File: INPUT_CP.xml

package info (click to toggle)
espresso 5.1%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 146,004 kB
  • ctags: 17,245
  • sloc: f90: 253,041; sh: 51,271; ansic: 27,494; tcl: 15,570; xml: 14,508; makefile: 2,958; perl: 2,035; fortran: 1,924; python: 337; cpp: 200; awk: 57
file content (1992 lines) | stat: -rw-r--r-- 71,379 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
<?xml version="1.0" encoding="ISO-8859-1"?>
<?xml-stylesheet type="text/xsl" href="input_xx.xsl"?>
<!-- FILE AUTOMATICALLY CREATED: DO NOT EDIT, CHANGES WILL BE LOST -->
    
<input_description distribution="Quantum Espresso" package="CP" program="cp.x" >
   <toc>
   </toc>
   <intro>
Input data format: { } = optional, [ ] = it depends, | = or

All quantities whose dimensions are not explicitly specified are in
HARTREE ATOMIC UNITS

BEWARE: TABS, DOS &lt;CR&gt;&lt;LF&gt; CHARACTERS ARE POTENTIAL SOURCES OF TROUBLE
Comment lines in namelists can be introduced by a &quot;!&quot;, exactly as in
fortran code. Comments lines in ``cards&apos;&apos; can be introduced by
either a &quot;!&quot; or a &quot;#&quot; character in the first position of a line.
Do not start any line in ``cards&apos;&apos; with a &quot;/&quot; character.

Structure of the input data:
===============================================================================

&amp;CONTROL
  ...
/

&amp;SYSTEM
 ...
/

&amp;ELECTRONS
...
/

[ &amp;IONS
  ...
 / ]

[ &amp;CELL
  ...
 / ]

[ &amp;WANNIER
  ...
 / ]

ATOMIC_SPECIES
 X  Mass_X  PseudoPot_X
 Y  Mass_Y  PseudoPot_Y
 Z  Mass_Z  PseudoPot_Z

ATOMIC_POSITIONS { alat | bohr | crystal | angstrom }
  X 0.0  0.0  0.0  {if_pos(1) if_pos(2) if_pos(3)}
  Y 0.5  0.0  0.0
  Z O.0  0.2  0.2

[ CELL_PARAMETERS { bohr | angstrom }
   v1(1) v1(2) v1(3)
   v2(1) v2(2) v2(3)
   v3(1) v3(2) v3(3) ]

[ OCCUPATIONS
   f_inp1(1)  f_inp1(2)  f_inp1(3) ... f_inp1(10)
   f_inp1(11) f_inp1(12) ... f_inp1(nbnd)
 [ f_inp2(1)  f_inp2(2)  f_inp2(3) ... f_inp2(10)
   f_inp2(11) f_inp2(12) ... f_inp2(nbnd) ] ]

[ CONSTRAINTS
   nconstr  { constr_tol }
   constr_type(.)   constr(1,.)   constr(2,.) [ constr(3,.)   constr(4,.) ] { constr_target(.) } ]
   </intro>
   <namelist name="CONTROL" >
      <var name="calculation" type="CHARACTER" >
         <default> &apos;cp&apos;
         </default>
         <info>
a string describing the task to be performed:
   &apos;cp&apos;,
   &apos;scf&apos;,
   &apos;nscf&apos;,
   &apos;relax&apos;,
   &apos;vc-relax&apos;,
   &apos;vc-cp&apos;,
   &apos;cp-wf&apos;

   (vc = variable-cell).
         </info>
      </var>
      <var name="title" type="CHARACTER" >
         <default> &apos;MD Simulation &apos;
         </default>
         <info>
reprinted on output.
         </info>
      </var>
      <var name="verbosity" type="CHARACTER" >
         <default> &apos;low&apos;
         </default>
         <info>
In order of decreasing verbose output:
 &apos;debug&apos; | &apos;high&apos; | &apos;medium&apos; | &apos;low&apos;,&apos;default&apos; | &apos;minimal&apos;
         </info>
      </var>
      <var name="isave" type="INTEGER" >
         <see> ndr
         </see>
         <see> ndw
         </see>
         <default> 100
         </default>
         <info>
Number of steps between successive savings of
information needed to restart the run.
         </info>
      </var>
      <var name="restart_mode" type="CHARACTER" >
         <default> &apos;restart&apos;
         </default>
         <info>
&apos;from_scratch&apos;   : from scratch
&apos;restart&apos;        : from previous interrupted run
&apos;reset_counters&apos; : continue a previous simulation,
                   performs  &quot;nstep&quot; new steps, resetting
                   the counter and averages
         </info>
      </var>
      <var name="nstep" type="INTEGER" >
         <info>
number of ionic + electronic steps
         </info>
         <default>
1  if calculation = &apos;scf&apos;, &apos;nscf&apos;, &apos;bands&apos;;
50 for the other cases
         </default>
      </var>
      <var name="iprint" type="INTEGER" >
         <default> 10
         </default>
         <info>
Number of steps between successive writings of relevant
physical quantities to standard output and to files &quot;fort.3?&quot;
or &quot;prefix.???&quot; depending on &quot;prefix&quot; parameter
         </info>
      </var>
      <var name="tstress" type="LOGICAL" >
         <default> .false.
         </default>
         <info>
Write stress tensor to standard output each &quot;iprint&quot; steps.
It is set to .TRUE. automatically if
calculation=&apos;vc-relax&apos;
         </info>
      </var>
      <var name="tprnfor" type="LOGICAL" >
         <default> .false.
         </default>
         <info>
print forces. Set to .TRUE. when ions are moving.
         </info>
      </var>
      <var name="dt" type="REAL" >
         <default> 1.D0
         </default>
         <info>
time step for molecular dynamics, in Hartree atomic units
(1 a.u.=2.4189 * 10^-17 s : beware, PW code use
 Rydberg atomic units, twice that much!!!)
         </info>
      </var>
      <var name="outdir" type="CHARACTER" >
         <default>
value of the ESPRESSO_TMPDIR environment variable if set;
current directory (&apos;./&apos;) otherwise
         </default>
         <info>
input, temporary, trajectories and output files are found
in this directory.
         </info>
      </var>
      <var name="saverho" type="LOGICAL" >
         <info>
This flag controls the saving of charge density in CP codes:
If  .TRUE.        save charge density to restart dir,
If .FALSE. do not save charge density.
         </info>
      </var>
      <var name="prefix" type="CHARACTER" >
         <default> &apos;cp&apos;
         </default>
         <info>
prepended to input/output filenames:
prefix.pos, prefix.vel, etc.
         </info>
      </var>
      <var name="ndr" type="INTEGER" >
         <default> 50
         </default>
         <info>
Units for input and output restart file.
         </info>
      </var>
      <var name="ndw" type="INTEGER" >
         <default> 50
         </default>
         <info>
Units for input and output restart file.
         </info>
      </var>
      <var name="tabps" type="LOGICAL" >
         <default> .false.
         </default>
         <info>
.true. to compute the volume and/or the surface of an isolated
system for finite pressure/finite surface tension calculations
(PRL 94, 145501 (2005); JCP 124, 074103 (2006)).
         </info>
      </var>
      <var name="max_seconds" type="REAL" >
         <default> 1.D+7, or 150 days, i.e. no time limit
         </default>
         <info>
jobs stops after max_seconds CPU time. Used to prevent
a hard kill from the queuing system.
         </info>
      </var>
      <var name="etot_conv_thr" type="REAL" >
         <default> 1.0D-4
         </default>
         <info>
convergence threshold on total energy (a.u) for ionic
minimization: the convergence criterion is satisfied
when the total energy changes less than etot_conv_thr
between two consecutive scf steps.
See also forc_conv_thr - both criteria must be satisfied
         </info>
      </var>
      <var name="forc_conv_thr" type="REAL" >
         <default> 1.0D-3
         </default>
         <info>
convergence threshold on forces (a.u) for ionic
minimization: the convergence criterion is satisfied
when all components of all forces are smaller than
forc_conv_thr.
See also etot_conv_thr - both criteria must be satisfied
         </info>
      </var>
      <var name="ekin_conv_thr" type="REAL" >
         <default> 1.0D-6
         </default>
         <info>
convergence criterion for electron minimization:
convergence is achieved when &quot;ekin &lt; ekin_conv_thr&quot;.
See also etot_conv_thr - both criteria must be satisfied.
         </info>
      </var>
      <var name="disk_io" type="CHARACTER" >
         <default> &apos;default&apos;
         </default>
         <info>
&apos;high&apos;: CP code will write Kohn-Sham wfc files and additional
        information in data-file.xml in order to restart
        with a PW calculation or to use postprocessing tools.
        If disk_io is not set to &apos;high&apos;, the data file
        written by CP will not be readable by PW or PostProc.
         </info>
      </var>
      <var name="memory" type="CHARACTER" >
         <default> &apos;default&apos;
         </default>
         <info>
&apos;small&apos;: memory-saving tricks are implemented. Currently:
         - the G-vectors are sorted only locally, not globally
         - they are not collected and written to file
         For large systems, the memory and time gain is sizable
         but the resulting data files are not portable - use it
         only if you do not need to re-read the data file
         </info>
      </var>
      <var name="pseudo_dir" type="CHARACTER" >
         <default>
value of the $ESPRESSO_PSEUDO environment variable if set;
&apos;$HOME/espresso/pseudo/&apos; otherwise
         </default>
         <info>
directory containing pseudopotential files
         </info>
      </var>
      <var name="tefield" type="LOGICAL" >
         <default> .FALSE.
         </default>
         <info>
If .TRUE. a homogeneous finite electric field described
through the modern theory of the polarization is applied.
         </info>
      </var>
   </namelist>
   <namelist name="SYSTEM" >
      <var name="ibrav" type="INTEGER" >
         <status> REQUIRED
         </status>
         <info>
  Bravais-lattice index. If ibrav /= 0, specify EITHER
  [ celldm(1)-celldm(6) ] OR [ A,B,C,cosAB,cosAC,cosBC ]
  but NOT both. The lattice parameter alat is set to
  alat = celldm(1) (in a.u.) or alat = A (in Angstrom);
  see below for the other parameters.
  For ibrav=0 specify the lattice vectors in CELL_PARAMETER,
  optionally the lattice parameter alat = celldm(1) (in a.u.)
  or = A (in Angstrom), or else it is taken from CELL_PARAMETERS

ibrav      structure                   celldm(2)-celldm(6)
                                     or: b,c,cosab,cosac,cosbc
  0          free
      crystal axis provided in input: see card CELL_PARAMETERS

  1          cubic P (sc)
      v1 = a(1,0,0),  v2 = a(0,1,0),  v3 = a(0,0,1)

  2          cubic F (fcc)
      v1 = (a/2)(-1,0,1),  v2 = (a/2)(0,1,1), v3 = (a/2)(-1,1,0)

  3          cubic I (bcc)
      v1 = (a/2)(1,1,1),  v2 = (a/2)(-1,1,1),  v3 = (a/2)(-1,-1,1)

  4          Hexagonal and Trigonal P        celldm(3)=c/a
      v1 = a(1,0,0),  v2 = a(-1/2,sqrt(3)/2,0),  v3 = a(0,0,c/a)

  5          Trigonal R, 3fold axis c        celldm(4)=cos(alpha)
      The crystallographic vectors form a three-fold star around
      the z-axis, the primitive cell is a simple rhombohedron:
      v1 = a(tx,-ty,tz),   v2 = a(0,2ty,tz),   v3 = a(-tx,-ty,tz)
      where c=cos(alpha) is the cosine of the angle alpha between
      any pair of crystallographic vectors, tx, ty, tz are:
        tx=sqrt((1-c)/2), ty=sqrt((1-c)/6), tz=sqrt((1+2c)/3)
 -5          Trigonal R, 3fold axis &lt;111&gt;    celldm(4)=cos(alpha)
      The crystallographic vectors form a three-fold star around
      &lt;111&gt;. Defining a&apos; = a/sqrt(3) :
      v1 = a&apos; (u,v,v),   v2 = a&apos; (v,u,v),   v3 = a&apos; (v,v,u)
      where u and v are defined as
        u = tz - 2*sqrt(2)*ty,  v = tz + sqrt(2)*ty
      and tx, ty, tz as for case ibrav=5
      Note: if you prefer x,y,z as axis in the cubic limit,
            set  u = tz + 2*sqrt(2)*ty,  v = tz - sqrt(2)*ty
            See also the note in flib/latgen.f90

  6          Tetragonal P (st)               celldm(3)=c/a
      v1 = a(1,0,0),  v2 = a(0,1,0),  v3 = a(0,0,c/a)

  7          Tetragonal I (bct)              celldm(3)=c/a
      v1=(a/2)(1,-1,c/a),  v2=(a/2)(1,1,c/a),  v3=(a/2)(-1,-1,c/a)

  8          Orthorhombic P                  celldm(2)=b/a
                                             celldm(3)=c/a
      v1 = (a,0,0),  v2 = (0,b,0), v3 = (0,0,c)

  9          Orthorhombic base-centered(bco) celldm(2)=b/a
                                             celldm(3)=c/a
      v1 = (a/2, b/2,0),  v2 = (-a/2,b/2,0),  v3 = (0,0,c)
 -9          as 9, alternate description
      v1 = (a/2,-b/2,0),  v2 = (a/2,-b/2,0),  v3 = (0,0,c)

 10          Orthorhombic face-centered      celldm(2)=b/a
                                             celldm(3)=c/a
      v1 = (a/2,0,c/2),  v2 = (a/2,b/2,0),  v3 = (0,b/2,c/2)

 11          Orthorhombic body-centered      celldm(2)=b/a
                                             celldm(3)=c/a
      v1=(a/2,b/2,c/2),  v2=(-a/2,b/2,c/2),  v3=(-a/2,-b/2,c/2)

 12          Monoclinic P, unique axis c     celldm(2)=b/a
                                             celldm(3)=c/a,
                                             celldm(4)=cos(ab)
      v1=(a,0,0), v2=(b*cos(gamma),b*sin(gamma),0),  v3 = (0,0,c)
      where gamma is the angle between axis a and b.
-12          Monoclinic P, unique axis b     celldm(2)=b/a
                                             celldm(3)=c/a,
                                             celldm(5)=cos(ac)
      v1 = (a,0,0), v2 = (0,b,0), v3 = (c*sin(beta),0,c*cos(beta))
      where beta is the angle between axis a and c

 13          Monoclinic base-centered        celldm(2)=b/a
                                             celldm(3)=c/a,
                                             celldm(4)=cos(ab)
      v1 = (  a/2,         0,                -c/2),
      v2 = (b*cos(gamma), b*sin(gamma), 0),
      v3 = (  a/2,         0,                  c/2),
      where gamma is the angle between axis a and b

 14          Triclinic                       celldm(2)= b/a,
                                             celldm(3)= c/a,
                                             celldm(4)= cos(bc),
                                             celldm(5)= cos(ac),
                                             celldm(6)= cos(ab)
      v1 = (a, 0, 0),
      v2 = (b*cos(gamma), b*sin(gamma), 0)
      v3 = (c*cos(beta),  c*(cos(alpha)-cos(beta)cos(gamma))/sin(gamma),
           c*sqrt( 1 + 2*cos(alpha)cos(beta)cos(gamma)
                     - cos(alpha)^2-cos(beta)^2-cos(gamma)^2 )/sin(gamma) )
  where alpha is the angle between axis b and c
         beta is the angle between axis a and c
        gamma is the angle between axis a and b
         </info>
      </var>
      <group>
         <label> Either:
         </label>
         <dimension name="celldm" start="1" end="6" type="REAL" >
            <see> ibrav
            </see>
            <info>
Crystallographic constants - see description of ibrav variable.
Specify either these OR A,B,C,cosAB,cosBC,cosAC NOT both.
Only needed celldm (depending on ibrav) must be specified
alat = celldm(1) is the lattice parameter &quot;a&quot; (in BOHR)
If ibrav=0, only celldm(1) is used if present;
cell vectors are read from card CELL_PARAMETERS
            </info>
         </dimension>
         <label> Or:
         </label>
         <vargroup type="REAL" >
            <var name="A" >
            </var>
            <var name="B" >
            </var>
            <var name="C" >
            </var>
            <var name="cosAB" >
            </var>
            <var name="cosAC" >
            </var>
            <var name="cosBC" >
            </var>
            <info>
Traditional crystallographic constants: a,b,c in ANGSTROM
  cosAB = cosine of the angle between axis a and b (gamma)
  cosAC = cosine of the angle between axis a and c (beta)
  cosBC = cosine of the angle between axis b and c (alpha)
The axis are chosen according to the value of ibrav.
Specify either these OR celldm but NOT both.
Only needed values (depending on ibrav) must be specified
The lattice parameter alat = A (in ANGSTROM )
If ibrav = 0, only A is used if present;
cell vectors are read from card CELL_PARAMETERS
            </info>
         </vargroup>
      </group>
      <var name="nat" type="INTEGER" >
         <status> REQUIRED
         </status>
         <info>
number of atoms in the unit cell
         </info>
      </var>
      <var name="ntyp" type="INTEGER" >
         <status> REQUIRED
         </status>
         <info>
number of types of atoms in the unit cell
         </info>
      </var>
      <var name="nbnd" type="INTEGER" >
         <default>
for an insulator, nbnd = number of valence bands
(nbnd = # of electrons /2);
for a metal, 20% more (minimum 4 more)
         </default>
         <info>
number of electronic states (bands) to be calculated.
Note that in spin-polarized calculations the number of
k-point, not the number of bands per k-point, is doubled
         </info>
      </var>
      <var name="tot_charge" type="REAL" >
         <default> 0.0
         </default>
         <info>
total charge of the system. Useful for simulations with charged cells.
By default the unit cell is assumed to be neutral (tot_charge=0).
tot_charge=+1 means one electron missing from the system,
tot_charge=-1 means one additional electron, and so on.

In a periodic calculation a compensating jellium background is
inserted to remove divergences if the cell is not neutral.
         </info>
      </var>
      <var name="tot_magnetization" type="REAL" >
         <default> -1 [unspecified]
         </default>
         <info>
total majority spin charge - minority spin charge.
Used to impose a specific total electronic magnetization.
If unspecified, the tot_magnetization variable is ignored
and the electronic magnetization is determined by the
occupation numbers (see card OCCUPATIONS) read from input.
         </info>
      </var>
      <var name="ecutwfc" type="REAL" >
         <status> REQUIRED
         </status>
         <info>
kinetic energy cutoff (Ry) for wavefunctions
         </info>
      </var>
      <var name="ecutrho" type="REAL" >
         <default> 4 * ecutwfc
         </default>
         <info>
kinetic energy cutoff (Ry) for charge density and potential
For norm-conserving pseudopotential you should stick to the
default value, you can reduce it by a little but it will
introduce noise especially on forces and stress.
If there are ultrasoft PP, a larger value than the default is
often desirable (ecutrho = 8 to 12 times ecutwfc, typically).
PAW datasets can often be used at 4*ecutwfc, but it depends
on the shape of augmentation charge: testing is mandatory.
The use of gradient-corrected functional, especially in cells
with vacuum, or for pseudopotential without non-linear core
correction, usually requires an higher values of ecutrho
to be accurately converged.
         </info>
      </var>
      <vargroup type="INTEGER" >
         <see> ecutrho
         </see>
         <var name="nr1" >
         </var>
         <var name="nr2" >
         </var>
         <var name="nr3" >
         </var>
         <info>
three-dimensional FFT mesh (hard grid) for charge
density (and scf potential). If not specified
the grid is calculated based on the cutoff for
charge density.
         </info>
      </vargroup>
      <vargroup type="INTEGER" >
         <var name="nr1s" >
         </var>
         <var name="nr2s" >
         </var>
         <var name="nr3s" >
         </var>
         <info>
three-dimensional mesh for wavefunction FFT and for the smooth
part of charge density ( smooth grid ).
Coincides with nr1, nr2, nr3 if ecutrho = 4 * ecutwfc ( default )
         </info>
      </vargroup>
      <vargroup type="INTEGER" >
         <var name="nr1b" >
         </var>
         <var name="nr2b" >
         </var>
         <var name="nr3b" >
         </var>
         <info>
dimensions of the &quot;box&quot; grid for Ultrasoft pseudopotentials
must be specified if Ultrasoft PP are present
         </info>
      </vargroup>
      <var name="occupations" type="CHARACTER" >
         <info>
a string describing the occupation of the electronic states.
In the case of conjugate gradient style of minimization
of the electronic states, if occupations is set to &apos;ensemble&apos;,
this allows ensemble DFT calculations for metallic systems
         </info>
      </var>
      <var name="degauss" type="REAL" >
         <default> 0.D0 Ry
         </default>
         <info>
parameter for the smearing function, only used for ensemble DFT
calculations
         </info>
      </var>
      <var name="smearing" type="CHARACTER" >
         <info>
a string describing the kind of occupations for electronic states
in the case of ensemble DFT (occupations == &apos;ensemble&apos; );
now only Fermi-Dirac (&apos;fd&apos;) case is implemented
         </info>
      </var>
      <var name="nspin" type="INTEGER" >
         <default> 1
         </default>
         <info>
nspin = 1 :  non-polarized calculation (default)

nspin = 2 :  spin-polarized calculation, LSDA
             (magnetization along z axis)
         </info>
      </var>
      <var name="ecfixed" type="REAL" >
         <default> 0.0
         </default>
         <see> q2sigma
         </see>
      </var>
      <var name="qcutz" type="REAL" >
         <default> 0.0
         </default>
         <see> q2sigma
         </see>
      </var>
      <var name="q2sigma" type="REAL" >
         <default> 0.1
         </default>
         <info>
ecfixed, qcutz, q2sigma:  parameters for modified functional to be
used in variable-cell molecular dynamics (or in stress calculation).
&quot;ecfixed&quot; is the value (in Rydberg) of the constant-cutoff;
&quot;qcutz&quot; and &quot;q2sigma&quot; are the height and the width (in Rydberg)
of the energy step for reciprocal vectors whose square modulus
is greater than &quot;ecfixed&quot;. In the kinetic energy, G^2 is
replaced by G^2 + qcutz * (1 + erf ( (G^2 - ecfixed)/q2sigma) )
See: M. Bernasconi et al, J. Phys. Chem. Solids 56, 501 (1995)
         </info>
      </var>
      <var name="input_dft" type="CHARACTER" >
         <default> read from pseudopotential files
         </default>
         <info>
Exchange-correlation functional: eg &apos;PBE&apos;, &apos;BLYP&apos; etc
See Modules/functionals.f90 for allowed values.
Overrides the value read from pseudopotential files.
Use with care and if you know what you are doing!
         </info>
      </var>
      <var name="lda_plus_u" type="LOGICAL" >
         <default> .FALSE.
         </default>
         <info>
lda_plus_u = .TRUE. enables calculation with LDA+U
                  (&quot;rotationally invariant&quot;). See also Hubbard_U.
                  Anisimov, Zaanen, and Andersen, PRB 44, 943 (1991);
                  Anisimov et al., PRB 48, 16929 (1993);
                  Liechtenstein, Anisimov, and Zaanen, PRB 52, R5467 (1994);
                  Cococcioni and de Gironcoli, PRB 71, 035105 (2005).
         </info>
      </var>
      <dimension name="Hubbard_U" start="1" end="ntyp" type="REAL" >
         <default> 0.D0 for all species
         </default>
         <status>
LDA+U works only for a few selected elements. Modify
CPV/ldaU.f90 if you plan to use LDA+U with an
element that is not configured there.
         </status>
         <info>
Hubbard_U(i): parameter U (in eV) for LDA+U calculations.
Currently only the simpler, one-parameter LDA+U is
implemented (no &quot;alpha&quot; or &quot;J&quot; terms)
         </info>
      </dimension>
      <var name="vdw_corr" type="CHARACTER" >
         <default> &apos;none&apos;
         </default>
         <info>
Type of Van der Waals correction. Allowed values:

   &apos;grimme-d2&apos;, &apos;Grimme-D2&apos;, &apos;DFT-D&apos;, &apos;dft-d&apos;: semiempirical Grimme&apos;s DFT-D2.
    Optional variables: &quot;london_s6&quot;, &quot;london_rcut&quot;
    S. Grimme, J. Comp. Chem. 27, 1787 (2006),
    V. Barone et al., J. Comp. Chem. 30, 934 (2009).

    &apos;TS&apos;, &apos;ts&apos;, &apos;ts-vdw&apos;, &apos;ts-vdW&apos;, &apos;tkatchenko-scheffler&apos;: Tkatchenko-Scheffler
     dispersion corrections with first-principle derived C6 coefficients
     Optional variables: &quot;ts_vdw_econv_thr&quot;, &quot;ts_vdw_isolated&quot;
     See A. Tkatchenko and M. Scheffler, Phys. Rev. Lett. 102, 073005 (2009)

    &apos;XDM&apos;, &apos;xdm&apos;: Exchange-hole dipole-moment model. Optional variables: &quot;xdm_a1&quot;, &quot;xdm_a2&quot;
     (implemented in PW only)
     A. D. Becke and E. R. Johnson, J. Chem. Phys. 127, 154108 (2007)
      A. Otero de la Roza, E. R. Johnson, J. Chem. Phys. 136, 174109 (2012)

Note that non-local functionals (eg vdw-DF) are NOT specified here but in &quot;input_dft&quot;
         </info>
      </var>
      <var name="london_s6" type="REAL" >
         <default> 0.75
         </default>
         <info>
global scaling parameter for DFT-D. Default is good for PBE.
         </info>
      </var>
      <var name="london_rcut" type="REAL" >
         <default> 200
         </default>
         <info>
cutoff radius (a.u.) for dispersion interactions
         </info>
      </var>
      <var name="ts_vdw" type="LOGICAL" >
         <default> .FALSE.
         </default>
         <info>
OBSOLESCENT, same as vdw_corr=&apos;TS&apos;
         </info>
      </var>
      <var name="ts_vdw_econv_thr" type="REAL" >
         <default> 1.D-6
         </default>
         <info>
Optional: controls the convergence of the vdW energy (and forces). The default value
is a safe choice, likely too safe, but you do not gain much in increasing it
         </info>
      </var>
      <var name="ts_vdw_isolated" type="LOGICAL" >
         <default> .FALSE.
         </default>
         <info>
Optional: set it to .TRUE. when computing the Tkatchenko-Scheffler vdW energy
for an isolated (non-periodic) system.
         </info>
      </var>
      <var name="assume_isolated" type="CHARACTER" >
         <default> &apos;none&apos;
         </default>
         <info>
Used to perform calculation assuming the system to be
isolated (a molecule of a clustr in a 3D supercell).

Currently available choices:

&apos;none&apos; (default): regular periodic calculation w/o any correction.

&apos;makov-payne&apos;, &apos;m-p&apos;, &apos;mp&apos; : the Makov-Payne correction to the
         total energy is computed.
         Theory:
         G.Makov, and M.C.Payne,
         &quot;Periodic boundary conditions in ab initio
         calculations&quot; , Phys.Rev.B 51, 4014 (1995)
         </info>
      </var>
   </namelist>
   <namelist name="ELECTRONS" >
      <var name="electron_maxstep" type="INTEGER" >
         <default> 100
         </default>
         <info>
maximum number of iterations in a scf step
         </info>
      </var>
      <var name="electron_dynamics" type="CHARACTER" >
         <default> &apos;none&apos;
         </default>
         <info>
set how electrons should be moved
&apos;none&apos;    : electronic degrees of freedom (d.o.f.) are kept fixed
&apos;sd&apos;      : steepest descent algorithm is used to minimize
          electronic d.o.f.
&apos;damp&apos;    : damped dynamics is used to propagate electronic d.o.f.
&apos;verlet&apos;  : standard Verlet algorithm is used to propagate
          electronic d.o.f.
&apos;cg&apos;      : conjugate gradient is used to converge the
          wavefunction at each ionic step. &apos;cg&apos; can be used
          interchangeably with &apos;verlet&apos; for a couple of ionic
          steps in order to &quot;cool down&quot; the electrons and
          return them back to the Born-Oppenheimer surface.
          Then &apos;verlet&apos; can be restarted again. This procedure
          is useful when electronic adiabaticity in CP is lost
          yet the ionic velocities need to be preserved.
         </info>
      </var>
      <var name="conv_thr" type="REAL" >
         <default> 1.D-6
         </default>
         <info>
Convergence threshold for selfconsistency:
estimated energy error &lt; conv_thr
         </info>
      </var>
      <var name="niter_cg_restart" type="INTEGER" >
         <default> 20
         </default>
         <info>
frequency in iterations for which the conjugate-gradient algorithm
for electronic relaxation is restarted
         </info>
      </var>
      <var name="efield" type="REAL" >
         <default> 0.D0
         </default>
         <info>
Amplitude of the finite electric field (in a.u.;
1 a.u. = 51.4220632*10^10 V/m). Used only if tefield=.TRUE.
         </info>
      </var>
      <var name="epol" type="INTEGER" >
         <default> 3
         </default>
         <info>
direction of the finite electric field (only if tefield == .TRUE.)
In the case of a PARALLEL calculation only the case epol==3
is implemented
         </info>
      </var>
      <var name="emass" type="REAL" >
         <default> 400.D0
         </default>
         <info>
effective electron mass in the CP Lagrangian, in atomic units
( 1 a.u. of mass = 1/1822.9 a.m.u. = 9.10939 * 10^-31 kg )
         </info>
      </var>
      <var name="emass_cutoff" type="REAL" >
         <default> 2.5D0
         </default>
         <info>
mass cut-off (in Rydberg) for the Fourier acceleration
effective mass is rescaled for &quot;G&quot; vector components with
kinetic energy above &quot;emass_cutoff&quot;
         </info>
      </var>
      <var name="orthogonalization" type="CHARACTER" >
         <default> &apos;ortho&apos;
         </default>
         <info>
selects the orthonormalization method for electronic wave
functions
&apos;ortho&apos;        : use iterative algorithm - if it doesn&apos;t converge,
                 reduce the timestep, or use options ortho_max
                 and ortho_eps, or use Gram-Schmidt instead just
                 to start the simulation
&apos;Gram-Schmidt&apos; : use Gram-Schmidt algorithm - to be used ONLY in
                 the first few steps.
                 YIELDS INCORRECT ENERGIES AND EIGENVALUES.
         </info>
      </var>
      <var name="ortho_eps" type="REAL" >
         <default> 1.D-8
         </default>
         <info>
tolerance for iterative orthonormalization
meaningful only if orthogonalization = &apos;ortho&apos;
         </info>
      </var>
      <var name="ortho_max" type="INTEGER" >
         <default> 20
         </default>
         <info>
maximum number of iterations for orthonormalization
meaningful only if orthogonalization = &apos;ortho&apos;
         </info>
      </var>
      <var name="ortho_para" type="INTEGER" >
         <default> 0
         </default>
         <status> OBSOLETE: use command-line option &quot; -nd XX&quot; instead
         </status>
         <info>

         </info>
      </var>
      <var name="electron_damping" type="REAL" >
         <default> 0.1D0
         </default>
         <info>
damping frequency times delta t, optimal values could be
calculated with the formula :
         SQRT( 0.5 * LOG( ( E1 - E2 ) / ( E2 - E3 ) ) )
where E1, E2, E3 are successive values of the DFT total energy
in a steepest descent simulations.
meaningful only if &quot; electron_dynamics = &apos;damp&apos; &quot;
         </info>
      </var>
      <var name="electron_velocities" type="CHARACTER" >
         <info>
&apos;zero&apos;      : restart setting electronic velocities to zero
&apos;default&apos;   : restart using electronic velocities of the
            previous run
         </info>
      </var>
      <var name="electron_temperature" type="CHARACTER" >
         <default> &apos;not_controlled&apos;
         </default>
         <info>
&apos;nose&apos;            : control electronic temperature using Nose
                  thermostat. See also &quot;fnosee&quot; and &quot;ekincw&quot;.
&apos;rescaling&apos;       : control electronic temperature via velocities
                  rescaling.
&apos;not_controlled&apos;  : electronic temperature is not controlled.
         </info>
      </var>
      <var name="ekincw" type="REAL" >
         <default> 0.001D0
         </default>
         <info>
value of the average kinetic energy (in atomic units) forced
by the temperature control
meaningful only with &quot; electron_temperature /= &apos;not_controlled&apos; &quot;
         </info>
      </var>
      <var name="fnosee" type="REAL" >
         <default> 1.D0
         </default>
         <info>
oscillation frequency of the nose thermostat (in terahertz)
meaningful only with &quot; electron_temperature = &apos;nose&apos; &quot;
         </info>
      </var>
      <var name="startingwfc" type="CHARACTER" >
         <default> &apos;random&apos;
         </default>
         <info>
&apos;atomic&apos;: start from superposition of atomic orbitals
          (not yet implemented)


&apos;random&apos;: start from random wfcs. See &quot;ampre&quot;.
         </info>
      </var>
      <var name="tcg" type="LOGICAL" >
         <default> .FALSE.
         </default>
         <info>
if .TRUE. perform a conjugate gradient minimization of the
electronic states for every ionic step.
It requires Gram-Schmidt orthogonalization of the electronic
states.
         </info>
      </var>
      <var name="maxiter" type="INTEGER" >
         <default> 100
         </default>
         <info>
maximum number of conjugate gradient iterations for
conjugate gradient minimizations of electronic states
         </info>
      </var>
      <var name="passop" type="REAL" >
         <default> 0.3D0
         </default>
         <info>
small step used in the  conjugate gradient minimization
of the electronic states.
         </info>
      </var>
      <var name="n_inner" type="INTEGER" >
         <default> 2
         </default>
         <info>
number of internal cycles for every conjugate gradient
iteration only for ensemble DFT
         </info>
      </var>
      <var name="ninter_cold_restart" type="INTEGER" >
         <default> 1
         </default>
         <info>
frequency in iterations at which a full inner cycle, only
for cold smearing, is performed
         </info>
      </var>
      <var name="lambda_cold" type="REAL" >
         <default> 0.03D0
         </default>
         <info>
step for inner cycle with cold smearing, used when a not full
cycle is performed
         </info>
      </var>
      <var name="grease" type="REAL" >
         <default> 1.D0
         </default>
         <info>
a number &lt;= 1, very close to 1: the damping in electronic
damped dynamics is multiplied at each time step by &quot;grease&quot;
(avoids overdamping close to convergence: Obsolete ?)
grease = 1 : normal damped dynamics
         </info>
      </var>
      <var name="ampre" type="REAL" >
         <default> 0.D0
         </default>
         <info>
amplitude of the randomization ( allowed values: 0.0 - 1.0 )
meaningful only if &quot; startingwfc = &apos;random&apos; &quot;
         </info>
      </var>
   </namelist>
   <namelist name="IONS" >
      <label>
input this namelist only if calculation = &apos;cp&apos;, &apos;relax&apos;, &apos;vc-relax&apos;, &apos;vc_cp&apos;
      </label>
      <var name="ion_dynamics" type="CHARACTER" >
         <info>
 Specify the type of ionic dynamics.

 For constrained dynamics or constrained optimisations add the
 CONSTRAINTS card (when the card is present the SHAKE algorithm is
                   automatically used).
&apos;none&apos;    : ions are kept fixed
&apos;sd&apos;      : steepest descent algorithm is used to minimize ionic
            configuration
&apos;cg&apos;      : conjugate gradient algorithm is used to minimize ionic
            configuration
&apos;damp&apos;    : damped dynamics is used to propagate ions
&apos;verlet&apos;  : standard Verlet algorithm is used to propagate ions
         </info>
      </var>
      <var name="ion_positions" type="CHARACTER" >
         <default> &apos;default&apos;
         </default>
         <info>
&apos;default &apos;  : if restarting, use atomic positions read from the
              restart file; in all other cases, use atomic
              positions from standard input.

&apos;from_input&apos; : restart the simulation with atomic positions read
              from standard input, even if restarting.
         </info>
      </var>
      <var name="ion_velocities" type="CHARACTER" >
         <default> &apos;default&apos;
         </default>
         <see> tempw
         </see>
         <info>
initial ionic velocities
&apos;default&apos;     : restart the simulation with atomic velocities read
                from the restart file
&apos;change_step&apos; : restart the simulation with atomic velocities read
                from the restart file, with rescaling due to the
                timestep change, specify the old step via tolp
                as in tolp = &apos;old_time_step_value&apos; in au
&apos;random&apos;      : start the simulation with random atomic velocities
&apos;from_input&apos;  : restart the simulation with atomic velocities read
                from standard input - see card &apos;ATOMIC_VELOCITIES&apos;
                BEWARE: works only if restart_mode=&apos;from_scratch&apos;,
                tested only with electrons_dynamics=&apos;cg&apos;
&apos;zero&apos;        : restart the simulation with atomic velocities set
                to zero
         </info>
      </var>
      <var name="ion_nstepe" type="INTEGER" >
         <default> 1
         </default>
         <info>
number of electronic steps per ionic step.
         </info>
      </var>
      <var name="remove_rigid_rot" type="LOGICAL" >
         <default> .FALSE.
         </default>
         <info>
This keyword is useful when simulating the dynamics and/or the
thermodynamics of an isolated system. If set to true the total
torque of the internal forces is set to zero by adding new forces
that compensate the spurious interaction with the periodic
images. This allows for the use of smaller supercells.

BEWARE: since the potential energy is no longer consistent with
the forces (it still contains the spurious interaction with the
repeated images), the total energy is not conserved anymore.
However the dynamical and thermodynamical properties should be
in closer agreement with those of an isolated system.
Also the final energy of a structural relaxation will be higher,
but the relaxation itself should be faster.
         </info>
      </var>
      <var name="ion_temperature" type="CHARACTER" >
         <default> &apos;not_controlled&apos;
         </default>
         <info>
&apos;nose&apos;           : control ionic temperature using Nose-Hoover
                   thermostat  see parameters &quot;fnosep&quot;, &quot;tempw&quot;,
                   &quot;nhpcl&quot;, &quot;ndega&quot;, &quot;nhptyp&quot;
&apos;rescaling&apos;      : control ionic temperature via velocities
                   rescaling. see parameter &quot;tolp&quot;
&apos;not_controlled&apos; : ionic temperature is not controlled
         </info>
      </var>
      <var name="tempw" type="REAL" >
         <default> 300.D0
         </default>
         <info>
value of the ionic temperature (in Kelvin) forced by the
temperature control.
meaningful only with &quot; ion_temperature /= &apos;not_controlled&apos; &quot;
or when the initial velocities are set to &apos;random&apos;
&quot;ndega&quot; controls number of degrees of freedom used in
temperature calculation
         </info>
      </var>
      <var name="fnosep" type="REAL" >
         <default> 1.D0
         </default>
         <info>
oscillation frequency of the nose thermostat (in terahertz)
[note that 3 terahertz = 100 cm^-1]
meaningful only with &quot; ion_temperature = &apos;nose&apos; &quot;
for Nose-Hoover chain one can set frequencies of all thermostats
( fnosep = X Y Z etc. ) If only first is set, the defaults for
the others will be same.
         </info>
      </var>
      <var name="tolp" type="REAL" >
         <default> 100.D0
         </default>
         <info>
tolerance (in Kelvin) of the rescaling. When ionic temperature
differs from &quot;tempw&quot; more than &quot;tolp&quot; apply rescaling.
meaningful only with &quot; ion_temperature = &apos;rescaling&apos; &quot;
and with ion_velocities=&apos;change_step&apos;, where it specifies
the old timestep
         </info>
      </var>
      <var name="nhpcl" type="INTEGER" >
         <default> 1
         </default>
         <info>
number of thermostats in the Nose-Hoover chain
currently maximum allowed is 4
         </info>
      </var>
      <var name="nhptyp" type="INTEGER" >
         <default> 0
         </default>
         <info>
type of the &quot;massive&quot; Nose-Hoover chain thermostat
nhptyp=1 uses a NH chain per each atomic type
nhptyp=2 uses a NH chain per atom, this one is useful
for extremely rapid equipartitioning (equilibration is a
different beast)
nhptyp=3 together with nhgrp allows fine grained thermostat
control
NOTE: if using more than 1 thermostat per system there will
be a common thermostat added on top of them all, to disable
this common thermostat specify nhptyp=-X instead of nhptyp=X
         </info>
      </var>
      <dimension name="nhgrp" start="1" end="ntyp" type="INTEGER" >
         <default> 0
         </default>
         <info>
specifies which thermostat group to use for given atomic type
when &gt;0 assigns all the atoms in this type to thermostat
labeled nhgrp(i), when =0 each atom in the type gets its own
thermostat. Finally, when &lt;0, then this atomic type will have
temperature &quot;not controlled&quot;. Example: HCOOLi, with types H (1), C(2), O(3), Li(4);
setting nhgrp={2 2 0 -1} will add a common thermostat for both H &amp; C,
one thermostat per each O (2 in total), and a non-updated thermostat
for Li which will effectively make temperature for Li &quot;not controlled&quot;
         </info>
      </dimension>
      <dimension name="fnhscl" start="1" end="ntyp" type="REAL" >
         <default> (Nat_{total}-1)/Nat_{total}
         </default>
         <info>
these are the scaling factors to be used together with nhptyp=3 and nhgrp(i)
in order to take care of possible reduction in the degrees of freedom due to
constraints. Suppose that with the previous example HCOOLi, C-H bond is
constrained. Then, these 2 atoms will have 5 degrees of freedom in total instead
of 6, and one can set fnhscl={5/6 5/6 1. 1.}. This way the target kinetic energy
for H&amp;C will become 6(kT/2)*5/6 = 5(kT/2). This option is to be used for
simulations with many constraints, such as rigid water with something else in there
         </info>
      </dimension>
      <var name="ndega" type="INTEGER" >
         <default> 0
         </default>
         <info>
number of degrees of freedom used for temperature calculation
ndega &lt;= 0 sets the number of degrees of freedom to
[3*nat-abs(ndega)], ndega &gt; 0 is used as the target number
         </info>
      </var>
      <dimension name="tranp" start="1" end="ntyp" type="LOGICAL" >
         <see> amprp
         </see>
         <default> .false.
         </default>
         <info>
If .TRUE. randomize ionic positions for the
atomic type corresponding to the index.
         </info>
      </dimension>
      <dimension name="amprp" start="1" end="ntyp" type="REAL" >
         <see> amprp
         </see>
         <default> 0.D0
         </default>
         <info>
amplitude of the randomization for the atomic type corresponding
to the index i ( allowed values: 0.0 - 1.0 ).
meaningful only if &quot; tranp(i) = .TRUE.&quot;.
         </info>
      </dimension>
      <var name="greasp" type="REAL" >
         <default> 1.D0
         </default>
         <info>
same as &quot;grease&quot;, for ionic damped dynamics.
         </info>
      </var>
   </namelist>
   <namelist name="CELL" >
      <label>
input this namelist only if calculation = &apos;vc-relax&apos;, &apos;vc-cp&apos;
      </label>
      <var name="cell_parameters" type="CHARACTER" >
         <info>
&apos;default&apos;      : restart the simulation with cell parameters read
               from the restart file or &quot;celldm&quot; if
               &quot;restart = &apos;from_scratch&apos;&quot;
&apos;from_input&apos;   : restart the simulation with cell parameters
               from standard input.
               ( see the card &apos;CELL_PARAMETERS&apos; )
         </info>
      </var>
      <var name="cell_dynamics" type="CHARACTER" >
         <default> &apos;none&apos;
         </default>
         <info>
set how cell should be moved
&apos;none&apos;      : cell is kept fixed
&apos;sd&apos;        : steepest descent algorithm is used to optimise the
              cell
&apos;damp-pr&apos;   : damped dynamics is used to optimise the cell
              ( Parrinello-Rahman method ).
&apos;pr&apos;        : standard Verlet algorithm is used to propagate
              the cell ( Parrinello-Rahman method ).
         </info>
      </var>
      <var name="cell_velocities" type="CHARACTER" >
         <info>
&apos;zero&apos;      : restart setting cell velocity to zero
&apos;default&apos;   : restart using cell velocity of the previous run
         </info>
      </var>
      <var name="cell_damping" type="REAL" >
         <default> 0.1D0
         </default>
         <info>
damping frequency times delta t, optimal values could be
calculated with the formula :
         SQRT( 0.5 * LOG( ( E1 - E2 ) / ( E2 - E3 ) ) )
where E1, E2, E3 are successive values of the DFT total energy
in a steepest descent simulations.
meaningful only if &quot; cell_dynamics = &apos;damp&apos; &quot;
         </info>
      </var>
      <var name="press" type="REAL" >
         <default> 0.D0
         </default>
         <info>
Target pressure [KBar] in a variable-cell md or relaxation run.
         </info>
      </var>
      <var name="wmass" type="REAL" >
         <default>
0.75*Tot_Mass/pi**2 for Parrinello-Rahman MD;
0.75*Tot_Mass/pi**2/Omega**(2/3) for Wentzcovitch MD
         </default>
         <info>
Fictitious cell mass [amu] for variable-cell simulations
(both &apos;vc-md&apos; and &apos;vc-relax&apos;)
         </info>
      </var>
      <var name="cell_factor" type="REAL" >
         <default> 1.2D0
         </default>
         <info>
Used in the construction of the pseudopotential tables.
It should exceed the maximum linear contraction of the
cell during a simulation.
         </info>
      </var>
      <var name="cell_temperature" type="CHARACTER" >
         <default> &apos;not_controlled&apos;
         </default>
         <info>
&apos;nose&apos;            : control cell temperature using Nose thermostat
                    see parameters &quot;fnoseh&quot; and &quot;temph&quot;.
&apos;rescaling&apos;       : control cell temperature via velocities
                    rescaling.
&apos;not_controlled&apos;  : cell temperature is not controlled.
         </info>
      </var>
      <var name="temph" type="REAL" >
         <default> 0.D0
         </default>
         <info>
value of the cell temperature (in ???) forced
by the temperature control.
meaningful only with &quot; cell_temperature /= &apos;not_controlled&apos; &quot;
         </info>
      </var>
      <var name="fnoseh" type="REAL" >
         <default> 1.D0
         </default>
         <info>
oscillation frequency of the nose thermostat (in terahertz)
meaningful only with &quot; cell_temperature = &apos;nose&apos; &quot;
         </info>
      </var>
      <var name="greash" type="REAL" >
         <default> 1.D0
         </default>
         <info>
same as &quot;grease&quot;, for cell damped dynamics
         </info>
      </var>
      <var name="cell_dofree" type="CHARACTER" >
         <default> &apos;all&apos;
         </default>
         <info>
Select which of the cell parameters should be moved:

all     = all axis and angles are moved
x       = only the x component of axis 1 (v1_x) is moved
y       = only the y component of axis 2 (v2_y) is moved
z       = only the z component of axis 3 (v3_z) is moved
xy      = only v1_x and v2_y are moved
xz      = only v1_x and v3_z are moved
yz      = only v2_y and v3_z are moved
xyz     = only v1_x, v2_y, v3_z are moved
shape   = all axis and angles, keeping the volume fixed
2Dxy    = only x and y components are allowed to change
2Dshape = as above, keeping the area in xy plane fixed
         </info>
      </var>
   </namelist>
   <namelist name="PRESS_AI" >
      <label>
input this namelist only when tabps = .true.
      </label>
      <var name="abivol" type="LOGICAL" >
         <default> .false.
         </default>
         <info>
.true. for finite pressure calculations
         </info>
      </var>
      <var name="abivol" type="LOGICAL" >
         <default> .false.
         </default>
         <info>
.true. for finite surface tension calculations
         </info>
      </var>
      <var name="P_ext" type="REAL" >
         <default> 0.D0
         </default>
         <info>
external pressure in GPa
         </info>
      </var>
      <var name="pvar" type="LOGICAL" >
         <default> .false.
         </default>
         <info>
.true. for variable pressure calculations
pressure changes linearly with time:
Delta_P = (P_fin - P_in)/nstep
         </info>
      </var>
      <var name="P_in" type="REAL" >
         <default> 0.D0
         </default>
         <info>
only if pvar = .true.
initial value of the external pressure (GPa)
         </info>
      </var>
      <var name="P_fin" type="REAL" >
         <default> 0.D0
         </default>
         <info>
only if pvar = .true.
final value of the external pressure (GPa)
         </info>
      </var>
      <var name="Surf_t" type="REAL" >
         <default> 0.D0
         </default>
         <info>
Surface tension (in a.u.; typical values 1.d-4 - 1.d-3)
         </info>
      </var>
      <var name="rho_thr" type="REAL" >
         <default> 0.D0
         </default>
         <info>
threshold parameter which defines the electronic charge density
isosurface to compute the &apos;quantum&apos; volume of the system
(typical values: 1.d-4 - 1.d-3)
(corresponds to alpha in PRL 94 145501 (2005))
         </info>
      </var>
      <var name="dthr" type="REAL" >
         <default> 0.D0
         </default>
         <info>
thikness of the external skin of the electronic charge density
used to compute the &apos;quantum&apos; surface
(typical values: 1.d-4 - 1.d-3; 50% to 100% of rho_thr)
(corresponds to Delta in PRL 94 145501 (2005))
         </info>
      </var>
   </namelist>
   <namelist name="WANNIER" >
      <label>
only if calculation = &apos;cp-wf&apos;
      </label>
      <message>
Output files used by Wannier Function options are the following

      fort.21: Used only when calwf=5, contains the full list of g-vecs.
      fort.22: Used Only when calwf=5, contains the coeffs. corresponding
               to the g-vectors in fort.21
      fort.24: Used with calwf=3,contains the average spread
      fort.25: Used with calwf=3, contains the individual Wannier
               Function Spread of each state
      fort.26: Used with calwf=3, contains the wannier centers along a
               trajectory.
      fort.27: Used with calwf=3 and 4,  contains some general runtime
               information from ddyn, the subroutine that actually
               does the localization of the orbitals.
      fort.28: Used only if efield=.TRUE. , contains the polarization
               contribution to the total energy.

Also, The center of mass is fixed during the Molecular Dynamics.

BEWARE : THIS WILL ONLY WORK IF THE NUMBER OF PROCESSORS IS LESS THAN OR
         EQUAL TO THE NUMBER OF STATES.

Nota Bene 1:   For calwf = 5, wffort is not used. The
               Wannier/Wave(function) coefficients are written to unit 22
               and the corresponding g-vectors (basis vectors) are
               written to unit 21. This option gives the g-vecs and
               their coeffs. in reciprocal space, and the coeffs. are
               complex. You will have to convert them to real space
               if you want to plot them for visualization. calwf=1 gives
               the orbital densities in real space, and this is usually
               good enough for visualization.
      </message>
      <var name="wf_efield" type="LOGICAL" >
         <default> .false.
         </default>
         <info>
If dynamics will be done in the presence of a field
         </info>
      </var>
      <var name="wf_switch" type="LOGICAL" >
         <default> .false.
         </default>
         <info>
Whether to turn on the field adiabatically (adiabatic switch)
if true, then nbeg is set to 0.
         </info>
      </var>
      <var name="sw_len" type="INTEGER" >
         <default> 1
         </default>
         <info>
No. of iterations over which the field will be turned on
to its final value. Starting value is 0.0
If sw_len &lt; 0, then it is set to 1.
If you want to just optimize structures on the presence of a
field, then you may set this to 1 and run a regular geometry
optimization.
         </info>
      </var>
      <vargroup type="REAL" >
         <see> 0.D0
         </see>
         <var name="efx0" >
         </var>
         <var name="efy0" >
         </var>
         <var name="efz0" >
         </var>
         <info>
Initial values of the field along x, y, and z directions
         </info>
      </vargroup>
      <vargroup type="REAL" >
         <see> 0.D0
         </see>
         <var name="efx1" >
         </var>
         <var name="efy1" >
         </var>
         <var name="efz1" >
         </var>
         <info>
Final values of the field along x, y, and z directions
         </info>
      </vargroup>
      <var name="wfsd" type="INTEGER" >
         <default> 1
         </default>
         <info>
Localization algorithm for Wannier function calculation:
wfsd=1  Damped Dynamics
wfsd=2  Steepest-Descent / Conjugate-Gradient
wfsd=3  Jocobi Rotation
Remember, this is consistent with all the calwf options
as well as the tolw (see below).
Not a good idea to Wannier dynamics with this if you are
using restart=&apos;from_scratch&apos; option, since the spreads
converge fast in the beginning and ortho goes bananas.
         </info>
      </var>
      <var name="wfdt" type="REAL" >
         <default> 5.D0
         </default>
         <info>
The minimum step size to take in the SD/CG direction
         </info>
      </var>
      <var name="maxwfdt" type="REAL" >
         <default> 0.3D0
         </default>
         <info>
The maximum step size to take in the SD/CG direction
The code calculates an optimum step size, but that may be
either too small (takes forever to converge)  or too large
(code goes crazy) . This option keeps the step size between
wfdt and maxwfdt. In my experience 0.1 and 0.5 work quite
well. (but don&apos;t blame me if it doesn&apos;t work for you)
         </info>
      </var>
      <var name="nit" type="INTEGER" >
         <default> 10
         </default>
         <info>
Number of iterations to do for Wannier convergence.
         </info>
      </var>
      <var name="nsd" type="INTEGER" >
         <default> 10
         </default>
         <info>
Out of a total of NIT iterations, NSD will be Steepest-Descent
and ( nit - nsd ) will be Conjugate-Gradient.
         </info>
      </var>
      <var name="wf_q" type="REAL" >
         <default> 1500.D0
         </default>
         <info>
Fictitious mass of the A matrix used for obtaining
maximally localized Wannier functions. The unitary
transformation matrix U is written as exp(A) where
A is a anti-hermitian matrix. The Damped-Dynamics is performed
in terms of the A matrix, and then U is computed from A.
Usually a value between 1500 and 2500 works fine, but should
be tested.
         </info>
      </var>
      <var name="wf_friction" type="REAL" >
         <default> 0.3D0
         </default>
         <info>
Damping coefficient for Damped-Dynamics.
         </info>
      </var>
      <var name="nsteps" type="INTEGER" >
         <default> 20
         </default>
         <info>
Number of Damped-Dynamics steps to be performed per CP
iteration.
         </info>
      </var>
      <var name="tolw" type="REAL" >
         <default> 1.D-8
         </default>
         <info>
Convergence criterion for localization.
         </info>
      </var>
      <var name="adapt" type="LOGICAL" >
         <default> .true.
         </default>
         <info>
Whether to adapt the damping parameter dynamically.
         </info>
      </var>
      <var name="calwf" type="INTEGER" >
         <default> 3
         </default>
         <info>
Wannier Function Options, can be 1,2,3,4,5

1. Output the Wannier function density, nwf and wffort
   are used for this option. see below.
2. Output the Overlap matrix O_i,j=&lt;w_i|exp{iGr}|w_j&gt;. O is
   written to unit 38. For details on how O is constructed,
   see below.
3. Perform nsteps of Wannier dynamics per CP iteration, the
   orbitals are now Wannier Functions, not Kohn-Sham orbitals.
   This is a Unitary transformation of the occupied subspace
   and does not leave the CP Lagrangian invariant. Expectation
   values remain the same. So you will **NOT** have a constant
   of motion during the run. Don&apos;t freak out, its normal.
4. This option starts for the KS states and does 1 CP iteration
   and nsteps of Damped-Dynamics to generate  maximally
   localized wannier functions. Its useful when you have the
   converged KS groundstate and want to get to the converged
   Wannier function groundstate in 1 CP Iteration.
5. This option is similar to calwf 1, except that the output is
   the Wannier function/wavefunction, and not the orbital
   density. See nwf below.
         </info>
      </var>
      <var name="nwf" type="INTEGER" >
         <default> 0
         </default>
         <info>
This option is used with calwf 1 and calwf 5. with calwf=1,
it tells the code how many Orbital densities are to be
output. With calwf=5, set this to 1(i.e calwf=5 only writes
one state during one run. so if you want 10 states, you have
to run the code 10 times). With calwf=1, you can print many
orbital densities in a single run.
See also the PLOT_WANNIER card for specifying the states to
be printed.
         </info>
      </var>
      <var name="wffort" type="INTEGER" >
         <default> 40
         </default>
         <info>
This tells the code where to dump the orbital densities. Used
 only with CALWF=1. for e.g. if you want to print 2 orbital
 densities, set calwf=1, nwf=2 and wffort to an appropriate
 number (e.g. 40) then the first orbital density will be
 output to fort.40, the second to fort.41 and so on. Note that
 in the current implementation, the following units are used
 21,22,24,25,26,27,28,38,39,77,78 and whatever you define as
 ndr and ndw. so use number other than these.
         </info>
      </var>
      <var name="writev" type="LOGICAL" >
         <default> .false.
         </default>
         <info>
Output the charge density (g-space) and the list of g-vectors
This is useful if you want to reconstruct the electrostatic
potential using the Poisson equation. If .TRUE. then the
code will output the g-space charge density and the list
if G-vectors, and STOP.
Charge density is written to : CH_DEN_G_PARA.ispin (1 or 2
depending on the number of spin types) or CH_DEN_G_SERL.ispin
depending on if the code is being run in parallel or serial
G-vectors are written to G_PARA or G_SERL.
         </info>
      </var>
   </namelist>
   <card name="ATOMIC_SPECIES" >
      <syntax>
         <table name="atomic_species" >
            <rows start="1" end="ntyp" >
               <col name="X" type="CHARACTER" >
                  <info> label of the atom
                  </info>
               </col>
               <col name="Mass_X" type="REAL" >
                  <info>
mass of the atomic species [amu: mass of C = 12]
not used if calculation=&apos;scf&apos;, &apos;nscf&apos;, &apos;bands&apos;
                  </info>
               </col>
               <col name="PseudoPot_X" type="CHARACTER" >
                  <info>
File containing PP for this species.

The pseudopotential file is assumed to be in the new UPF format.
If it doesn&apos;t work, the pseudopotential format is determined by
the file name:

*.vdb or *.van     Vanderbilt US pseudopotential code
*.RRKJ3            Andrea Dal Corso&apos;s code (old format)
none of the above  old PWscf norm-conserving format
                  </info>
               </col>
            </rows>
         </table>
      </syntax>
   </card>
   <card name="ATOMIC_POSITIONS" >
      <flag name="atompos_unit" use="optional" >
         <enum> alat | bohr | angstrom | crystal
         </enum>
         <default> bohr (DEPRECATED)
         </default>
         <info>
alat    : atomic positions are in cartesian coordinates,
          in units of the lattice parameter (either
          celldm(1) or A).

bohr    : atomic positions are in cartesian coordinate,
          in atomic units (i.e. Bohr).
          If no option is specified, &apos;bohr&apos; is assumed;
          not specifying units is DEPRECATED and will no
          longer be allowed in the future

angstrom: atomic positions are in cartesian coordinates,
          in Angstrom

crystal : atomic positions are in crystal coordinates, i.e.
          in relative coordinates of the primitive lattice
          vectors as defined either in card CELL_PARAMETERS
          or via the ibrav + celldm / a,b,c... variables
         </info>
      </flag>
      <choose>
         <when test="calculation == 'bands' OR calculation == 'nscf'" >
            <message>
Specified atomic positions will be IGNORED and those from the
previous scf calculation will be used instead !!!
            </message>
         </when>
         <elsewhen>
            <syntax>
               <table name="atomic_coordinates" >
                  <rows start="1" end="nat" >
                     <col name="X" type="CHARACTER" >
                        <info> label of the atom as specified in ATOMIC_SPECIES
                        </info>
                     </col>
                     <colgroup type="REAL" >
                        <info> atomic positions
                        </info>
                        <col name="x" >
                        </col>
                        <col name="y" >
                        </col>
                        <col name="z" >
                        </col>
                     </colgroup>
                     <optional>
                        <colgroup type="INTEGER" >
                           <info>
component i of the force for this atom is multiplied by if_pos(i),
which must be either 0 or 1.  Used to keep selected atoms and/or
selected components fixed in MD dynamics or
structural optimization run.
                           </info>
                           <default> 1
                           </default>
                           <col name="if_pos(1)" >
                           </col>
                           <col name="if_pos(2)" >
                           </col>
                           <col name="if_pos(3)" >
                           </col>
                        </colgroup>
                     </optional>
                  </rows>
               </table>
            </syntax>
         </elsewhen>
      </choose>
   </card>
   <card name="ATOMIC_VELOCITIES" >
      <flag name="atomvel_type" use="optional" >
         <enum> a.u
         </enum>
      </flag>
      <label>
Optional card, reads velocities (in atomic units) from standard input
      </label>
      <message>
when starting with ion_velocities=&quot;from_input&quot; it is convenient
to perform few steps (~5-10) with a smaller time step (0.5 a.u.)
      </message>
      <syntax>
         <table name="atomic_velocities" >
            <rows start="1" end="nat" >
               <col name="V" type="CHARACTER" >
                  <info> label of the atom as specified in ATOMIC_SPECIES
                  </info>
               </col>
               <colgroup type="REAL" >
                  <info> atomic velocities along x y and z direction
                  </info>
                  <col name="vx" >
                  </col>
                  <col name="vy" >
                  </col>
                  <col name="vz" >
                  </col>
               </colgroup>
            </rows>
         </table>
      </syntax>
   </card>
   <card name="CELL_PARAMETERS" >
      <flag name="lattice_type" use="optional" >
         <enum> bohr | angstrom | alat
         </enum>
         <info>
&apos;bohr&apos;/&apos;angstrom&apos;: lattice vectors in bohr radii / angstrom.
&apos;alat&apos; / nothing specified: lattice vectors in units or the
lattice parameter (either celldm(1) or a). Not specifing
units is DEPRECATED and will not be allowed in the future.
If nothing specified and no lattice parameter specified,
&apos;bohr&apos; is assumed - DEPRECATED, will no longer be allowed
         </info>
      </flag>
      <label>
Optional card, needed only if ibrav = 0 is specified, ignored otherwise !
      </label>
      <syntax>
         <table name="lattice" >
            <cols start="1" end="3" >
               <rowgroup type="REAL" >
                  <info>
Crystal lattice vectors:
    v1(1)  v1(2)  v1(3)    ... 1st lattice vector
    v2(1)  v2(2)  v2(3)    ... 2nd lattice vector
    v3(1)  v3(2)  v3(3)    ... 3rd lattice vector
                  </info>
                  <row name="v1" >
                  </row>
                  <row name="v2" >
                  </row>
                  <row name="v3" >
                  </row>
               </rowgroup>
            </cols>
         </table>
      </syntax>
   </card>
   <card name="CONSTRAINTS" >
      <label>
Optional card, used for constrained dynamics or constrained optimisations
      </label>
      <message>
When this card is present the SHAKE algorithm is automatically used.
      </message>
      <syntax>
         <line>
            <var name="nconstr" type="INTEGER" >
               <info> Number of constraints.
               </info>
            </var>
            <optional>
               <var name="constr_tol" type="REAL" >
                  <info> Tolerance for keeping the constraints satisfied.
                  </info>
               </var>
            </optional>
         </line>
         <table name="constraints_table" >
            <rows start="1" end="nconstr" >
               <col name="constr_type" type="CHARACTER" >
                  <info>
Type of constrain :

&apos;type_coord&apos;      : constraint on global coordination-number, i.e. the
                    average number of atoms of type B surrounding the
                    atoms of type A. The coordination is defined by
                    using a Fermi-Dirac.
                    (four indexes must be specified).

&apos;atom_coord&apos;      : constraint on local coordination-number, i.e. the
                    average number of atoms of type A surrounding a
                    specific atom. The coordination is defined by
                    using a Fermi-Dirac.
                    (four indexes must be specified).

&apos;distance&apos;        : constraint on interatomic distance
                    (two atom indexes must be specified).

&apos;planar_angle&apos;    : constraint on planar angle
                    (three atom indexes must be specified).

&apos;torsional_angle&apos; : constraint on torsional angle
                    (four atom indexes must be specified).

&apos;bennett_proj&apos;    : constraint on the projection onto a given direction
                    of the vector defined by the position of one atom
                    minus the center of mass of the others.
                    ( Ch.H. Bennett in Diffusion in Solids, Recent
                      Developments, Ed. by A.S. Nowick and J.J. Burton,
                      New York 1975 ).
                  </info>
               </col>
               <colgroup>
                  <col name="constr(1)" >
                  </col>
                  <col name="constr(2)" >
                  </col>
                  <conditional>
                     <col name="constr(3)" >
                     </col>
                     <col name="constr(4)" >
                     </col>
                  </conditional>
                  <info>
                      These variables have different meanings
                      for different constraint types:

                     &apos;type_coord&apos; : constr(1) is the first index of the
                                    atomic type involved
                                    constr(2) is the second index of the
                                    atomic type involved
                                    constr(3) is the cut-off radius for
                                    estimating the coordination
                                    constr(4) is a smoothing parameter

                     &apos;atom_coord&apos; : constr(1) is the atom index of the
                                    atom with constrained coordination
                                    constr(2) is the index of the atomic
                                    type involved in the coordination
                                    constr(3) is the cut-off radius for
                                    estimating the coordination
                                    constr(4) is a smoothing parameter

                       &apos;distance&apos; : atoms indices object of the
                                    constraint, as they appear in
                                    the &apos;ATOMIC_POSITION&apos; CARD

&apos;planar_angle&apos;, &apos;torsional_angle&apos; : atoms indices object of the
                                    constraint, as they appear in the
                                    &apos;ATOMIC_POSITION&apos; CARD (beware the
                                    order)

                   &apos;bennett_proj&apos; : constr(1) is the index of the atom
                                    whose position is constrained.
                                    constr(2:4) are the three coordinates
                                    of the vector that specifies the
                                    constraint direction.
                  </info>
               </colgroup>
               <optional>
                  <col name="constr_target" type="REAL" >
                     <info>
Target for the constrain ( angles are specified in degrees ).
This variable is optional.
                     </info>
                  </col>
               </optional>
            </rows>
         </table>
      </syntax>
   </card>
   <card name="OCCUPATIONS" >
      <label> Optional card, used only if occupations = &apos;from_input&apos;, ignored otherwise !
      </label>
      <syntax>
         <table name="occupations_table" >
            <cols start="1" end="nbnd" >
               <row name="f_inp1" type="REAL" >
                  <info>
Occupations of individual states (MAX 10 PER LINE).
For spin-polarized calculations, these are majority spin states.
                  </info>
               </row>
               <conditional>
                  <row name="f_inp2" type="REAL" >
                     <info>
Occupations of minority spin states (MAX 10 PER LINE)
To be specified only for spin-polarized calculations.
                     </info>
                  </row>
               </conditional>
            </cols>
         </table>
      </syntax>
   </card>
   <card name="PLOT_WANNIER" >
      <label>
Optional card, indices of the states that have to be printed (only for calf=1 and calf=5).
      </label>
      <syntax>
         <table name="state_index" >
            <rows start="1" end="nwf" >
               <col name="iwf" type="INTEGER" >
                  <info>
These are the indices of the states that you want to output.
Also used with calwf = 1 and 5. If calwf = 1, then you need
nwf indices here (each in a new line). If CALWF=5, then just
one index in needed.
                  </info>
               </col>
            </rows>
         </table>
      </syntax>
   </card>
</input_description>