File: wavegen.c

package info (click to toggle)
espeak-ng 1.49.2+dfsg-8
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster, sid
  • size: 37,072 kB
  • sloc: ansic: 43,624; sh: 4,235; java: 4,005; xml: 1,469; python: 999; makefile: 953; cpp: 300
file content (1414 lines) | stat: -rw-r--r-- 38,989 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
/*
 * Copyright (C) 2005 to 2013 by Jonathan Duddington
 * email: jonsd@users.sourceforge.net
 * Copyright (C) 2015-2016 Reece H. Dunn
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, see: <http://www.gnu.org/licenses/>.
 */

// this version keeps wavemult window as a constant fraction
// of the cycle length - but that spreads out the HF peaks too much

#include "config.h"

#include <math.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include <espeak-ng/espeak_ng.h>
#include <espeak-ng/speak_lib.h>

#include "speech.h"
#include "phoneme.h"
#include "synthesize.h"
#include "voice.h"

#if HAVE_SONIC_H
#include "sonic.h"
#endif

#include "sintab.h"

#define N_WAV_BUF   10

voice_t *wvoice = NULL;

FILE *f_log = NULL;
static int option_harmonic1 = 10;
static int flutter_amp = 64;

static int general_amplitude = 60;
static int consonant_amp = 26;

int embedded_value[N_EMBEDDED_VALUES];

static int PHASE_INC_FACTOR;
int samplerate = 0; // this is set by Wavegeninit()
int samplerate_native = 0;

static wavegen_peaks_t peaks[N_PEAKS];
static int peak_harmonic[N_PEAKS];
static int peak_height[N_PEAKS];

int echo_head;
int echo_tail;
int echo_amp = 0;
short echo_buf[N_ECHO_BUF];
static int echo_length = 0; // period (in sample\) to ensure completion of echo at the end of speech, set in WavegenSetEcho()

static int voicing;
static RESONATOR rbreath[N_PEAKS];

static int harm_sqrt_n = 0;

#define N_LOWHARM  30
static int harm_inc[N_LOWHARM]; // only for these harmonics do we interpolate amplitude between steps
static int *harmspect;
static int hswitch = 0;
static int hspect[2][MAX_HARMONIC]; // 2 copies, we interpolate between then
static int max_hval = 0;

static int nsamples = 0; // number to do
static int modulation_type = 0;
static int glottal_flag = 0;
static int glottal_reduce = 0;

WGEN_DATA wdata;

static int amp_ix;
static int amp_inc;
static unsigned char *amplitude_env = NULL;

static int samplecount = 0; // number done
static int samplecount_start = 0; // count at start of this segment
static int end_wave = 0; // continue to end of wave cycle
static int wavephase;
static int phaseinc;
static int cycle_samples; // number of samples in a cycle at current pitch
static int cbytes;
static int hf_factor;

static double minus_pi_t;
static double two_pi_t;

unsigned char *out_ptr;
unsigned char *out_start;
unsigned char *out_end;

// the queue of operations passed to wavegen from sythesize
intptr_t wcmdq[N_WCMDQ][4];
int wcmdq_head = 0;
int wcmdq_tail = 0;

// pitch,speed,
int embedded_default[N_EMBEDDED_VALUES]    = { 0,     50, 175, 100, 50,  0,  0, 0, 175, 0, 0, 0, 0, 0, 0 };
static int embedded_max[N_EMBEDDED_VALUES] = { 0, 0x7fff, 750, 300, 99, 99, 99, 0, 750, 0, 0, 0, 0, 4, 0 };

int current_source_index = 0;

extern FILE *f_wave;

#if HAVE_SONIC_H
static sonicStream sonicSpeedupStream = NULL;
double sonicSpeed = 1.0;
#endif

// 1st index=roughness
// 2nd index=modulation_type
// value: bits 0-3  amplitude (16ths), bits 4-7 every n cycles
#define N_ROUGHNESS 8
static unsigned char modulation_tab[N_ROUGHNESS][8] = {
	{ 0, 0x00, 0x00, 0x00, 0, 0x46, 0xf2, 0x29 },
	{ 0, 0x2f, 0x00, 0x2f, 0, 0x45, 0xf2, 0x29 },
	{ 0, 0x2f, 0x00, 0x2e, 0, 0x45, 0xf2, 0x28 },
	{ 0, 0x2e, 0x00, 0x2d, 0, 0x34, 0xf2, 0x28 },
	{ 0, 0x2d, 0x2d, 0x2c, 0, 0x34, 0xf2, 0x28 },
	{ 0, 0x2b, 0x2b, 0x2b, 0, 0x34, 0xf2, 0x28 },
	{ 0, 0x2a, 0x2a, 0x2a, 0, 0x34, 0xf2, 0x28 },
	{ 0, 0x29, 0x29, 0x29, 0, 0x34, 0xf2, 0x28 },
};

// Flutter table, to add natural variations to the pitch
#define N_FLUTTER  0x170
static int Flutter_inc;
static const unsigned char Flutter_tab[N_FLUTTER] = {
	0x80, 0x9b, 0xb5, 0xcb, 0xdc, 0xe8, 0xed, 0xec,
	0xe6, 0xdc, 0xce, 0xbf, 0xb0, 0xa3, 0x98, 0x90,
	0x8c, 0x8b, 0x8c, 0x8f, 0x92, 0x94, 0x95, 0x92,
	0x8c, 0x83, 0x78, 0x69, 0x59, 0x49, 0x3c, 0x31,
	0x2a, 0x29, 0x2d, 0x36, 0x44, 0x56, 0x69, 0x7d,
	0x8f, 0x9f, 0xaa, 0xb1, 0xb2, 0xad, 0xa4, 0x96,
	0x87, 0x78, 0x69, 0x5c, 0x53, 0x4f, 0x4f, 0x55,
	0x5e, 0x6b, 0x7a, 0x88, 0x96, 0xa2, 0xab, 0xb0,

	0xb1, 0xae, 0xa8, 0xa0, 0x98, 0x91, 0x8b, 0x88,
	0x89, 0x8d, 0x94, 0x9d, 0xa8, 0xb2, 0xbb, 0xc0,
	0xc1, 0xbd, 0xb4, 0xa5, 0x92, 0x7c, 0x63, 0x4a,
	0x32, 0x1e, 0x0e, 0x05, 0x02, 0x05, 0x0f, 0x1e,
	0x30, 0x44, 0x59, 0x6d, 0x7f, 0x8c, 0x96, 0x9c,
	0x9f, 0x9f, 0x9d, 0x9b, 0x99, 0x99, 0x9c, 0xa1,
	0xa9, 0xb3, 0xbf, 0xca, 0xd5, 0xdc, 0xe0, 0xde,
	0xd8, 0xcc, 0xbb, 0xa6, 0x8f, 0x77, 0x60, 0x4b,

	0x3a, 0x2e, 0x28, 0x29, 0x2f, 0x3a, 0x48, 0x59,
	0x6a, 0x7a, 0x86, 0x90, 0x94, 0x95, 0x91, 0x89,
	0x80, 0x75, 0x6b, 0x62, 0x5c, 0x5a, 0x5c, 0x61,
	0x69, 0x74, 0x80, 0x8a, 0x94, 0x9a, 0x9e, 0x9d,
	0x98, 0x90, 0x86, 0x7c, 0x71, 0x68, 0x62, 0x60,
	0x63, 0x6b, 0x78, 0x88, 0x9b, 0xaf, 0xc2, 0xd2,
	0xdf, 0xe6, 0xe7, 0xe2, 0xd7, 0xc6, 0xb2, 0x9c,
	0x84, 0x6f, 0x5b, 0x4b, 0x40, 0x39, 0x37, 0x38,

	0x3d, 0x43, 0x4a, 0x50, 0x54, 0x56, 0x55, 0x52,
	0x4d, 0x48, 0x42, 0x3f, 0x3e, 0x41, 0x49, 0x56,
	0x67, 0x7c, 0x93, 0xab, 0xc3, 0xd9, 0xea, 0xf6,
	0xfc, 0xfb, 0xf4, 0xe7, 0xd5, 0xc0, 0xaa, 0x94,
	0x80, 0x71, 0x64, 0x5d, 0x5a, 0x5c, 0x61, 0x68,
	0x70, 0x77, 0x7d, 0x7f, 0x7f, 0x7b, 0x74, 0x6b,
	0x61, 0x57, 0x4e, 0x48, 0x46, 0x48, 0x4e, 0x59,
	0x66, 0x75, 0x84, 0x93, 0x9f, 0xa7, 0xab, 0xaa,

	0xa4, 0x99, 0x8b, 0x7b, 0x6a, 0x5b, 0x4e, 0x46,
	0x43, 0x45, 0x4d, 0x5a, 0x6b, 0x7f, 0x92, 0xa6,
	0xb8, 0xc5, 0xcf, 0xd3, 0xd2, 0xcd, 0xc4, 0xb9,
	0xad, 0xa1, 0x96, 0x8e, 0x89, 0x87, 0x87, 0x8a,
	0x8d, 0x91, 0x92, 0x91, 0x8c, 0x84, 0x78, 0x68,
	0x55, 0x41, 0x2e, 0x1c, 0x0e, 0x05, 0x01, 0x05,
	0x0f, 0x1f, 0x34, 0x4d, 0x68, 0x81, 0x9a, 0xb0,
	0xc1, 0xcd, 0xd3, 0xd3, 0xd0, 0xc8, 0xbf, 0xb5,

	0xab, 0xa4, 0x9f, 0x9c, 0x9d, 0xa0, 0xa5, 0xaa,
	0xae, 0xb1, 0xb0, 0xab, 0xa3, 0x96, 0x87, 0x76,
	0x63, 0x51, 0x42, 0x36, 0x2f, 0x2d, 0x31, 0x3a,
	0x48, 0x59, 0x6b, 0x7e, 0x8e, 0x9c, 0xa6, 0xaa,
	0xa9, 0xa3, 0x98, 0x8a, 0x7b, 0x6c, 0x5d, 0x52,
	0x4a, 0x48, 0x4a, 0x50, 0x5a, 0x67, 0x75, 0x82
};

// waveform shape table for HF peaks, formants 6,7,8
#define N_WAVEMULT 128
static int wavemult_offset = 0;
static int wavemult_max = 0;

// the presets are for 22050 Hz sample rate.
// A different rate will need to recalculate the presets in WavegenInit()
static unsigned char wavemult[N_WAVEMULT] = {
	  0,   0,   0,   2,   3,   5,   8,  11,  14,  18,  22,  27,  32,  37,  43,  49,
	 55,  62,  69,  76,  83,  90,  98, 105, 113, 121, 128, 136, 144, 152, 159, 166,
	174, 181, 188, 194, 201, 207, 213, 218, 224, 228, 233, 237, 240, 244, 246, 249,
	251, 252, 253, 253, 253, 253, 252, 251, 249, 246, 244, 240, 237, 233, 228, 224,
	218, 213, 207, 201, 194, 188, 181, 174, 166, 159, 152, 144, 136, 128, 121, 113,
	105,  98,  90,  83,  76,  69,  62,  55,  49,  43,  37,  32,  27,  22,  18,  14,
	 11,   8,   5,   3,   2,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,
	  0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0
};

// set from y = pow(2,x) * 128,  x=-1 to 1
unsigned char pitch_adjust_tab[MAX_PITCH_VALUE+1] = {
	 64,  65,  66,  67,  68,  69,  70,  71,
	 72,  73,  74,  75,  76,  77,  78,  79,
	 80,  81,  82,  83,  84,  86,  87,  88,
	 89,  91,  92,  93,  94,  96,  97,  98,
	100, 101, 103, 104, 105, 107, 108, 110,
	111, 113, 115, 116, 118, 119, 121, 123,
	124, 126, 128, 130, 132, 133, 135, 137,
	139, 141, 143, 145, 147, 149, 151, 153,
	155, 158, 160, 162, 164, 167, 169, 171,
	174, 176, 179, 181, 184, 186, 189, 191,
	194, 197, 199, 202, 205, 208, 211, 214,
	217, 220, 223, 226, 229, 232, 236, 239,
	242, 246, 249, 252, 254, 255
};

void WcmdqStop()
{
	wcmdq_head = 0;
	wcmdq_tail = 0;

#if HAVE_SONIC_H
	if (sonicSpeedupStream != NULL) {
		sonicDestroyStream(sonicSpeedupStream);
		sonicSpeedupStream = NULL;
	}
#endif

	if (mbrola_name[0] != 0)
		MbrolaReset();
}

int WcmdqFree()
{
	int i;
	i = wcmdq_head - wcmdq_tail;
	if (i <= 0) i += N_WCMDQ;
	return i;
}

int WcmdqUsed()
{
	return N_WCMDQ - WcmdqFree();
}

void WcmdqInc()
{
	wcmdq_tail++;
	if (wcmdq_tail >= N_WCMDQ) wcmdq_tail = 0;
}

static void WcmdqIncHead()
{
	wcmdq_head++;
	if (wcmdq_head >= N_WCMDQ) wcmdq_head = 0;
}

#define PEAKSHAPEW 256

unsigned char pk_shape1[PEAKSHAPEW+1] = {
	255, 254, 254, 254, 254, 254, 253, 253, 252, 251, 251, 250, 249, 248, 247, 246,
	245, 244, 242, 241, 239, 238, 236, 234, 233, 231, 229, 227, 225, 223, 220, 218,
	216, 213, 211, 209, 207, 205, 203, 201, 199, 197, 195, 193, 191, 189, 187, 185,
	183, 180, 178, 176, 173, 171, 169, 166, 164, 161, 159, 156, 154, 151, 148, 146,
	143, 140, 138, 135, 132, 129, 126, 123, 120, 118, 115, 112, 108, 105, 102,  99,
	 96,  95,  93,  91,  90,  88,  86,  85,  83,  82,  80,  79,  77,  76,  74,  73,
	 72,  70,  69,  68,  67,  66,  64,  63,  62,  61,  60,  59,  58,  57,  56,  55,
	 55,  54,  53,  52,  52,  51,  50,  50,  49,  48,  48,  47,  47,  46,  46,  46,
	 45,  45,  45,  44,  44,  44,  44,  44,  44,  44,  43,  43,  43,  43,  44,  43,
	 42,  42,  41,  40,  40,  39,  38,  38,  37,  36,  36,  35,  35,  34,  33,  33,
	 32,  32,  31,  30,  30,  29,  29,  28,  28,  27,  26,  26,  25,  25,  24,  24,
	 23,  23,  22,  22,  21,  21,  20,  20,  19,  19,  18,  18,  18,  17,  17,  16,
	 16,  15,  15,  15,  14,  14,  13,  13,  13,  12,  12,  11,  11,  11,  10,  10,
	 10,   9,   9,   9,   8,   8,   8,   7,   7,   7,   7,   6,   6,   6,   5,   5,
	  5,   5,   4,   4,   4,   4,   4,   3,   3,   3,   3,   2,   2,   2,   2,   2,
	  2,   1,   1,   1,   1,   1,   1,   0,   0,   0,   0,   0,   0,   0,   0,   0,
	  0
};

static unsigned char pk_shape2[PEAKSHAPEW+1] = {
	255, 254, 254, 254, 254, 254, 254, 254, 254, 254, 253, 253, 253, 253, 252, 252,
	252, 251, 251, 251, 250, 250, 249, 249, 248, 248, 247, 247, 246, 245, 245, 244,
	243, 243, 242, 241, 239, 237, 235, 233, 231, 229, 227, 225, 223, 221, 218, 216,
	213, 211, 208, 205, 203, 200, 197, 194, 191, 187, 184, 181, 178, 174, 171, 167,
	163, 160, 156, 152, 148, 144, 140, 136, 132, 127, 123, 119, 114, 110, 105, 100,
	 96,  94,  91,  88,  86,  83,  81,  78,  76,  74,  71,  69,  66,  64,  62,  60,
	 57,  55,  53,  51,  49,  47,  44,  42,  40,  38,  36,  34,  32,  30,  29,  27,
	 25,  23,  21,  19,  18,  16,  14,  12,  11,   9,   7,   6,   4,   3,   1,   0,
	  0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,
	  0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,
	  0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,
	  0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,
	  0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,
	  0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,
	  0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,
	  0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,
	  0
};

static unsigned char *pk_shape;

void WavegenInit(int rate, int wavemult_fact)
{
	int ix;
	double x;

	if (wavemult_fact == 0)
		wavemult_fact = 60; // default

	wvoice = NULL;
	samplerate = samplerate_native = rate;
	PHASE_INC_FACTOR = 0x8000000 / samplerate; // assumes pitch is Hz*32
	Flutter_inc = (64 * samplerate)/rate;
	samplecount = 0;
	nsamples = 0;
	wavephase = 0x7fffffff;
	max_hval = 0;

	wdata.amplitude = 32;
	wdata.amplitude_fmt = 100;

	for (ix = 0; ix < N_EMBEDDED_VALUES; ix++)
		embedded_value[ix] = embedded_default[ix];

	// set up window to generate a spread of harmonics from a
	// single peak for HF peaks
	wavemult_max = (samplerate * wavemult_fact)/(256 * 50);
	if (wavemult_max > N_WAVEMULT) wavemult_max = N_WAVEMULT;

	wavemult_offset = wavemult_max/2;

	if (samplerate != 22050) {
		// wavemult table has preset values for 22050 Hz, we only need to
		// recalculate them if we have a different sample rate
		for (ix = 0; ix < wavemult_max; ix++) {
			x = 127*(1.0 - cos((M_PI*2)*ix/wavemult_max));
			wavemult[ix] = (int)x;
		}
	}

	pk_shape = pk_shape2;

#ifdef INCLUDE_KLATT
	KlattInit();
#endif
}

int GetAmplitude(void)
{
	int amp;

	// normal, none, reduced, moderate, strong
	static const unsigned char amp_emphasis[5] = { 16, 16, 10, 16, 22 };

	amp = (embedded_value[EMBED_A])*55/100;
	general_amplitude = amp * amp_emphasis[embedded_value[EMBED_F]] / 16;
	return general_amplitude;
}

static void WavegenSetEcho(void)
{
	if (wvoice == NULL)
		return;

	int delay;
	int amp;

	voicing = wvoice->voicing;
	delay = wvoice->echo_delay;
	amp = wvoice->echo_amp;

	if (delay >= N_ECHO_BUF)
		delay = N_ECHO_BUF-1;
	if (amp > 100)
		amp = 100;

	memset(echo_buf, 0, sizeof(echo_buf));
	echo_tail = 0;

	if (embedded_value[EMBED_H] > 0) {
		// set echo from an embedded command in the text
		amp = embedded_value[EMBED_H];
		delay = 130;
	}

	if (delay == 0)
		amp = 0;

	echo_head = (delay * samplerate)/1000;
	echo_length = echo_head; // ensure completion of echo at the end of speech. Use 1 delay period?
	if (amp == 0)
		echo_length = 0;
	if (amp > 20)
		echo_length = echo_head * 2; // perhaps allow 2 echo periods if the echo is loud.

	// echo_amp units are 1/256ths of the amplitude of the original sound.
	echo_amp = amp;
	// compensate (partially) for increase in amplitude due to echo
	general_amplitude = GetAmplitude();
	general_amplitude = ((general_amplitude * (500-amp))/500);
}

int PeaksToHarmspect(wavegen_peaks_t *peaks, int pitch, int *htab, int control)
{
	if (wvoice == NULL)
		return 1;

	// Calculate the amplitude of each  harmonics from the formants
	// Only for formants 0 to 5

	// control 0=initial call, 1=every 64 cycles

	// pitch and freqs are Hz<<16

	int f;
	wavegen_peaks_t *p;
	int fp;  // centre freq of peak
	int fhi; // high freq of peak
	int h;   // harmonic number
	int pk;
	int hmax;
	int hmax_samplerate; // highest harmonic allowed for the samplerate
	int x;
	int ix;
	int h1;

	// initialise as much of *out as we will need
	hmax = (peaks[wvoice->n_harmonic_peaks].freq + peaks[wvoice->n_harmonic_peaks].right)/pitch;
	if (hmax >= MAX_HARMONIC)
		hmax = MAX_HARMONIC-1;

	// restrict highest harmonic to half the samplerate
	hmax_samplerate = (((samplerate * 19)/40) << 16)/pitch; // only 95% of Nyquist freq

	if (hmax > hmax_samplerate)
		hmax = hmax_samplerate;

	for (h = 0; h <= hmax; h++)
		htab[h] = 0;

	for (pk = 0; pk <= wvoice->n_harmonic_peaks; pk++) {
		p = &peaks[pk];
		if ((p->height == 0) || (fp = p->freq) == 0)
			continue;

		fhi = p->freq + p->right;
		h = ((p->freq - p->left) / pitch) + 1;
		if (h <= 0) h = 1;

		for (f = pitch*h; f < fp; f += pitch)
			htab[h++] += pk_shape[(fp-f)/(p->left>>8)] * p->height;
		for (; f < fhi; f += pitch)
			htab[h++] += pk_shape[(f-fp)/(p->right>>8)] * p->height;
	}

	int y;
	int h2;
	// increase bass
	y = peaks[1].height * 10; // addition as a multiple of 1/256s
	h2 = (1000<<16)/pitch; // decrease until 1000Hz
	if (h2 > 0) {
		x = y/h2;
		h = 1;
		while (y > 0) {
			htab[h++] += y;
			y -= x;
		}
	}

	// find the nearest harmonic for HF peaks where we don't use shape
	for (; pk < N_PEAKS; pk++) {
		x = peaks[pk].height >> 14;
		peak_height[pk] = (x * x * 5)/2;

		// find the nearest harmonic for HF peaks where we don't use shape
		if (control == 0) {
			// set this initially, but make changes only at the quiet point
			peak_harmonic[pk] = peaks[pk].freq / pitch;
		}
		// only use harmonics up to half the samplerate
		if (peak_harmonic[pk] >= hmax_samplerate)
			peak_height[pk] = 0;
	}

	// convert from the square-rooted values
	f = 0;
	for (h = 0; h <= hmax; h++, f += pitch) {
		x = htab[h] >> 15;
		htab[h] = (x * x) >> 8;

		if ((ix = (f >> 19)) < N_TONE_ADJUST)
			htab[h] = (htab[h] * wvoice->tone_adjust[ix]) >> 13; // index tone_adjust with Hz/8
	}

	// adjust the amplitude of the first harmonic, affects tonal quality
	h1 = htab[1] * option_harmonic1;
	htab[1] = h1/8;

	// calc intermediate increments of LF harmonics
	if (control & 1) {
		for (h = 1; h < N_LOWHARM; h++)
			harm_inc[h] = (htab[h] - harmspect[h]) >> 3;
	}

	return hmax; // highest harmonic number
}

static void AdvanceParameters()
{
	// Called every 64 samples to increment the formant freq, height, and widths
	if (wvoice == NULL)
		return;

	int x;
	int ix;
	static int Flutter_ix = 0;

	// advance the pitch
	wdata.pitch_ix += wdata.pitch_inc;
	if ((ix = wdata.pitch_ix>>8) > 127) ix = 127;
	x = wdata.pitch_env[ix] * wdata.pitch_range;
	wdata.pitch = (x>>8) + wdata.pitch_base;

	amp_ix += amp_inc;

	/* add pitch flutter */
	if (Flutter_ix >= (N_FLUTTER*64))
		Flutter_ix = 0;
	x = ((int)(Flutter_tab[Flutter_ix >> 6])-0x80) * flutter_amp;
	Flutter_ix += Flutter_inc;
	wdata.pitch += x;
	if (wdata.pitch < 102400)
		wdata.pitch = 102400; // min pitch, 25 Hz  (25 << 12)

	if (samplecount == samplecount_start)
		return;

	for (ix = 0; ix <= wvoice->n_harmonic_peaks; ix++) {
		peaks[ix].freq1 += peaks[ix].freq_inc;
		peaks[ix].freq = (int)peaks[ix].freq1;
		peaks[ix].height1 += peaks[ix].height_inc;
		if ((peaks[ix].height = (int)peaks[ix].height1) < 0)
			peaks[ix].height = 0;
		peaks[ix].left1 += peaks[ix].left_inc;
		peaks[ix].left = (int)peaks[ix].left1;
		if (ix < 3) {
			peaks[ix].right1 += peaks[ix].right_inc;
			peaks[ix].right = (int)peaks[ix].right1;
		} else
			peaks[ix].right = peaks[ix].left;
	}
	for (; ix < 8; ix++) {
		// formants 6,7,8 don't have a width parameter
		if (ix < 7) {
			peaks[ix].freq1 += peaks[ix].freq_inc;
			peaks[ix].freq = (int)peaks[ix].freq1;
		}
		peaks[ix].height1 += peaks[ix].height_inc;
		if ((peaks[ix].height = (int)peaks[ix].height1) < 0)
			peaks[ix].height = 0;
	}
}

static double resonator(RESONATOR *r, double input)
{
	double x;

	x = r->a * input + r->b * r->x1 + r->c * r->x2;
	r->x2 = r->x1;
	r->x1 = x;

	return x;
}

static void setresonator(RESONATOR *rp, int freq, int bwidth, int init)
{
	// freq    Frequency of resonator in Hz
	// bwidth  Bandwidth of resonator in Hz
	// init    Initialize internal data

	double x;
	double arg;

	if (init) {
		rp->x1 = 0;
		rp->x2 = 0;
	}

	arg = minus_pi_t * bwidth;
	x = exp(arg);

	rp->c = -(x * x);

	arg = two_pi_t * freq;
	rp->b = x * cos(arg) * 2.0;

	rp->a = 1.0 - rp->b - rp->c;
}

void InitBreath(void)
{
	int ix;

	minus_pi_t = -M_PI / samplerate;
	two_pi_t = -2.0 * minus_pi_t;

	for (ix = 0; ix < N_PEAKS; ix++)
		setresonator(&rbreath[ix], 2000, 200, 1);
}

static void SetBreath()
{
	int pk;

	if (wvoice == NULL || wvoice->breath[0] == 0)
		return;

	for (pk = 1; pk < N_PEAKS; pk++) {
		if (wvoice->breath[pk] != 0) {
			// breath[0] indicates that some breath formants are needed
			// set the freq from the current synthesis formant and the width from the voice data
			setresonator(&rbreath[pk], peaks[pk].freq >> 16, wvoice->breathw[pk], 0);
		}
	}
}

static int ApplyBreath(void)
{
	if (wvoice == NULL)
		return 0;

	int value = 0;
	int noise;
	int ix;
	int amp;

	// use two random numbers, for alternate formants
	noise = (rand() & 0x3fff) - 0x2000;

	for (ix = 1; ix < N_PEAKS; ix++) {
		if ((amp = wvoice->breath[ix]) != 0) {
			amp *= (peaks[ix].height >> 14);
			value += (int)resonator(&rbreath[ix], noise) * amp;
		}
	}
	return value;
}

int Wavegen()
{
	if (wvoice == NULL)
		return 0;

	unsigned short waveph;
	unsigned short theta;
	int total;
	int h;
	int ix;
	int z, z1, z2;
	int echo;
	int ov;
	static int maxh, maxh2;
	int pk;
	signed char c;
	int sample;
	int amp;
	int modn_amp = 1, modn_period;
	static int agc = 256;
	static int h_switch_sign = 0;
	static int cycle_count = 0;
	static int amplitude2 = 0; // adjusted for pitch

	// continue until the output buffer is full, or
	// the required number of samples have been produced

	for (;;) {
		if ((end_wave == 0) && (samplecount == nsamples))
			return 0;

		if ((samplecount & 0x3f) == 0) {
			// every 64 samples, adjust the parameters
			if (samplecount == 0) {
				hswitch = 0;
				harmspect = hspect[0];
				maxh2 = PeaksToHarmspect(peaks, wdata.pitch<<4, hspect[0], 0);

				// adjust amplitude to compensate for fewer harmonics at higher pitch
				amplitude2 = (wdata.amplitude * (wdata.pitch >> 8) * wdata.amplitude_fmt)/(10000 << 3);

				// switch sign of harmonics above about 900Hz, to reduce max peak amplitude
				h_switch_sign = 890 / (wdata.pitch >> 12);
			} else
				AdvanceParameters();

			// pitch is Hz<<12
			phaseinc = (wdata.pitch>>7) * PHASE_INC_FACTOR;
			cycle_samples = samplerate/(wdata.pitch >> 12); // sr/(pitch*2)
			hf_factor = wdata.pitch >> 11;

			maxh = maxh2;
			harmspect = hspect[hswitch];
			hswitch ^= 1;
			maxh2 = PeaksToHarmspect(peaks, wdata.pitch<<4, hspect[hswitch], 1);

			SetBreath();
		} else if ((samplecount & 0x07) == 0) {
			for (h = 1; h < N_LOWHARM && h <= maxh2 && h <= maxh; h++)
				harmspect[h] += harm_inc[h];

			// bring automatic gain control back towards unity
			if (agc < 256) agc++;
		}

		samplecount++;

		if (wavephase > 0) {
			wavephase += phaseinc;
			if (wavephase < 0) {
				// sign has changed, reached a quiet point in the waveform
				cbytes = wavemult_offset - (cycle_samples)/2;
				if (samplecount > nsamples)
					return 0;

				cycle_count++;

				for (pk = wvoice->n_harmonic_peaks+1; pk < N_PEAKS; pk++) {
					// find the nearest harmonic for HF peaks where we don't use shape
					peak_harmonic[pk] = ((peaks[pk].freq / (wdata.pitch*8)) + 1) / 2;
				}

				// adjust amplitude to compensate for fewer harmonics at higher pitch
				amplitude2 = (wdata.amplitude * (wdata.pitch >> 8) * wdata.amplitude_fmt)/(10000 << 3);

				if (glottal_flag > 0) {
					if (glottal_flag == 3) {
						if ((nsamples-samplecount) < (cycle_samples*2)) {
							// Vowel before glottal-stop.
							// This is the start of the penultimate cycle, reduce its amplitude
							glottal_flag = 2;
							amplitude2 = (amplitude2 *  glottal_reduce)/256;
						}
					} else if (glottal_flag == 4) {
						// Vowel following a glottal-stop.
						// This is the start of the second cycle, reduce its amplitude
						glottal_flag = 2;
						amplitude2 = (amplitude2 * glottal_reduce)/256;
					} else
						glottal_flag--;
				}

				if (amplitude_env != NULL) {
					// amplitude envelope is only used for creaky voice effect on certain vowels/tones
					if ((ix = amp_ix>>8) > 127) ix = 127;
					amp = amplitude_env[ix];
					amplitude2 = (amplitude2 * amp)/128;
				}

				// introduce roughness into the sound by reducing the amplitude of
				modn_period = 0;
				if (voice->roughness < N_ROUGHNESS) {
					modn_period = modulation_tab[voice->roughness][modulation_type];
					modn_amp = modn_period & 0xf;
					modn_period = modn_period >> 4;
				}

				if (modn_period != 0) {
					if (modn_period == 0xf) {
						// just once */
						amplitude2 = (amplitude2 * modn_amp)/16;
						modulation_type = 0;
					} else {
						// reduce amplitude every [modn_period} cycles
						if ((cycle_count % modn_period) == 0)
							amplitude2 = (amplitude2 * modn_amp)/16;
					}
				}
			}
		} else
			wavephase += phaseinc;
		waveph = (unsigned short)(wavephase >> 16);
		total = 0;

		// apply HF peaks, formants 6,7,8
		// add a single harmonic and then spread this my multiplying by a
		// window.  This is to reduce the processing power needed to add the
		// higher frequence harmonics.
		cbytes++;
		if (cbytes >= 0 && cbytes < wavemult_max) {
			for (pk = wvoice->n_harmonic_peaks+1; pk < N_PEAKS; pk++) {
				theta = peak_harmonic[pk] * waveph;
				total += (long)sin_tab[theta >> 5] * peak_height[pk];
			}

			// spread the peaks by multiplying by a window
			total = (long)(total / hf_factor) * wavemult[cbytes];
		}

		// apply main peaks, formants 0 to 5
#ifdef USE_ASSEMBLER_1
		// use an optimised routine for this loop, if available
		total += AddSineWaves(waveph, h_switch_sign, maxh, harmspect);  // call an assembler code routine
#else
		theta = waveph;

		for (h = 1; h <= h_switch_sign; h++) {
			total += ((int)sin_tab[theta >> 5] * harmspect[h]);
			theta += waveph;
		}
		while (h <= maxh) {
			total -= ((int)sin_tab[theta >> 5] * harmspect[h]);
			theta += waveph;
			h++;
		}
#endif

		if (voicing != 64)
			total = (total >> 6) * voicing;

		if (wvoice->breath[0])
			total +=  ApplyBreath();

		// mix with sampled wave if required
		z2 = 0;
		if (wdata.mix_wavefile_ix < wdata.n_mix_wavefile) {
			if (wdata.mix_wave_scale == 0) {
				// a 16 bit sample
				c = wdata.mix_wavefile[wdata.mix_wavefile_ix+wdata.mix_wavefile_offset+1];
				sample = wdata.mix_wavefile[wdata.mix_wavefile_ix+wdata.mix_wavefile_offset] + (c * 256);
				wdata.mix_wavefile_ix += 2;
			} else {
				// a 8 bit sample, scaled
				sample = (signed char)wdata.mix_wavefile[wdata.mix_wavefile_offset+wdata.mix_wavefile_ix++] * wdata.mix_wave_scale;
			}
			z2 = (sample * wdata.amplitude_v) >> 10;
			z2 = (z2 * wdata.mix_wave_amp)/32;

			if ((wdata.mix_wavefile_ix + wdata.mix_wavefile_offset) >= wdata.mix_wavefile_max)  // reached the end of available WAV data
				wdata.mix_wavefile_offset -= (wdata.mix_wavefile_max*3)/4;
		}

		z1 = z2 + (((total>>8) * amplitude2) >> 13);

		echo = (echo_buf[echo_tail++] * echo_amp);
		z1 += echo >> 8;
		if (echo_tail >= N_ECHO_BUF)
			echo_tail = 0;

		z = (z1 * agc) >> 8;

		// check for overflow, 16bit signed samples
		if (z >= 32768) {
			ov = 8388608/z1 - 1;      // 8388608 is 2^23, i.e. max value * 256
			if (ov < agc) agc = ov;    // set agc to number of 1/256ths to multiply the sample by
			z = (z1 * agc) >> 8;      // reduce sample by agc value to prevent overflow
		} else if (z <= -32768) {
			ov = -8388608/z1 - 1;
			if (ov < agc) agc = ov;
			z = (z1 * agc) >> 8;
		}
		*out_ptr++ = z;
		*out_ptr++ = z >> 8;

		echo_buf[echo_head++] = z;
		if (echo_head >= N_ECHO_BUF)
			echo_head = 0;

		if (out_ptr + 2 > out_end)
			return 1;
	}
}

static int PlaySilence(int length, int resume)
{
	static int n_samples;
	int value = 0;

	nsamples = 0;
	samplecount = 0;
	wavephase = 0x7fffffff;

	if (length == 0)
		return 0;

	if (resume == 0)
		n_samples = length;

	while (n_samples-- > 0) {
		value = (echo_buf[echo_tail++] * echo_amp) >> 8;

		if (echo_tail >= N_ECHO_BUF)
			echo_tail = 0;

		*out_ptr++ = value;
		*out_ptr++ = value >> 8;

		echo_buf[echo_head++] = value;
		if (echo_head >= N_ECHO_BUF)
			echo_head = 0;

		if (out_ptr + 2 > out_end)
			return 1;
	}
	return 0;
}

static int PlayWave(int length, int resume, unsigned char *data, int scale, int amp)
{
	static int n_samples;
	static int ix = 0;
	int value;
	signed char c;

	if (resume == 0) {
		n_samples = length;
		ix = 0;
	}

	nsamples = 0;
	samplecount = 0;

	while (n_samples-- > 0) {
		if (scale == 0) {
			// 16 bits data
			c = data[ix+1];
			value = data[ix] + (c * 256);
			ix += 2;
		} else {
			// 8 bit data, shift by the specified scale factor
			value = (signed char)data[ix++] * scale;
		}
		value *= (consonant_amp * general_amplitude); // reduce strength of consonant
		value = value >> 10;
		value = (value * amp)/32;

		value += ((echo_buf[echo_tail++] * echo_amp) >> 8);

		if (value > 32767)
			value = 32768;
		else if (value < -32768)
			value = -32768;

		if (echo_tail >= N_ECHO_BUF)
			echo_tail = 0;

		out_ptr[0] = value;
		out_ptr[1] = value >> 8;
		out_ptr += 2;

		echo_buf[echo_head++] = (value*3)/4;
		if (echo_head >= N_ECHO_BUF)
			echo_head = 0;

		if (out_ptr + 2 > out_end)
			return 1;
	}
	return 0;
}

static int SetWithRange0(int value, int max)
{
	if (value < 0)
		return 0;
	if (value > max)
		return max;
	return value;
}

static void SetPitchFormants()
{
	if (wvoice == NULL)
		return;

	int ix;
	int factor = 256;
	int pitch_value;

	// adjust formants to give better results for a different voice pitch
	if ((pitch_value = embedded_value[EMBED_P]) > MAX_PITCH_VALUE)
		pitch_value = MAX_PITCH_VALUE;

	if (pitch_value > 50) {
		// only adjust if the pitch is higher than normal
		factor = 256 + (25 * (pitch_value - 50))/50;
	}

	for (ix = 0; ix <= 5; ix++)
		wvoice->freq[ix] = (wvoice->freq2[ix] * factor)/256;

	factor = embedded_value[EMBED_T]*3;
	wvoice->height[0] = (wvoice->height2[0] * (256 - factor*2))/256;
	wvoice->height[1] = (wvoice->height2[1] * (256 - factor))/256;
}

void SetEmbedded(int control, int value)
{
	// there was an embedded command in the text at this point
	int sign = 0;
	int command;

	command = control & 0x1f;
	if ((control & 0x60) == 0x60)
		sign = -1;
	else if ((control & 0x60) == 0x40)
		sign = 1;

	if (command < N_EMBEDDED_VALUES) {
		if (sign == 0)
			embedded_value[command] = value;
		else
			embedded_value[command] += (value * sign);
		embedded_value[command] = SetWithRange0(embedded_value[command], embedded_max[command]);
	}

	switch (command)
	{
	case EMBED_T:
		WavegenSetEcho(); // and drop through to case P
	case EMBED_P:
		SetPitchFormants();
		break;
	case EMBED_A: // amplitude
		general_amplitude = GetAmplitude();
		break;
	case EMBED_F: // emphasis
		general_amplitude = GetAmplitude();
		break;
	case EMBED_H:
		WavegenSetEcho();
		break;
	}
}

void WavegenSetVoice(voice_t *v)
{
	static voice_t v2;

	memcpy(&v2, v, sizeof(v2));
	wvoice = &v2;

	if (v->peak_shape == 0)
		pk_shape = pk_shape1;
	else
		pk_shape = pk_shape2;

	consonant_amp = (v->consonant_amp * 26) /100;
	if (samplerate <= 11000) {
		consonant_amp = consonant_amp*2; // emphasize consonants at low sample rates
		option_harmonic1 = 6;
	}
	WavegenSetEcho();
	SetPitchFormants();
	MarkerEvent(espeakEVENT_SAMPLERATE, 0, wvoice->samplerate, 0, out_ptr);
}

static void SetAmplitude(int length, unsigned char *amp_env, int value)
{
	if (wvoice == NULL)
		return;

	amp_ix = 0;
	if (length == 0)
		amp_inc = 0;
	else
		amp_inc = (256 * ENV_LEN * STEPSIZE)/length;

	wdata.amplitude = (value * general_amplitude)/16;
	wdata.amplitude_v = (wdata.amplitude * wvoice->consonant_ampv * 15)/100; // for wave mixed with voiced sounds

	amplitude_env = amp_env;
}

void SetPitch2(voice_t *voice, int pitch1, int pitch2, int *pitch_base, int *pitch_range)
{
	int x;
	int base;
	int range;
	int pitch_value;

	if (pitch1 > pitch2) {
		x = pitch1; // swap values
		pitch1 = pitch2;
		pitch2 = x;
	}

	if ((pitch_value = embedded_value[EMBED_P]) > MAX_PITCH_VALUE)
		pitch_value = MAX_PITCH_VALUE;
	pitch_value -= embedded_value[EMBED_T]; // adjust tone for announcing punctuation
	if (pitch_value < 0)
		pitch_value = 0;

	base = (voice->pitch_base * pitch_adjust_tab[pitch_value])/128;
	range =  (voice->pitch_range * embedded_value[EMBED_R])/50;

	// compensate for change in pitch when the range is narrowed or widened
	base -= (range - voice->pitch_range)*18;

	*pitch_base = base + (pitch1 * range)/2;
	*pitch_range = base + (pitch2 * range)/2 - *pitch_base;
}

void SetPitch(int length, unsigned char *env, int pitch1, int pitch2)
{
	if (wvoice == NULL)
		return;

	// length in samples

	if ((wdata.pitch_env = env) == NULL)
		wdata.pitch_env = env_fall; // default

	wdata.pitch_ix = 0;
	if (length == 0)
		wdata.pitch_inc = 0;
	else
		wdata.pitch_inc = (256 * ENV_LEN * STEPSIZE)/length;

	SetPitch2(wvoice, pitch1, pitch2, &wdata.pitch_base, &wdata.pitch_range);
	// set initial pitch
	wdata.pitch = ((wdata.pitch_env[0] * wdata.pitch_range) >>8) + wdata.pitch_base; // Hz << 12

	flutter_amp = wvoice->flutter;
}

void SetSynth(int length, int modn, frame_t *fr1, frame_t *fr2, voice_t *v)
{
	if (wvoice == NULL || v == NULL)
		return;

	int ix;
	DOUBLEX next;
	int length2;
	int length4;
	int qix;
	int cmd;
	static int glottal_reduce_tab1[4] = { 0x30, 0x30, 0x40, 0x50 }; // vowel before [?], amp * 1/256
	static int glottal_reduce_tab2[4] = { 0x90, 0xa0, 0xb0, 0xc0 }; // vowel after [?], amp * 1/256

	harm_sqrt_n = 0;
	end_wave = 1;

	// any additional information in the param1 ?
	modulation_type = modn & 0xff;

	glottal_flag = 0;
	if (modn & 0x400) {
		glottal_flag = 3; // before a glottal stop
		glottal_reduce = glottal_reduce_tab1[(modn >> 8) & 3];
	}
	if (modn & 0x800) {
		glottal_flag = 4; // after a glottal stop
		glottal_reduce = glottal_reduce_tab2[(modn >> 8) & 3];
	}

	for (qix = wcmdq_head+1;; qix++) {
		if (qix >= N_WCMDQ) qix = 0;
		if (qix == wcmdq_tail) break;

		cmd = wcmdq[qix][0];
		if (cmd == WCMD_SPECT) {
			end_wave = 0; // next wave generation is from another spectrum
			break;
		}
		if ((cmd == WCMD_WAVE) || (cmd == WCMD_PAUSE))
			break; // next is not from spectrum, so continue until end of wave cycle
	}

	// round the length to a multiple of the stepsize
	length2 = (length + STEPSIZE/2) & ~0x3f;
	if (length2 == 0)
		length2 = STEPSIZE;

	// add this length to any left over from the previous synth
	samplecount_start = samplecount;
	nsamples += length2;

	length4 = length2/4;

	peaks[7].freq = (7800  * v->freq[7] + v->freqadd[7]*256) << 8;
	peaks[8].freq = (9000  * v->freq[8] + v->freqadd[8]*256) << 8;

	for (ix = 0; ix < 8; ix++) {
		if (ix < 7) {
			peaks[ix].freq1 = (fr1->ffreq[ix] * v->freq[ix] + v->freqadd[ix]*256) << 8;
			peaks[ix].freq = (int)peaks[ix].freq1;
			next = (fr2->ffreq[ix] * v->freq[ix] + v->freqadd[ix]*256) << 8;
			peaks[ix].freq_inc =  ((next - peaks[ix].freq1) * (STEPSIZE/4)) / length4; // lower headroom for fixed point math
		}

		peaks[ix].height1 = (fr1->fheight[ix] * v->height[ix]) << 6;
		peaks[ix].height = (int)peaks[ix].height1;
		next = (fr2->fheight[ix] * v->height[ix]) << 6;
		peaks[ix].height_inc =  ((next - peaks[ix].height1) * STEPSIZE) / length2;

		if ((ix <= 5) && (ix <= wvoice->n_harmonic_peaks)) {
			peaks[ix].left1 = (fr1->fwidth[ix] * v->width[ix]) << 10;
			peaks[ix].left = (int)peaks[ix].left1;
			next = (fr2->fwidth[ix] * v->width[ix]) << 10;
			peaks[ix].left_inc =  ((next - peaks[ix].left1) * STEPSIZE) / length2;

			if (ix < 3) {
				peaks[ix].right1 = (fr1->fright[ix] * v->width[ix]) << 10;
				peaks[ix].right = (int)peaks[ix].right1;
				next = (fr2->fright[ix] * v->width[ix]) << 10;
				peaks[ix].right_inc = ((next - peaks[ix].right1) * STEPSIZE) / length2;
			} else
				peaks[ix].right = peaks[ix].left;
		}
	}
}

static int Wavegen2(int length, int modulation, int resume, frame_t *fr1, frame_t *fr2)
{
	if (resume == 0)
		SetSynth(length, modulation, fr1, fr2, wvoice);

	return Wavegen();
}

void Write4Bytes(FILE *f, int value)
{
	// Write 4 bytes to a file, least significant first
	int ix;

	for (ix = 0; ix < 4; ix++) {
		fputc(value & 0xff, f);
		value = value >> 8;
	}
}

int WavegenFill2()
{
	// Pick up next wavegen commands from the queue
	// return: 0  output buffer has been filled
	// return: 1  input command queue is now empty
	intptr_t *q;
	int length;
	int result;
	int marker_type;
	static int resume = 0;
	static int echo_complete = 0;

	while (out_ptr < out_end) {
		if (WcmdqUsed() <= 0) {
			if (echo_complete > 0) {
				// continue to play silence until echo is completed
				resume = PlaySilence(echo_complete, resume);
				if (resume == 1)
					return 0; // not yet finished
			}
			return 1; // queue empty, close sound channel
		}

		result = 0;
		q = wcmdq[wcmdq_head];
		length = q[1];

		switch (q[0] & 0xff)
		{
		case WCMD_PITCH:
			SetPitch(length, (unsigned char *)q[2], q[3] >> 16, q[3] & 0xffff);
			break;
		case WCMD_PAUSE:
			if (resume == 0)
				echo_complete -= length;
			wdata.n_mix_wavefile = 0;
			wdata.amplitude_fmt = 100;
#ifdef INCLUDE_KLATT
			KlattReset(1);
#endif
			result = PlaySilence(length, resume);
			break;
		case WCMD_WAVE:
			echo_complete = echo_length;
			wdata.n_mix_wavefile = 0;
#ifdef INCLUDE_KLATT
			KlattReset(1);
#endif
			result = PlayWave(length, resume, (unsigned char *)q[2], q[3] & 0xff, q[3] >> 8);
			break;
		case WCMD_WAVE2:
			// wave file to be played at the same time as synthesis
			wdata.mix_wave_amp = q[3] >> 8;
			wdata.mix_wave_scale = q[3] & 0xff;
			wdata.n_mix_wavefile = (length & 0xffff);
			wdata.mix_wavefile_max = (length >> 16) & 0xffff;
			if (wdata.mix_wave_scale == 0) {
				wdata.n_mix_wavefile *= 2;
				wdata.mix_wavefile_max *= 2;
			}
			wdata.mix_wavefile_ix = 0;
			wdata.mix_wavefile_offset = 0;
			wdata.mix_wavefile = (unsigned char *)q[2];
			break;
		case WCMD_SPECT2: // as WCMD_SPECT but stop any concurrent wave file
			wdata.n_mix_wavefile = 0; // ... and drop through to WCMD_SPECT case
		case WCMD_SPECT:
			echo_complete = echo_length;
			result = Wavegen2(length & 0xffff, q[1] >> 16, resume, (frame_t *)q[2], (frame_t *)q[3]);
			break;
#ifdef INCLUDE_KLATT
		case WCMD_KLATT2: // as WCMD_SPECT but stop any concurrent wave file
			wdata.n_mix_wavefile = 0; // ... and drop through to WCMD_SPECT case
		case WCMD_KLATT:
			echo_complete = echo_length;
			result = Wavegen_Klatt2(length & 0xffff, resume, (frame_t *)q[2], (frame_t *)q[3]);
			break;
#endif
		case WCMD_MARKER:
			marker_type = q[0] >> 8;
			MarkerEvent(marker_type, q[1], q[2], q[3], out_ptr);
			if (marker_type == 1) // word marker
				current_source_index = q[1] & 0xffffff;
			break;
		case WCMD_AMPLITUDE:
			SetAmplitude(length, (unsigned char *)q[2], q[3]);
			break;
		case WCMD_VOICE:
			WavegenSetVoice((voice_t *)q[2]);
			free((voice_t *)q[2]);
			break;
		case WCMD_EMBEDDED:
			SetEmbedded(q[1], q[2]);
			break;
		case WCMD_MBROLA_DATA:
			if (wvoice != NULL)
				result = MbrolaFill(length, resume, (general_amplitude * wvoice->voicing)/64);
			break;
		case WCMD_FMT_AMPLITUDE:
			if ((wdata.amplitude_fmt = q[1]) == 0)
				wdata.amplitude_fmt = 100; // percentage, but value=0 means 100%
			break;
#if HAVE_SONIC_H
		case WCMD_SONIC_SPEED:
			sonicSpeed = (double)q[1] / 1024;
			break;
#endif
		}

		if (result == 0) {
			WcmdqIncHead();
			resume = 0;
		} else
			resume = 1;
	}

	return 0;
}

#if HAVE_SONIC_H
// Speed up the audio samples with libsonic.
static int SpeedUp(short *outbuf, int length_in, int length_out, int end_of_text)
{
	if (length_in > 0) {
		if (sonicSpeedupStream == NULL)
			sonicSpeedupStream = sonicCreateStream(22050, 1);
		if (sonicGetSpeed(sonicSpeedupStream) != sonicSpeed)
			sonicSetSpeed(sonicSpeedupStream, sonicSpeed);

		sonicWriteShortToStream(sonicSpeedupStream, outbuf, length_in);
	}

	if (sonicSpeedupStream == NULL)
		return 0;

	if (end_of_text)
		sonicFlushStream(sonicSpeedupStream);
	return sonicReadShortFromStream(sonicSpeedupStream, outbuf, length_out);
}
#endif

// Call WavegenFill2, and then speed up the output samples.
int WavegenFill()
{
	int finished;
	unsigned char *p_start;

	p_start = out_ptr;

	finished = WavegenFill2();

#if HAVE_SONIC_H
	if (sonicSpeed > 1.0) {
		int length;
		int max_length;

		max_length = (out_end - p_start);
		length =  2*SpeedUp((short *)p_start, (out_ptr-p_start)/2, max_length/2, finished);
		out_ptr = p_start + length;

		if (length >= max_length)
			finished = 0; // there may be more data to flush
	}
#endif
	return finished;
}