReal::BEncContent */

#else  /* IEEE_REAL_FMT not def */

#ifdef IEEE_REAL_LIB

// Returns the PLUS INFINITY in double format
// this assumes you have the IEEE functions in
// the math lib
double AsnPlusInfinity()
{
    return infinity();
} /* AsnPlusInfinity */

double AsnMinusInfinity()
{
    return -AsnPlusInfinity();
}

// This routine uses the ieee library routines to encode
// this AsnReal's double value
AsnLen AsnReal::BEncContent (AsnBuf &b) const
{
    AsnLen encLen;
    double mantissa;
    double tmpMantissa;
    unsigned int truncatedMantissa;
    int exponent;
    unsigned int expLen;
    int sign;
    unsigned char buf[sizeof (double)];
    int i, mantissaLen;
    unsigned char firstOctet;

    /* no contents for 0.0 reals */
    if (iszero (value))
        return 0;

    /* special real values for +/- oo */
    if (isinf (value))
    {
        if (signbit (value)) /* neg */
            b.PutByteRvs (ENC_MINUS_INFINITY);
        else
            b.PutByteRvs (ENC_PLUS_INFINITY);

        encLen = 1;
    }
    else  /* encode a binary real value */
    {
        if (signbit (value))
            sign = -1;
        else
            sign = 1;

        exponent =  ilogb (value);

        /* get the absolute value of the mantissa (subtract 1 to make < 1) */
        mantissa = scalbn (fabs (value), -exponent-1);


        tmpMantissa = mantissa;

        /* convert mantissa into an unsigned integer */
        for (i = 0; i < sizeof (double); i++)
        {
            /* normalizied so shift 8 bits worth to the left of the decimal */
            tmpMantissa *= (1<<8);

            /* grab only (octet sized) the integer part */
            truncatedMantissa = (unsigned int) tmpMantissa;

            /* remove part to left of decimal now for next iteration */
            tmpMantissa -= truncatedMantissa;

            /* write into tmp buffer */
            buf[i] = truncatedMantissa;

            /* keep track of last non zero octet so can zap trailing zeros */
            if (truncatedMantissa)
                mantissaLen = i+1;
        }

        /*
         * write format octet  (first octet of content)
         *  field  1 S bb ff ee
         *  bit#   8 7 65 43 21
         *
         * 1 in bit#1 means binary rep
         * 1 in bit#2 means the mantissa is neg, 0 pos
         * bb is the base:    65  base
         *                    00    2
         *                    01    8
         *                    10    16
         *                    11    future ext.
         *
         * ff is the Value of F where  Mantissa = sign x N x 2^F
         *    FF can be one of 0 to 3 inclusive. (used to save re-alignment)
         *
         * ee is the length of the exponent:  21   length
         *                                    00     1
         *                                    01     2
         *                                    10     3
         *                                    11     long form
         *
         *
         * encoded binary real value looks like
         *
         *     fmt oct
         *   --------------------------------------------------------
         *   |1Sbbffee|  exponent (2's comp)  |   N (unsigned int)  |
         *   --------------------------------------------------------
         *    87654321
         */
        firstOctet = REAL_BINARY;
        if (signbit (value))
            firstOctet |= REAL_SIGN;

        /* bb is 00 since base is 2 so do nothing */
        /* ff is 00 since no other shifting is nec */

        /*
         * get exponent calculate its encoded length
         * Note that the process of converting the mantissa
         * double to an int shifted the decimal mantissaLen * 8
         * to the right - so correct that here
         */
        exponent++; /* compensate for trick to put mantissa < 1 */
        exponent -= (mantissaLen * 8);
        expLen = SignedIntOctetLen (exponent);

        switch (expLen)
        {
            case 1:
                firstOctet |= REAL_EXPLEN_1;
                break;
            case 2:
                firstOctet |= REAL_EXPLEN_2;
                break;
            case 3:
                firstOctet |= REAL_EXPLEN_3;
                break;
            default:
                firstOctet |= REAL_EXPLEN_LONG;
                break;
        }

        encLen = mantissaLen + expLen + 1;

        /* write the mantissa (N value) */
        b.PutSegRvs ((char*)buf, mantissaLen);

        /* write the exponent */
        for (i = expLen; i > 0; i--)
        {
            b.PutByteRvs (exponent);
            exponent >> 8;
        }

        /* write the exponents length if nec */
        if (expLen > 3)
        {
            encLen++;
            b.PutByteRvs (expLen);
        }

        /* write the format octet */
        b.PutByteRvs (firstOctet);

    }
    return encLen;

}  /*  AsnReal::BEncContent */

#else  /* neither IEEE_REAL_FMT or IEEE_REAL_LIB are def */


// Returns the PLUS INFINITY in double format
// This assumes that a C++ double is an IEEE double.
// The bits for IEEE double PLUS INFINITY are
// 0x7ff0000000000000
// NOTE: this is a guess - you should set this up for
// your architecture
double AsnPlusInfinity()
{
    double d;
    unsigned char *c;
    unsigned long i;

    c = (unsigned char*)&d;
    c[0] = 0x7f;
    c[1] = 0xf0;
    for (i = 2; i < sizeof (double); i++)
        c[i] = 0;
    return d;
} /* AsnPlusInfinity */

double AsnMinusInfinity()
{
    return -AsnPlusInfinity();
}

/*
 * Encodes the content of an ASN.1 REAL value to the given buffer.
 * This version of the routine does not assume an IEEE double rep.
 * or the existence of the IEEE library routines.  Uses old style
 * UNIX frexp etc.
 */
AsnLen AsnReal::BEncContent (AsnBuf &b) const
{
    unsigned long int encLen;
    double mantissa;
    double tmpMantissa;
    unsigned int truncatedMantissa;
    int exponent;
    unsigned int expLen;
    int sign;
    unsigned char buf[sizeof (double)];
    unsigned int i, mantissaLen=0;
    unsigned char firstOctet;

    /* no contents for 0.0 reals */
    if (value == 0.0)
        return 0;

    /* special real values for +/- oo */
    if (value == MINUS_INFINITY)
    {
        b.PutByteRvs (ENC_MINUS_INFINITY);
        encLen = 1;
    }
    else if (value == PLUS_INFINITY)
    {
        b.PutByteRvs (ENC_PLUS_INFINITY);
        encLen = 1;
    }
    else  /* encode a binary real value */
    {
        /*
         * this is what frexp gets from value
         * value == mantissa * 2^exponent
         * where 0.5 <= |manitissa| < 1.0
         */
        mantissa = frexp (value, &exponent);

        /* set sign and make mantissa = | mantissa | */
        if (mantissa < 0.0)
        {
            sign = -1;
            mantissa *= -1;
        }
        else
            sign = 1;


        tmpMantissa = mantissa;

        /* convert mantissa into an unsigned integer */
        for (i = 0; i < sizeof (double); i++)
        {
            /* normalizied so shift 8 bits worth to the left of the decimal */
            tmpMantissa *= (1<<8);

            /* grab only (octet sized) the integer part */
            truncatedMantissa = (unsigned int) tmpMantissa;

            /* remove part to left of decimal now for next iteration */
            tmpMantissa -= truncatedMantissa;

            /* write into tmp buffer */
            buf[i] = (unsigned char)truncatedMantissa;

            /* keep track of last non zero octet so can zap trailing zeros */
            if (truncatedMantissa)
                mantissaLen = i+1;
        }

        /*
         * write format octet  (first octet of content)
         *  field  1 S bb ff ee
         *  bit#   8 7 65 43 21
         *
         * 1 in bit#1 means binary rep
         * 1 in bit#2 means the mantissa is neg, 0 pos
         * bb is the base:    65  base
         *                    00    2
         *                    01    8
         *                    10    16
         *                    11    future ext.
         *
         * ff is the Value of F where  Mantissa = sign x N x 2^F
         *    FF can be one of 0 to 3 inclusive. (used to save re-alignment)
         *
         * ee is the length of the exponent:  21   length
         *                                    00     1
         *                                    01     2
         *                                    10     3
         *                                    11     long form
         *
         *
         * encoded binary real value looks like
         *
         *     fmt oct
         *   --------------------------------------------------------
         *   |1Sbbffee|  exponent (2's comp)  |   N (unsigned int)  |
         *   --------------------------------------------------------
         *    87654321
         */
        firstOctet = REAL_BINARY;
        if (sign == -1)
            firstOctet |= REAL_SIGN;

        /* bb is 00 since base is 2 so do nothing */
        /* ff is 00 since no other shifting is nec */

        /*
         * get exponent calculate its encoded length
         * Note that the process of converting the mantissa
         * double to an int shifted the decimal mantissaLen * 8
         * to the right - so correct that here
         */
        //exponent -= (mantissaLen * 8);
        expLen = SignedIntOctetLen (exponent);

        switch (expLen)
        {
            case 1:
                firstOctet |= REAL_EXPLEN_1;
                break;
            case 2:
                firstOctet |= REAL_EXPLEN_2;
                break;
            case 3:
                firstOctet |= REAL_EXPLEN_3;
                break;
            default:
                firstOctet |= REAL_EXPLEN_LONG;
                break;
        }

        encLen = mantissaLen + expLen + 1;

        /* write the mantissa (N value) */
        b.PutSegRvs ((char*)buf, mantissaLen);

        /* write the exponent */
        for (i = expLen; i > 0; i--)
        {
            b.PutByteRvs ((unsigned char)exponent);
            //RWC;10/10/00;I suspect we need this for multi-byte exponents... 
            exponent = exponent >> 8;
        }

        /* write the exponents length if nec */
        if (expLen > 3)
        {
            encLen++;
            b.PutByteRvs ((unsigned char)expLen);
        }

        /* write the format octet */
        b.PutByteRvs (firstOctet);

    }
    return encLen;

}  /*  AsnReal::BEncContent */



#endif
#endif

static double domainExp(double i, int j)
{
    double exp = 1.0;

    while(j--)
    {
        exp *= 2.0;
    }

    return i * exp;
}

// Decode a REAL value's content from the given buffer.
// places the result in this object.
void AsnReal::BDecContent (const AsnBuf &b, AsnTag /* tagId */, AsnLen elmtLen, AsnLen &bytesDecoded)
{
    FUNC("AsnReal::BDecContent()");

    unsigned char firstOctet;
    unsigned char firstExpOctet;
    int i;
    unsigned int expLen;
    double mantissa;
    unsigned int baseF;
    int exponent = 0;

    if (elmtLen == 0)
    {
        value = 0.0;
        return;
    }
    else if (elmtLen == INDEFINITE_LEN)
       throw EXCEPT("indefinite length on primitive", DECODE_ERROR);
    firstOctet = b.GetByte();
    if (elmtLen == 1)
    {
        bytesDecoded += 1;
        if (firstOctet == ENC_PLUS_INFINITY)
            value = PLUS_INFINITY;
        else if (firstOctet == ENC_MINUS_INFINITY)
            value = MINUS_INFINITY;
        else
        {
            throw EXCEPT("unrecognized 1 octet length real number", DECODE_ERROR);
        }
    }
    else
    {
        if (firstOctet & REAL_BINARY)
        {
            firstExpOctet = b.GetByte();
            if (firstExpOctet & 0x80)
                exponent = -1;
            switch (firstOctet & REAL_EXPLEN_MASK)
            {
                case REAL_EXPLEN_1:
                    expLen = 1;
                    exponent =  (exponent << 8) | firstExpOctet;
                    break;

                case REAL_EXPLEN_2:
                    expLen = 2;
                    exponent =  (exponent << 16) | (((unsigned long int) firstExpOctet) << 8) | b.GetByte();
                    break;

                case REAL_EXPLEN_3:
                    expLen = 3;
                    exponent =  (exponent << 16) | (((unsigned long int) firstExpOctet) << 8) | b.GetByte();
                    exponent =  (exponent << 8) | b.GetByte();
                    break;

                default:  /* long form */
                    expLen = firstExpOctet +1;
                    i = firstExpOctet-1;
                    firstExpOctet =  b.GetByte();
                    if (firstExpOctet & 0x80)
                        exponent = (-1 <<8) | firstExpOctet;
                    else
                        exponent = firstExpOctet;
                    for (;i > 0; firstExpOctet--, i--)
                        exponent = (exponent << 8) | b.GetByte();
                    break;
            }

            unsigned char cValue;
            mantissa = 0.0;
            for (i = 1 + expLen; i < (int)elmtLen; i++)
            {
                cValue = b.GetByte();
                
                mantissa = domainExp(mantissa, 8) + cValue;
            }
	    
            switch (firstOctet & REAL_BASE_MASK)
            {
            case REAL_BASE_2:
                baseF = 1;
                break;
                
            case REAL_BASE_8:
                baseF = 3;
                break;
                
            case REAL_BASE_16:
                baseF = 4;
                break;
                
            default:
                throw EXCEPT("unsupported base for a binary real number.", DECODE_ERROR);
                break;
                
            }

            unsigned int scaleF = 1<<((firstOctet & REAL_FACTOR_MASK) >> 2);

            //std::cout << "( " << pow(2,baseF) << "," << mantissa << "," << exponent << ") * " << double(scaleF) << " * " << ((firstOctet & REAL_SIGN) ? "-1.0" : "1.0") << std::endl;

            value = mantissa * pow(double(2.0), double(baseF) * double(exponent));
            value *= scaleF;
            
            if (firstOctet & REAL_SIGN)
                value = -value;
            
            bytesDecoded += elmtLen;
        }
        else /* decimal version */
        {
            throw EXCEPT("decimal REAL form is not currently supported" , DECODE_ERROR);
        }
    }
} /* AsnInt::BDecContent */

AsnLen AsnReal::PEnc (AsnBufBits &b) const
{
	AsnLen len=0;
    long templen = 0;
	AsnBuf tempBuf;
	char* seg = NULL;

	templen += BEncContent(tempBuf);

	seg = new char[templen + 1];

	tempBuf.GetSeg(seg, templen);
	
	len += PEncDefLenTo127(b, templen);

	if(templen > 0)
	{

		templen *= 8;

		len += b.OctetAlignWrite();


		len += b.PutBits((unsigned char*) seg, templen);
	}

    delete[] seg;
	return len;
}


void AsnReal::PDec (AsnBufBits &b, AsnLen &bitsDecoded)
{
	AsnBuf tempBuf;
	AsnLen bytesDecoded = 0;
	unsigned char* seg;
	unsigned long lseg;

	seg = b.GetBits(8);
	lseg = (unsigned long)seg[0];
	bitsDecoded += 8;
	
	bitsDecoded += b.OctetAlignRead();

    delete [] seg;
	seg = b.GetBits(lseg * 8);

	tempBuf.PutSegRvs((char*)seg, lseg);

	
	BDecContent (tempBuf, MAKE_TAG_ID (UNIV, PRIM, REAL_TAG_CODE), lseg, bytesDecoded);

	bitsDecoded += (bytesDecoded * 8);
    delete [] seg;
}


AsnLen AsnReal::BEnc (AsnBuf &b) const
{
    AsnLen l;
    l =  BEncContent (b);
    l += BEncDefLen (b, l);
    l += BEncTag1 (b, UNIV, PRIM, REAL_TAG_CODE);
    return l;
}

void AsnReal::BDec (const AsnBuf &b, AsnLen &bytesDecoded)
{
    FUNC("AsnReal::BDec()");

    AsnLen elmtLen;
    AsnTag tagId;

    tagId = BDecTag (b, bytesDecoded); 
    if (tagId != MAKE_TAG_ID (UNIV, PRIM, REAL_TAG_CODE))
    {
        throw InvalidTagException(typeName(), tagId, STACK_ENTRY);
    }
    elmtLen = BDecLen (b, bytesDecoded);

    BDecContent (b, MAKE_TAG_ID (UNIV, PRIM, REAL_TAG_CODE), elmtLen, bytesDecoded);
}

void AsnReal::Print(std::ostream& os, unsigned short /*indent*/) const
{
	os << value;
}

void AsnReal::PrintXML (std::ostream &os, const char *lpszTitle) const 
{
   os << "<REAL>"; 
   if (lpszTitle) os << lpszTitle; 
   os << "-"; 
   Print(os); os << "</REAL>\n"; 
}


char* AsnReal::checkRealValRange(const double m_Lower, const double m_Upper) const
{

	double ltemp;
    char* pError=NULL;
    char cTmperr[200];


   ltemp=value;

   if(ltemp<=m_Upper && ltemp >= m_Lower)
   {
	return pError;
   }
   else
   {
	if(ltemp>m_Upper)
    {
        sprintf(cTmperr, "_______\nREAL--Valuerange Constraints:\n_______\nError: --Value out of range--\nValue: %.5f is above the Upper Limit: %.5f \n", ltemp, m_Upper);
        pError = strdup(cTmperr);
        return pError;
    }
    else if(ltemp<m_Lower)
    {
        sprintf(cTmperr, "_______\nREAL--Valuerange Constraints:\n_______\nError: --Value out of range--\nValue: %.5f is below the Lower Limit: %.5f \n", ltemp, m_Lower);
        pError = strdup(cTmperr);
        return pError;
    }
    else
    {
        return pError;
    }
   }

   return pError;
}

char* AsnReal::checkRealSingleVal(const double m_SingleVal) const
{

	double ltemp;
    char* pError=NULL;
    char cTmperr[200];


   ltemp=value;

   if(ltemp==m_SingleVal)
   {
	return pError;
   }
   else
   {
        sprintf(cTmperr, "_______\nREAL--SingleValue Constraints:\n_______\nError: --Values must match--\nValue: %.5f is not equal to the Constraint Single Value:  %.5f \n", ltemp, m_SingleVal);
        pError = strdup(cTmperr);
        return pError;
   
   }

   return pError;
}




#if META

const AsnRealTypeDesc AsnReal::_desc (NULL, NULL, false, AsnTypeDesc::REAL, NULL);

const AsnTypeDesc *AsnReal::_getdesc() const
{
  return &_desc;
}

#if TCL

int AsnReal::TclGetVal (Tcl_Interp *interp) const
{
  if (value == PLUS_INFINITY)
    strcpy (interp->result, "+inf");
  else if (value == MINUS_INFINITY)
    strcpy (interp->result, "-inf");
  else
    sprintf (interp->result, "%g", value);
  return TCL_OK;
}

int AsnReal::TclSetVal (Tcl_Interp *interp, const char *valstr)
{
  double valval;

  if (!strcmp (valstr, "+inf"))
    valval = PLUS_INFINITY;
  else if (!strcmp (valstr, "-inf"))
    valval = MINUS_INFINITY;
  else if (Tcl_GetDouble (interp, (char*)valstr, &valval) != TCL_OK)
    return TCL_ERROR;

  value = valval;

  return TCL_OK;
}

#endif /* TCL */
#endif /* META */




_END_SNACC_NAMESPACE