File: klatt.c

package info (click to toggle)
espeak-ng 1.49.2+dfsg-8
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster, sid
  • size: 37,072 kB
  • sloc: ansic: 43,624; sh: 4,235; java: 4,005; xml: 1,469; python: 999; makefile: 953; cpp: 300
file content (1108 lines) | stat: -rw-r--r-- 32,138 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
/*
 * Copyright (C) 2008 by Jonathan Duddington
 * email: jonsd@users.sourceforge.net
 * Copyright (C) 2013-2016 Reece H. Dunn
 *
 * Based on a re-implementation by:
 * (c) 1993,94 Jon Iles and Nick Ing-Simmons
 * of the Klatt cascade-parallel formant synthesizer
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, see: <http://www.gnu.org/licenses/>.
 */

// See URL: ftp://svr-ftp.eng.cam.ac.uk/pub/comp.speech/synthesis/klatt.3.04.tar.gz

#include "config.h"

#include <math.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include <espeak-ng/espeak_ng.h>
#include <espeak-ng/speak_lib.h>

#include "speech.h"
#include "klatt.h"
#include "phoneme.h"
#include "synthesize.h"
#include "voice.h"

extern unsigned char *out_ptr;
extern unsigned char *out_start;
extern unsigned char *out_end;
extern WGEN_DATA wdata;
static int nsamples;
static int sample_count;

#ifdef _MSC_VER
#define getrandom(min, max) ((rand()%(int)(((max)+1)-(min)))+(min))
#else
#define getrandom(min, max) ((rand()%(long)(((max)+1)-(min)))+(min))
#endif

// function prototypes for functions private to this file

static void flutter(klatt_frame_ptr);
static double sampled_source(int);
static double impulsive_source(void);
static double natural_source(void);
static void pitch_synch_par_reset(klatt_frame_ptr);
static double gen_noise(double);
static double DBtoLIN(long);
static void frame_init(klatt_frame_ptr);
static void setabc(long, long, resonator_ptr);
static void setzeroabc(long, long, resonator_ptr);

static klatt_frame_t kt_frame;
static klatt_global_t kt_globals;

#define NUMBER_OF_SAMPLES 100

static int scale_wav_tab[] = { 45, 38, 45, 45, 55 }; // scale output from different voicing sources

// For testing, this can be overwritten in KlattInit()
static short natural_samples2[256] = {
	 2583,  2516,  2450,  2384,  2319,  2254,  2191,  2127,
	 2067,  2005,  1946,  1890,  1832,  1779,  1726,  1675,
	 1626,  1579,  1533,  1491,  1449,  1409,  1372,  1336,
	 1302,  1271,  1239,  1211,  1184,  1158,  1134,  1111,
	 1089,  1069,  1049,  1031,  1013,   996,   980,   965,
	  950,   936,   921,   909,   895,   881,   869,   855,
	  843,   830,   818,   804,   792,   779,   766,   754,
	  740,   728,   715,   702,   689,   676,   663,   651,
	  637,   626,   612,   601,   588,   576,   564,   552,
	  540,   530,   517,   507,   496,   485,   475,   464,
	  454,   443,   434,   424,   414,   404,   394,   385,
	  375,   366,   355,   347,   336,   328,   317,   308,
	  299,   288,   280,   269,   260,   250,   240,   231,
	  220,   212,   200,   192,   181,   172,   161,   152,
	  142,   133,   123,   113,   105,    94,    86,    76,
	   67,    57,    49,    39,    30,    22,    11,     4,
	   -5,   -14,   -23,   -32,   -41,   -50,   -60,   -69,
	  -78,   -87,   -96,  -107,  -115,  -126,  -134,  -144,
	 -154,  -164,  -174,  -183,  -193,  -203,  -213,  -222,
	 -233,  -242,  -252,  -262,  -271,  -281,  -291,  -301,
	 -310,  -320,  -330,  -339,  -349,  -357,  -368,  -377,
	 -387,  -397,  -406,  -417,  -426,  -436,  -446,  -456,
	 -467,  -477,  -487,  -499,  -509,  -521,  -532,  -543,
	 -555,  -567,  -579,  -591,  -603,  -616,  -628,  -641,
	 -653,  -666,  -679,  -692,  -705,  -717,  -732,  -743,
	 -758,  -769,  -783,  -795,  -808,  -820,  -834,  -845,
	 -860,  -872,  -885,  -898,  -911,  -926,  -939,  -955,
	 -968,  -986,  -999, -1018, -1034, -1054, -1072, -1094,
	-1115, -1138, -1162, -1188, -1215, -1244, -1274, -1307,
	-1340, -1377, -1415, -1453, -1496, -1538, -1584, -1631,
	-1680, -1732, -1783, -1839, -1894, -1952, -2010, -2072,
	-2133, -2196, -2260, -2325, -2390, -2456, -2522, -2589,
};
static short natural_samples[100] = {
	 -310,  -400,   530,   356,   224,    89,   23,  -10, -58, -16, 461,  599,  536,   701,   770,
	  605,   497,   461,   560,   404,   110,  224,  131, 104, -97, 155,  278, -154, -1165,
	 -598,   737,   125,  -592,    41,    11, -247,  -10,  65,  92,  80, -304,   71,   167,    -1, 122,
	  233,   161,   -43,   278,   479,   485,  407,  266, 650, 134,  80,  236,   68,   260,   269, 179,
	   53,   140,   275,   293,   296,   104,  257,  152, 311, 182, 263,  245,  125,   314,   140, 44,
	  203,   230,  -235,  -286,    23,   107,   92,  -91,  38, 464, 443,  176,   98,  -784, -2449,
	-1891, -1045, -1600, -1462, -1384, -1261, -949, -730
};

/*
   function RESONATOR

   This is a generic resonator function. Internal memory for the resonator
   is stored in the globals structure.
 */

static double resonator(resonator_ptr r, double input)
{
	double x;

	x = (double)((double)r->a * (double)input + (double)r->b * (double)r->p1 + (double)r->c * (double)r->p2);
	r->p2 = (double)r->p1;
	r->p1 = (double)x;

	return (double)x;
}

static double resonator2(resonator_ptr r, double input)
{
	double x;

	x = (double)((double)r->a * (double)input + (double)r->b * (double)r->p1 + (double)r->c * (double)r->p2);
	r->p2 = (double)r->p1;
	r->p1 = (double)x;

	r->a += r->a_inc;
	r->b += r->b_inc;
	r->c += r->c_inc;
	return (double)x;
}

static double antiresonator2(resonator_ptr r, double input)
{
	register double x = (double)r->a * (double)input + (double)r->b * (double)r->p1 + (double)r->c * (double)r->p2;
	r->p2 = (double)r->p1;
	r->p1 = (double)input;

	r->a += r->a_inc;
	r->b += r->b_inc;
	r->c += r->c_inc;
	return (double)x;
}

/*
   function FLUTTER

   This function adds F0 flutter, as specified in:

   "Analysis, synthesis and perception of voice quality variations among
   female and male talkers" D.H. Klatt and L.C. Klatt JASA 87(2) February 1990.

   Flutter is added by applying a quasi-random element constructed from three
   slowly varying sine waves.
 */

static void flutter(klatt_frame_ptr frame)
{
	static int time_count;
	double delta_f0;
	double fla, flb, flc, fld, fle;

	fla = (double)kt_globals.f0_flutter / 50;
	flb = (double)kt_globals.original_f0 / 100;
	flc = sin(M_PI*12.7*time_count); // because we are calling flutter() more frequently, every 2.9mS
	fld = sin(M_PI*7.1*time_count);
	fle = sin(M_PI*4.7*time_count);
	delta_f0 =  fla * flb * (flc + fld + fle) * 10;
	frame->F0hz10 = frame->F0hz10 + (long)delta_f0;
	time_count++;
}

/*
   function SAMPLED_SOURCE

   Allows the use of a glottal excitation waveform sampled from a real
   voice.
 */

static double sampled_source(int source_num)
{
	int itemp;
	double ftemp;
	double result;
	double diff_value;
	int current_value;
	int next_value;
	double temp_diff;
	short *samples;

	if (source_num == 0) {
		samples = natural_samples;
		kt_globals.num_samples = 100;
	} else {
		samples = natural_samples2;
		kt_globals.num_samples = 256;
	}

	if (kt_globals.T0 != 0) {
		ftemp = (double)kt_globals.nper;
		ftemp = ftemp / kt_globals.T0;
		ftemp = ftemp * kt_globals.num_samples;
		itemp = (int)ftemp;

		temp_diff = ftemp - (double)itemp;

		current_value = samples[itemp];
		next_value = samples[itemp+1];

		diff_value = (double)next_value - (double)current_value;
		diff_value = diff_value * temp_diff;

		result = samples[itemp] + diff_value;
		result = result * kt_globals.sample_factor;
	} else
		result = 0;
	return result;
}

/*
   function PARWAVE

   Converts synthesis parameters to a waveform.
 */

static int parwave(klatt_frame_ptr frame)
{
	double temp;
	int value;
	double outbypas;
	double out;
	long n4;
	double frics;
	double glotout;
	double aspiration;
	double casc_next_in;
	double par_glotout;
	static double noise;
	static double voice;
	static double vlast;
	static double glotlast;
	static double sourc;
	int ix;

	flutter(frame); // add f0 flutter

	// MAIN LOOP, for each output sample of current frame:

	for (kt_globals.ns = 0; kt_globals.ns < kt_globals.nspfr; kt_globals.ns++) {
		// Get low-passed random number for aspiration and frication noise
		noise = gen_noise(noise);

		// Amplitude modulate noise (reduce noise amplitude during
		// second half of glottal period) if voicing simultaneously present.

		if (kt_globals.nper > kt_globals.nmod)
			noise *= (double)0.5;

		// Compute frication noise
		frics = kt_globals.amp_frica * noise;

		// Compute voicing waveform. Run glottal source simulation at 4
		// times normal sample rate to minimize quantization noise in
		// period of female voice.

		for (n4 = 0; n4 < 4; n4++) {
			switch (kt_globals.glsource)
			{
			case IMPULSIVE:
				voice = impulsive_source();
				break;
			case NATURAL:
				voice = natural_source();
				break;
			case SAMPLED:
				voice = sampled_source(0);
				break;
			case SAMPLED2:
				voice = sampled_source(1);
				break;
			}

			// Reset period when counter 'nper' reaches T0
			if (kt_globals.nper >= kt_globals.T0) {
				kt_globals.nper = 0;
				pitch_synch_par_reset(frame);
			}

			// Low-pass filter voicing waveform before downsampling from 4*samrate
			// to samrate samples/sec.  Resonator f=.09*samrate, bw=.06*samrate

			voice = resonator(&(kt_globals.rsn[RLP]), voice);

			// Increment counter that keeps track of 4*samrate samples per sec
			kt_globals.nper++;
		}

		// Tilt spectrum of voicing source down by soft low-pass filtering, amount
		// of tilt determined by TLTdb

		voice = (voice * kt_globals.onemd) + (vlast * kt_globals.decay);
		vlast = voice;

		// Add breathiness during glottal open phase. Amount of breathiness
		// determined by parameter Aturb Use nrand rather than noise because
		// noise is low-passed.

		if (kt_globals.nper < kt_globals.nopen)
			voice += kt_globals.amp_breth * kt_globals.nrand;

		// Set amplitude of voicing
		glotout = kt_globals.amp_voice * voice;
		par_glotout = kt_globals.par_amp_voice * voice;

		// Compute aspiration amplitude and add to voicing source
		aspiration = kt_globals.amp_aspir * noise;
		glotout += aspiration;

		par_glotout += aspiration;

		// Cascade vocal tract, excited by laryngeal sources.
		// Nasal antiresonator, then formants FNP, F5, F4, F3, F2, F1

		out = 0;
		if (kt_globals.synthesis_model != ALL_PARALLEL) {
			casc_next_in = antiresonator2(&(kt_globals.rsn[Rnz]), glotout);
			casc_next_in = resonator(&(kt_globals.rsn[Rnpc]), casc_next_in);
			casc_next_in = resonator(&(kt_globals.rsn[R8c]), casc_next_in);
			casc_next_in = resonator(&(kt_globals.rsn[R7c]), casc_next_in);
			casc_next_in = resonator(&(kt_globals.rsn[R6c]), casc_next_in);
			casc_next_in = resonator2(&(kt_globals.rsn[R5c]), casc_next_in);
			casc_next_in = resonator2(&(kt_globals.rsn[R4c]), casc_next_in);
			casc_next_in = resonator2(&(kt_globals.rsn[R3c]), casc_next_in);
			casc_next_in = resonator2(&(kt_globals.rsn[R2c]), casc_next_in);
			out = resonator2(&(kt_globals.rsn[R1c]), casc_next_in);
		}

		// Excite parallel F1 and FNP by voicing waveform
		sourc = par_glotout; // Source is voicing plus aspiration

		// Standard parallel vocal tract Formants F6,F5,F4,F3,F2,
		// outputs added with alternating sign. Sound source for other
		// parallel resonators is frication plus first difference of
		// voicing waveform.

		out += resonator(&(kt_globals.rsn[R1p]), sourc);
		out += resonator(&(kt_globals.rsn[Rnpp]), sourc);

		sourc = frics + par_glotout - glotlast;
		glotlast = par_glotout;

		for (ix = R2p; ix <= R6p; ix++)
			out = resonator(&(kt_globals.rsn[ix]), sourc) - out;

		outbypas = kt_globals.amp_bypas * sourc;

		out = outbypas - out;

		out = resonator(&(kt_globals.rsn[Rout]), out);
		temp = (int)(out * wdata.amplitude * kt_globals.amp_gain0); // Convert back to integer

		// mix with a recorded WAV if required for this phoneme
		signed char c;
		int sample;

		if (wdata.mix_wavefile_ix < wdata.n_mix_wavefile) {
			if (wdata.mix_wave_scale == 0) {
				// a 16 bit sample
				c = wdata.mix_wavefile[wdata.mix_wavefile_ix+1];
				sample = wdata.mix_wavefile[wdata.mix_wavefile_ix] + (c * 256);
				wdata.mix_wavefile_ix += 2;
			} else {
				// a 8 bit sample, scaled
				sample = (signed char)wdata.mix_wavefile[wdata.mix_wavefile_ix++] * wdata.mix_wave_scale;
			}
			int z2 = sample * wdata.amplitude_v / 1024;
			z2 = (z2 * wdata.mix_wave_amp)/40;
			temp += z2;
		}

		// if fadeout is set, fade to zero over 64 samples, to avoid clicks at end of synthesis
		if (kt_globals.fadeout > 0) {
			kt_globals.fadeout--;
			temp = (temp * kt_globals.fadeout) / 64;
		}

		value = (int)temp + ((echo_buf[echo_tail++]*echo_amp) >> 8);
		if (echo_tail >= N_ECHO_BUF)
			echo_tail = 0;

		if (value < -32768)
			value = -32768;

		if (value > 32767)
			value =  32767;

		*out_ptr++ = value;
		*out_ptr++ = value >> 8;

		echo_buf[echo_head++] = value;
		if (echo_head >= N_ECHO_BUF)
			echo_head = 0;

		sample_count++;
		if (out_ptr + 2 > out_end)
			return 1;
	}
	return 0;
}

void KlattReset(int control)
{
	int r_ix;

	if (control == 2) {
		// Full reset
		kt_globals.FLPhz = (950 * kt_globals.samrate) / 10000;
		kt_globals.BLPhz = (630 * kt_globals.samrate) / 10000;
		kt_globals.minus_pi_t = -M_PI / kt_globals.samrate;
		kt_globals.two_pi_t = -2.0 * kt_globals.minus_pi_t;
		setabc(kt_globals.FLPhz, kt_globals.BLPhz, &(kt_globals.rsn[RLP]));
	}

	if (control > 0) {
		kt_globals.nper = 0;
		kt_globals.T0 = 0;
		kt_globals.nopen = 0;
		kt_globals.nmod = 0;

		for (r_ix = RGL; r_ix < N_RSN; r_ix++) {
			kt_globals.rsn[r_ix].p1 = 0;
			kt_globals.rsn[r_ix].p2 = 0;
		}
	}

	for (r_ix = 0; r_ix <= R6p; r_ix++) {
		kt_globals.rsn[r_ix].p1 = 0;
		kt_globals.rsn[r_ix].p2 = 0;
	}
}

/*
   function FRAME_INIT

   Use parameters from the input frame to set up resonator coefficients.
 */

static void frame_init(klatt_frame_ptr frame)
{
	double amp_par[7];
	static double amp_par_factor[7] = { 0.6, 0.4, 0.15, 0.06, 0.04, 0.022, 0.03 };
	long Gain0_tmp;
	int ix;

	kt_globals.original_f0 = frame->F0hz10 / 10;

	frame->AVdb_tmp  = frame->AVdb - 7;
	if (frame->AVdb_tmp < 0)
		frame->AVdb_tmp = 0;

	kt_globals.amp_aspir = DBtoLIN(frame->ASP) * 0.05;
	kt_globals.amp_frica = DBtoLIN(frame->AF) * 0.25;
	kt_globals.par_amp_voice = DBtoLIN(frame->AVpdb);
	kt_globals.amp_bypas = DBtoLIN(frame->AB) * 0.05;

	for (ix = 0; ix <= 6; ix++) {
		// parallel amplitudes F1 to F6, and parallel nasal pole
		amp_par[ix] = DBtoLIN(frame->Ap[ix]) * amp_par_factor[ix];
	}

	Gain0_tmp = frame->Gain0 - 3;
	if (Gain0_tmp <= 0)
		Gain0_tmp = 57;
	kt_globals.amp_gain0 = DBtoLIN(Gain0_tmp) / kt_globals.scale_wav;

	// Set coefficients of variable cascade resonators
	for (ix = 1; ix <= 9; ix++) {
		// formants 1 to 8, plus nasal pole
		setabc(frame->Fhz[ix], frame->Bhz[ix], &(kt_globals.rsn[ix]));

		if (ix <= 5) {
			setabc(frame->Fhz_next[ix], frame->Bhz_next[ix], &(kt_globals.rsn_next[ix]));

			kt_globals.rsn[ix].a_inc = (kt_globals.rsn_next[ix].a - kt_globals.rsn[ix].a) / 64.0;
			kt_globals.rsn[ix].b_inc = (kt_globals.rsn_next[ix].b - kt_globals.rsn[ix].b) / 64.0;
			kt_globals.rsn[ix].c_inc = (kt_globals.rsn_next[ix].c - kt_globals.rsn[ix].c) / 64.0;
		}
	}

	// nasal zero anti-resonator
	setzeroabc(frame->Fhz[F_NZ], frame->Bhz[F_NZ], &(kt_globals.rsn[Rnz]));
	setzeroabc(frame->Fhz_next[F_NZ], frame->Bhz_next[F_NZ], &(kt_globals.rsn_next[Rnz]));
	kt_globals.rsn[F_NZ].a_inc = (kt_globals.rsn_next[F_NZ].a - kt_globals.rsn[F_NZ].a) / 64.0;
	kt_globals.rsn[F_NZ].b_inc = (kt_globals.rsn_next[F_NZ].b - kt_globals.rsn[F_NZ].b) / 64.0;
	kt_globals.rsn[F_NZ].c_inc = (kt_globals.rsn_next[F_NZ].c - kt_globals.rsn[F_NZ].c) / 64.0;

	// Set coefficients of parallel resonators, and amplitude of outputs

	for (ix = 0; ix <= 6; ix++) {
		setabc(frame->Fhz[ix], frame->Bphz[ix], &(kt_globals.rsn[Rparallel+ix]));
		kt_globals.rsn[Rparallel+ix].a *= amp_par[ix];
	}

	// output low-pass filter

	setabc((long)0.0, (long)(kt_globals.samrate/2), &(kt_globals.rsn[Rout]));
}

/*
   function IMPULSIVE_SOURCE

   Generate a low pass filtered train of impulses as an approximation of
   a natural excitation waveform. Low-pass filter the differentiated impulse
   with a critically-damped second-order filter, time constant proportional
   to Kopen.
 */

static double impulsive_source()
{
	static double doublet[] = { 0.0, 13000000.0, -13000000.0 };
	static double vwave;

	if (kt_globals.nper < 3)
		vwave = doublet[kt_globals.nper];
	else
		vwave = 0.0;

	return resonator(&(kt_globals.rsn[RGL]), vwave);
}

/*
   function NATURAL_SOURCE

   Vwave is the differentiated glottal flow waveform, there is a weak
   spectral zero around 800 Hz, magic constants a,b reset pitch synchronously.
 */

static double natural_source()
{
	double lgtemp;
	static double vwave;

	if (kt_globals.nper < kt_globals.nopen) {
		kt_globals.pulse_shape_a -= kt_globals.pulse_shape_b;
		vwave += kt_globals.pulse_shape_a;
		lgtemp = vwave * 0.028;

		return lgtemp;
	}
	vwave = 0.0;
	return 0.0;
}

/*
   function PITCH_SYNC_PAR_RESET

   Reset selected parameters pitch-synchronously.


   Constant B0 controls shape of glottal pulse as a function
   of desired duration of open phase N0
   (Note that N0 is specified in terms of 40,000 samples/sec of speech)

   Assume voicing waveform V(t) has form: k1 t**2 - k2 t**3

   If the radiation characterivative, a temporal derivative
   is folded in, and we go from continuous time to discrete
   integers n:  dV/dt = vwave[n]
                        = sum over i=1,2,...,n of { a - (i * b) }
                        = a n  -  b/2 n**2

   where the  constants a and b control the detailed shape
   and amplitude of the voicing waveform over the open
   potion of the voicing cycle "nopen".

   Let integral of dV/dt have no net dc flow --> a = (b * nopen) / 3

   Let maximum of dUg(n)/dn be constant --> b = gain / (nopen * nopen)
   meaning as nopen gets bigger, V has bigger peak proportional to n

   Thus, to generate the table below for 40 <= nopen <= 263:

   B0[nopen - 40] = 1920000 / (nopen * nopen)
 */

static void pitch_synch_par_reset(klatt_frame_ptr frame)
{
	long temp;
	double temp1;
	static long skew;
	static short B0[224] = {
		1200, 1142, 1088, 1038, 991, 948, 907, 869, 833, 799, 768, 738, 710, 683, 658,
		 634,  612,  590,  570, 551, 533, 515, 499, 483, 468, 454, 440, 427, 415, 403,
		 391,  380,  370,  360, 350, 341, 332, 323, 315, 307, 300, 292, 285, 278, 272,
		 265,  259,  253,  247, 242, 237, 231, 226, 221, 217, 212, 208, 204, 199, 195,
		 192,  188,  184,  180, 177, 174, 170, 167, 164, 161, 158, 155, 153, 150, 147,
		 145,  142,  140,  137, 135, 133, 131, 128, 126, 124, 122, 120, 119, 117, 115,
		 113,  111,  110,  108, 106, 105, 103, 102, 100,  99,  97,  96,  95,  93,  92, 91, 90,
		  88,   87,   86,   85,  84,  83,  82,  80,  79,  78,  77,  76,  75,  75,  74, 73, 72, 71,
		  70,   69,   68,   68,  67,  66,  65,  64,  64,  63,  62,  61,  61,  60,  59, 59, 58, 57,
		  57,   56,   56,   55,  55,  54,  54,  53,  53,  52,  52,  51,  51,  50,  50, 49, 49, 48, 48,
		  47,   47,   46,   46,  45,  45,  44,  44,  43,  43,  42,  42,  41,  41,  41, 41, 40, 40,
		  39,   39,   38,   38,  38,  38,  37,  37,  36,  36,  36,  36,  35,  35,  35, 35, 34, 34, 33,
		  33,   33,   33,   32,  32,  32,  32,  31,  31,  31,  31,  30,  30,  30,  30, 29, 29, 29, 29,
		  28,   28,   28,   28,  27,  27
	};

	if (frame->F0hz10 > 0) {
		// T0 is 4* the number of samples in one pitch period

		kt_globals.T0 = (40 * kt_globals.samrate) / frame->F0hz10;

		kt_globals.amp_voice = DBtoLIN(frame->AVdb_tmp);

		// Duration of period before amplitude modulation

		kt_globals.nmod = kt_globals.T0;
		if (frame->AVdb_tmp > 0)
			kt_globals.nmod >>= 1;

		// Breathiness of voicing waveform

		kt_globals.amp_breth = DBtoLIN(frame->Aturb) * 0.1;

		// Set open phase of glottal period where  40 <= open phase <= 263

		kt_globals.nopen = 4 * frame->Kopen;

		if ((kt_globals.glsource == IMPULSIVE) && (kt_globals.nopen > 263))
			kt_globals.nopen = 263;

		if (kt_globals.nopen >= (kt_globals.T0-1))
			kt_globals.nopen = kt_globals.T0 - 2;

		if (kt_globals.nopen < 40) {
			// F0 max = 1000 Hz
			kt_globals.nopen = 40;
		}

		// Reset a & b, which determine shape of "natural" glottal waveform

		kt_globals.pulse_shape_b = B0[kt_globals.nopen-40];
		kt_globals.pulse_shape_a = (kt_globals.pulse_shape_b * kt_globals.nopen) * 0.333;

		// Reset width of "impulsive" glottal pulse

		temp = kt_globals.samrate / kt_globals.nopen;

		setabc((long)0, temp, &(kt_globals.rsn[RGL]));

		// Make gain at F1 about constant

		temp1 = kt_globals.nopen *.00833;
		kt_globals.rsn[RGL].a *= temp1 * temp1;

		// Truncate skewness so as not to exceed duration of closed phase
		// of glottal period.

		temp = kt_globals.T0 - kt_globals.nopen;
		if (frame->Kskew > temp)
			frame->Kskew = temp;
		if (skew >= 0)
			skew = frame->Kskew;
		else
			skew = -frame->Kskew;

		// Add skewness to closed portion of voicing period
		kt_globals.T0 = kt_globals.T0 + skew;
		skew = -skew;
	} else {
		kt_globals.T0 = 4; // Default for f0 undefined
		kt_globals.amp_voice = 0.0;
		kt_globals.nmod = kt_globals.T0;
		kt_globals.amp_breth = 0.0;
		kt_globals.pulse_shape_a = 0.0;
		kt_globals.pulse_shape_b = 0.0;
	}

	// Reset these pars pitch synchronously or at update rate if f0=0

	if ((kt_globals.T0 != 4) || (kt_globals.ns == 0)) {
		// Set one-pole low-pass filter that tilts glottal source

		kt_globals.decay = (0.033 * frame->TLTdb);

		if (kt_globals.decay > 0.0)
			kt_globals.onemd = 1.0 - kt_globals.decay;
		else
			kt_globals.onemd = 1.0;
	}
}

/*
   function SETABC

   Convert formant freqencies and bandwidth into resonator difference
   equation constants.
 */

static void setabc(long int f, long int bw, resonator_ptr rp)
{
	double r;
	double arg;

	// Let r  =  exp(-pi bw t)
	arg = kt_globals.minus_pi_t * bw;
	r = exp(arg);

	// Let c  =  -r**2
	rp->c = -(r * r);

	// Let b = r * 2*cos(2 pi f t)
	arg = kt_globals.two_pi_t * f;
	rp->b = r * cos(arg) * 2.0;

	// Let a = 1.0 - b - c
	rp->a = 1.0 - rp->b - rp->c;
}

/*
   function SETZEROABC

   Convert formant freqencies and bandwidth into anti-resonator difference
   equation constants.
 */

static void setzeroabc(long int f, long int bw, resonator_ptr rp)
{
	double r;
	double arg;

	f = -f;

	// First compute ordinary resonator coefficients
	// Let r  =  exp(-pi bw t)
	arg = kt_globals.minus_pi_t * bw;
	r = exp(arg);

	// Let c  =  -r**2
	rp->c = -(r * r);

	// Let b = r * 2*cos(2 pi f t)
	arg = kt_globals.two_pi_t * f;
	rp->b = r * cos(arg) * 2.;

	// Let a = 1.0 - b - c
	rp->a = 1.0 - rp->b - rp->c;

	// Now convert to antiresonator coefficients (a'=1/a, b'=b/a, c'=c/a)

	// If f == 0 then rp->a gets set to 0 which makes a'=1/a set a', b' and c' to
	// INF, causing an audible sound spike when triggered (e.g. apiration with the
	// nasal register set to f=0, bw=0).
	if (rp->a != 0) {
		// Now convert to antiresonator coefficients (a'=1/a, b'=b/a, c'=c/a)
		rp->a = 1.0 / rp->a;
		rp->c *= -rp->a;
		rp->b *= -rp->a;
	}
}

/*
   function GEN_NOISE

   Random number generator (return a number between -8191 and +8191)
   Noise spectrum is tilted down by soft low-pass filter having a pole near
   the origin in the z-plane, i.e. output = input + (0.75 * lastoutput)
 */

static double gen_noise(double noise)
{
	long temp;
	static double nlast;

	temp = (long)getrandom(-8191, 8191);
	kt_globals.nrand = (long)temp;

	noise = kt_globals.nrand + (0.75 * nlast);
	nlast = noise;

	return noise;
}

/*
   function DBTOLIN

   Convert from decibels to a linear scale factor


   Conversion table, db to linear, 87 dB --> 32767
                                86 dB --> 29491 (1 dB down = 0.5**1/6)
                                 ...
                                81 dB --> 16384 (6 dB down = 0.5)
                                 ...
                                 0 dB -->     0

   The just noticeable difference for a change in intensity of a vowel
   is approximately 1 dB.  Thus all amplitudes are quantized to 1 dB
   steps.
 */

static double DBtoLIN(long dB)
{
	static short amptable[88] = {
		   0,      0,     0,     0,     0,     0,     0,    0,     0,    0,   0,   0,  0, 6, 7,
		   8,      9,    10,    11,    13,    14,    16,   18,    20,   22,  25,  28, 32,
		   35,    40,    45,    51,    57,    64,    71,   80,    90,  101, 114, 128,
		  142,   159,   179,   202,   227,   256,   284,  318,   359,  405,
		  455,   512,   568,   638,   719,   881,   911, 1024,  1137, 1276,
		 1438,  1622,  1823,  2048,  2273,  2552,  2875, 3244,  3645,
		 4096,  4547,  5104,  5751,  6488,  7291,  8192, 9093, 10207,
		11502, 12976, 14582, 16384, 18350, 20644, 23429,
		26214, 29491, 32767
	};

	if ((dB < 0) || (dB > 87))
		return 0;

	return (double)(amptable[dB]) * 0.001;
}

extern voice_t *wvoice;
static klatt_peaks_t peaks[N_PEAKS];
static int end_wave;
static int klattp[N_KLATTP];
static double klattp1[N_KLATTP];
static double klattp_inc[N_KLATTP];

int Wavegen_Klatt(int resume)
{
	int pk;
	int x;
	int ix;
	int fade;

	if (resume == 0)
		sample_count = 0;

	while (sample_count < nsamples) {
		kt_frame.F0hz10 = (wdata.pitch * 10) / 4096;

		// formants F6,F7,F8 are fixed values for cascade resonators, set in KlattInit()
		// but F6 is used for parallel resonator
		// F0 is used for the nasal zero
		for (ix = 0; ix < 6; ix++) {
			kt_frame.Fhz[ix] = peaks[ix].freq;
			if (ix < 4)
				kt_frame.Bhz[ix] = peaks[ix].bw;
		}
		for (ix = 1; ix < 7; ix++)
			kt_frame.Ap[ix] = peaks[ix].ap;

		kt_frame.AVdb = klattp[KLATT_AV];
		kt_frame.AVpdb = klattp[KLATT_AVp];
		kt_frame.AF = klattp[KLATT_Fric];
		kt_frame.AB = klattp[KLATT_FricBP];
		kt_frame.ASP = klattp[KLATT_Aspr];
		kt_frame.Aturb = klattp[KLATT_Turb];
		kt_frame.Kskew = klattp[KLATT_Skew];
		kt_frame.TLTdb = klattp[KLATT_Tilt];
		kt_frame.Kopen = klattp[KLATT_Kopen];

		// advance formants
		for (pk = 0; pk < N_PEAKS; pk++) {
			peaks[pk].freq1 += peaks[pk].freq_inc;
			peaks[pk].freq = (int)peaks[pk].freq1;
			peaks[pk].bw1 += peaks[pk].bw_inc;
			peaks[pk].bw = (int)peaks[pk].bw1;
			peaks[pk].bp1 += peaks[pk].bp_inc;
			peaks[pk].bp = (int)peaks[pk].bp1;
			peaks[pk].ap1 += peaks[pk].ap_inc;
			peaks[pk].ap = (int)peaks[pk].ap1;
		}

		// advance other parameters
		for (ix = 0; ix < N_KLATTP; ix++) {
			klattp1[ix] += klattp_inc[ix];
			klattp[ix] = (int)klattp1[ix];
		}

		for (ix = 0; ix <= 6; ix++) {
			kt_frame.Fhz_next[ix] = peaks[ix].freq;
			if (ix < 4)
				kt_frame.Bhz_next[ix] = peaks[ix].bw;
		}

		// advance the pitch
		wdata.pitch_ix += wdata.pitch_inc;
		if ((ix = wdata.pitch_ix>>8) > 127) ix = 127;
		x = wdata.pitch_env[ix] * wdata.pitch_range;
		wdata.pitch = (x>>8) + wdata.pitch_base;

		kt_globals.nspfr = (nsamples - sample_count);
		if (kt_globals.nspfr > STEPSIZE)
			kt_globals.nspfr = STEPSIZE;

		frame_init(&kt_frame); // get parameters for next frame of speech

		if (parwave(&kt_frame) == 1)
			return 1; // output buffer is full
	}

	if (end_wave > 0) {
		fade = 64; // not followed by formant synthesis

		// fade out to avoid a click
		kt_globals.fadeout = fade;
		end_wave = 0;
		sample_count -= fade;
		kt_globals.nspfr = fade;
		if (parwave(&kt_frame) == 1)
			return 1; // output buffer is full
	}

	return 0;
}

void SetSynth_Klatt(int length, frame_t *fr1, frame_t *fr2, voice_t *v, int control)
{
	int ix;
	DOUBLEX next;
	int qix;
	int cmd;
	frame_t *fr3;
	static frame_t prev_fr;

	if (wvoice != NULL) {
		if ((wvoice->klattv[0] > 0) && (wvoice->klattv[0] <= 4 )) {
			kt_globals.glsource = wvoice->klattv[0];
			kt_globals.scale_wav = scale_wav_tab[kt_globals.glsource];
		}
		kt_globals.f0_flutter = wvoice->flutter/32;
	}

	end_wave = 0;
	if (control & 2)
		end_wave = 1; // fadeout at the end
	if (control & 1) {
		end_wave = 1;
		for (qix = wcmdq_head+1;; qix++) {
			if (qix >= N_WCMDQ) qix = 0;
			if (qix == wcmdq_tail) break;

			cmd = wcmdq[qix][0];
			if (cmd == WCMD_KLATT) {
				end_wave = 0; // next wave generation is from another spectrum

				fr3 = (frame_t *)wcmdq[qix][2];
				for (ix = 1; ix < 6; ix++) {
					if (fr3->ffreq[ix] != fr2->ffreq[ix]) {
						// there is a discontinuity in formants
						end_wave = 2;
						break;
					}
				}
				break;
			}
			if ((cmd == WCMD_WAVE) || (cmd == WCMD_PAUSE))
				break; // next is not from spectrum, so continue until end of wave cycle
		}
	}

	if (control & 1) {
		for (ix = 1; ix < 6; ix++) {
			if (prev_fr.ffreq[ix] != fr1->ffreq[ix]) {
				// Discontinuity in formants.
				// end_wave was set in SetSynth_Klatt() to fade out the previous frame
				KlattReset(0);
				break;
			}
		}
		memcpy(&prev_fr, fr2, sizeof(prev_fr));
	}

	for (ix = 0; ix < N_KLATTP; ix++) {
		if ((ix >= 5) && ((fr1->frflags & FRFLAG_KLATT) == 0)) {
			klattp1[ix] = klattp[ix] = 0;
			klattp_inc[ix] = 0;
		} else {
			klattp1[ix] = klattp[ix] = fr1->klattp[ix];
			klattp_inc[ix] = (double)((fr2->klattp[ix] - klattp[ix]) * STEPSIZE)/length;
		}
	}

	nsamples = length;

	for (ix = 1; ix < 6; ix++) {
		peaks[ix].freq1 = (fr1->ffreq[ix] * v->freq[ix] / 256.0) + v->freqadd[ix];
		peaks[ix].freq = (int)peaks[ix].freq1;
		next = (fr2->ffreq[ix] * v->freq[ix] / 256.0) + v->freqadd[ix];
		peaks[ix].freq_inc =  ((next - peaks[ix].freq1) * STEPSIZE) / length;

		if (ix < 4) {
			// klatt bandwidth for f1, f2, f3 (others are fixed)
			peaks[ix].bw1 = fr1->bw[ix] * 2;
			peaks[ix].bw = (int)peaks[ix].bw1;
			next = fr2->bw[ix] * 2;
			peaks[ix].bw_inc =  ((next - peaks[ix].bw1) * STEPSIZE) / length;
		}
	}

	// nasal zero frequency
	peaks[0].freq1 = fr1->klattp[KLATT_FNZ] * 2;
	if (peaks[0].freq1 == 0)
		peaks[0].freq1 = kt_frame.Fhz[F_NP]; // if no nasal zero, set it to same freq as nasal pole

	peaks[0].freq = (int)peaks[0].freq1;
	next = fr2->klattp[KLATT_FNZ] * 2;
	if (next == 0)
		next = kt_frame.Fhz[F_NP];

	peaks[0].freq_inc = ((next - peaks[0].freq1) * STEPSIZE) / length;

	peaks[0].bw1 = 89;
	peaks[0].bw = 89;
	peaks[0].bw_inc = 0;

	if (fr1->frflags & FRFLAG_KLATT) {
		// the frame contains additional parameters for parallel resonators
		for (ix = 1; ix < 7; ix++) {
			peaks[ix].bp1 = fr1->klatt_bp[ix] * 4; // parallel bandwidth
			peaks[ix].bp = (int)peaks[ix].bp1;
			next = fr2->klatt_bp[ix] * 4;
			peaks[ix].bp_inc =  ((next - peaks[ix].bp1) * STEPSIZE) / length;

			peaks[ix].ap1 = fr1->klatt_ap[ix]; // parallal amplitude
			peaks[ix].ap = (int)peaks[ix].ap1;
			next = fr2->klatt_ap[ix];
			peaks[ix].ap_inc =  ((next - peaks[ix].ap1) * STEPSIZE) / length;
		}
	}
}

int Wavegen_Klatt2(int length, int resume, frame_t *fr1, frame_t *fr2)
{
	if (resume == 0)
		SetSynth_Klatt(length, fr1, fr2, wvoice, 1);

	return Wavegen_Klatt(resume);
}

void KlattInit()
{

	static short formant_hz[10] = { 280, 688, 1064, 2806, 3260, 3700, 6500, 7000, 8000, 280 };
	static short bandwidth[10] = { 89, 160, 70, 160, 200, 200, 500, 500, 500, 89 };
	static short parallel_amp[10] = { 0, 59, 59, 59, 59, 59, 59, 0, 0, 0 };
	static short parallel_bw[10] = { 59, 59, 89, 149, 200, 200, 500, 0, 0, 0 };

	int ix;

	sample_count = 0;

	kt_globals.synthesis_model = CASCADE_PARALLEL;
	kt_globals.samrate = 22050;

	kt_globals.glsource = IMPULSIVE;
	kt_globals.scale_wav = scale_wav_tab[kt_globals.glsource];
	kt_globals.natural_samples = natural_samples;
	kt_globals.num_samples = NUMBER_OF_SAMPLES;
	kt_globals.sample_factor = 3.0;
	kt_globals.nspfr = (kt_globals.samrate * 10) / 1000;
	kt_globals.outsl = 0;
	kt_globals.f0_flutter = 20;

	KlattReset(2);

	// set default values for frame parameters
	for (ix = 0; ix <= 9; ix++) {
		kt_frame.Fhz[ix] = formant_hz[ix];
		kt_frame.Bhz[ix] = bandwidth[ix];
		kt_frame.Ap[ix] = parallel_amp[ix];
		kt_frame.Bphz[ix] = parallel_bw[ix];
	}
	kt_frame.Bhz_next[F_NZ] = bandwidth[F_NZ];

	kt_frame.F0hz10 = 1000;
	kt_frame.AVdb = 59;
	kt_frame.ASP = 0;
	kt_frame.Kopen = 40;
	kt_frame.Aturb = 0;
	kt_frame.TLTdb = 0;
	kt_frame.AF = 50;
	kt_frame.Kskew = 0;
	kt_frame.AB = 0;
	kt_frame.AVpdb = 0;
	kt_frame.Gain0 = 62;
}