1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
|
<?xml version="1.0" encoding="ISO-8859-1"?>
<?xml-stylesheet type="text/xsl" href="input_xx.xsl"?>
<!-- FILE AUTOMATICALLY CREATED: DO NOT EDIT, CHANGES WILL BE LOST -->
<input_description distribution="Quantum Espresso" package="CP" program="cp.x" >
<toc>
</toc>
<intro>
Input data format: { } = optional, [ ] = it depends, | = or
All quantities whose dimensions are not explicitly specified are in
HARTREE ATOMIC UNITS
BEWARE: TABS, DOS <CR><LF> CHARACTERS ARE POTENTIAL SOURCES OF TROUBLE
Comment lines in namelists can be introduced by a "!", exactly as in
fortran code. Comments lines in ``cards'' can be introduced by
either a "!" or a "#" character in the first position of a line.
Do not start any line in ``cards'' with a "/" character.
Structure of the input data:
===============================================================================
&CONTROL
...
/
&SYSTEM
...
/
&ELECTRONS
...
/
[ &IONS
...
/ ]
[ &CELL
...
/ ]
[ &WANNIER
...
/ ]
ATOMIC_SPECIES
X Mass_X PseudoPot_X
Y Mass_Y PseudoPot_Y
Z Mass_Z PseudoPot_Z
ATOMIC_POSITIONS { alat | bohr | crystal | angstrom }
X 0.0 0.0 0.0 {if_pos(1) if_pos(2) if_pos(3)}
Y 0.5 0.0 0.0
Z O.0 0.2 0.2
[ CELL_PARAMETERS { bohr | angstrom }
v1(1) v1(2) v1(3)
v2(1) v2(2) v2(3)
v3(1) v3(2) v3(3) ]
[ OCCUPATIONS
f_inp1(1) f_inp1(2) f_inp1(3) ... f_inp1(10)
f_inp1(11) f_inp1(12) ... f_inp1(nbnd)
[ f_inp2(1) f_inp2(2) f_inp2(3) ... f_inp2(10)
f_inp2(11) f_inp2(12) ... f_inp2(nbnd) ] ]
[ CONSTRAINTS
nconstr { constr_tol }
constr_type(.) constr(1,.) constr(2,.) [ constr(3,.) constr(4,.) ] { constr_target(.) } ]
</intro>
<namelist name="CONTROL" >
<var name="calculation" type="CHARACTER" >
<default> 'cp'
</default>
<info>
a string describing the task to be performed:
'cp',
'scf',
'nscf',
'relax',
'vc-relax',
'vc-cp',
'cp-wf'
(vc = variable-cell).
</info>
</var>
<var name="title" type="CHARACTER" >
<default> 'MD Simulation '
</default>
<info>
reprinted on output.
</info>
</var>
<var name="verbosity" type="CHARACTER" >
<default> 'low'
</default>
<info>
In order of decreasing verbose output:
'debug' | 'high' | 'medium' | 'low','default' | 'minimal'
</info>
</var>
<var name="isave" type="INTEGER" >
<see> ndr
</see>
<see> ndw
</see>
<default> 100
</default>
<info>
Number of steps between successive savings of
information needed to restart the run.
</info>
</var>
<var name="restart_mode" type="CHARACTER" >
<default> 'restart'
</default>
<info>
'from_scratch' : from scratch
'restart' : from previous interrupted run
'reset_counters' : continue a previous simulation,
performs "nstep" new steps, resetting
the counter and averages
</info>
</var>
<var name="nstep" type="INTEGER" >
<info>
number of ionic + electronic steps
</info>
<default>
1 if calculation = 'scf', 'nscf', 'bands';
50 for the other cases
</default>
</var>
<var name="iprint" type="INTEGER" >
<default> 10
</default>
<info>
Number of steps between successive writings of relevant
physical quantities to standard output and to files "fort.3?"
or "prefix.???" depending on "prefix" parameter
</info>
</var>
<var name="tstress" type="LOGICAL" >
<default> .false.
</default>
<info>
Write stress tensor to standard output each "iprint" steps.
It is set to .TRUE. automatically if
calculation='vc-relax'
</info>
</var>
<var name="tprnfor" type="LOGICAL" >
<default> .false.
</default>
<info>
print forces. Set to .TRUE. when ions are moving.
</info>
</var>
<var name="dt" type="REAL" >
<default> 1.D0
</default>
<info>
time step for molecular dynamics, in Hartree atomic units
(1 a.u.=2.4189 * 10^-17 s : beware, PW code use
Rydberg atomic units, twice that much!!!)
</info>
</var>
<var name="outdir" type="CHARACTER" >
<default>
value of the ESPRESSO_TMPDIR environment variable if set;
current directory ('./') otherwise
</default>
<info>
input, temporary, trajectories and output files are found
in this directory.
</info>
</var>
<var name="saverho" type="LOGICAL" >
<info>
This flag controls the saving of charge density in CP codes:
If .TRUE. save charge density to restart dir,
If .FALSE. do not save charge density.
</info>
</var>
<var name="prefix" type="CHARACTER" >
<default> 'cp'
</default>
<info>
prepended to input/output filenames:
prefix.pos, prefix.vel, etc.
</info>
</var>
<var name="ndr" type="INTEGER" >
<default> 50
</default>
<info>
Units for input and output restart file.
</info>
</var>
<var name="ndw" type="INTEGER" >
<default> 50
</default>
<info>
Units for input and output restart file.
</info>
</var>
<var name="tabps" type="LOGICAL" >
<default> .false.
</default>
<info>
.true. to compute the volume and/or the surface of an isolated
system for finite pressure/finite surface tension calculations
(PRL 94, 145501 (2005); JCP 124, 074103 (2006)).
</info>
</var>
<var name="max_seconds" type="REAL" >
<default> 1.D+7, or 150 days, i.e. no time limit
</default>
<info>
jobs stops after max_seconds CPU time. Used to prevent
a hard kill from the queuing system.
</info>
</var>
<var name="etot_conv_thr" type="REAL" >
<default> 1.0D-4
</default>
<info>
convergence threshold on total energy (a.u) for ionic
minimization: the convergence criterion is satisfied
when the total energy changes less than etot_conv_thr
between two consecutive scf steps.
See also forc_conv_thr - both criteria must be satisfied
</info>
</var>
<var name="forc_conv_thr" type="REAL" >
<default> 1.0D-3
</default>
<info>
convergence threshold on forces (a.u) for ionic
minimization: the convergence criterion is satisfied
when all components of all forces are smaller than
forc_conv_thr.
See also etot_conv_thr - both criteria must be satisfied
</info>
</var>
<var name="ekin_conv_thr" type="REAL" >
<default> 1.0D-6
</default>
<info>
convergence criterion for electron minimization:
convergence is achieved when "ekin < ekin_conv_thr".
See also etot_conv_thr - both criteria must be satisfied.
</info>
</var>
<var name="disk_io" type="CHARACTER" >
<default> 'default'
</default>
<info>
'high': CP code will write Kohn-Sham wfc files and additional
information in data-file.xml in order to restart
with a PW calculation or to use postprocessing tools.
If disk_io is not set to 'high', the data file
written by CP will not be readable by PW or PostProc.
</info>
</var>
<var name="memory" type="CHARACTER" >
<default> 'default'
</default>
<info>
'small': memory-saving tricks are implemented. Currently:
- the G-vectors are sorted only locally, not globally
- they are not collected and written to file
For large systems, the memory and time gain is sizable
but the resulting data files are not portable - use it
only if you do not need to re-read the data file
</info>
</var>
<var name="pseudo_dir" type="CHARACTER" >
<default>
value of the $ESPRESSO_PSEUDO environment variable if set;
'$HOME/espresso/pseudo/' otherwise
</default>
<info>
directory containing pseudopotential files
</info>
</var>
<var name="tefield" type="LOGICAL" >
<default> .FALSE.
</default>
<info>
If .TRUE. a homogeneous finite electric field described
through the modern theory of the polarization is applied.
</info>
</var>
</namelist>
<namelist name="SYSTEM" >
<var name="ibrav" type="INTEGER" >
<status> REQUIRED
</status>
<info>
Bravais-lattice index. If ibrav /= 0, specify EITHER
[ celldm(1)-celldm(6) ] OR [ A,B,C,cosAB,cosAC,cosBC ]
but NOT both. The lattice parameter alat is set to
alat = celldm(1) (in a.u.) or alat = A (in Angstrom);
see below for the other parameters.
For ibrav=0 specify the lattice vectors in CELL_PARAMETER,
optionally the lattice parameter alat = celldm(1) (in a.u.)
or = A (in Angstrom), or else it is taken from CELL_PARAMETERS
ibrav structure celldm(2)-celldm(6)
or: b,c,cosab,cosac,cosbc
0 free
crystal axis provided in input: see card CELL_PARAMETERS
1 cubic P (sc)
v1 = a(1,0,0), v2 = a(0,1,0), v3 = a(0,0,1)
2 cubic F (fcc)
v1 = (a/2)(-1,0,1), v2 = (a/2)(0,1,1), v3 = (a/2)(-1,1,0)
3 cubic I (bcc)
v1 = (a/2)(1,1,1), v2 = (a/2)(-1,1,1), v3 = (a/2)(-1,-1,1)
4 Hexagonal and Trigonal P celldm(3)=c/a
v1 = a(1,0,0), v2 = a(-1/2,sqrt(3)/2,0), v3 = a(0,0,c/a)
5 Trigonal R, 3fold axis c celldm(4)=cos(alpha)
The crystallographic vectors form a three-fold star around
the z-axis, the primitive cell is a simple rhombohedron:
v1 = a(tx,-ty,tz), v2 = a(0,2ty,tz), v3 = a(-tx,-ty,tz)
where c=cos(alpha) is the cosine of the angle alpha between
any pair of crystallographic vectors, tx, ty, tz are:
tx=sqrt((1-c)/2), ty=sqrt((1-c)/6), tz=sqrt((1+2c)/3)
-5 Trigonal R, 3fold axis <111> celldm(4)=cos(alpha)
The crystallographic vectors form a three-fold star around
<111>. Defining a' = a/sqrt(3) :
v1 = a' (u,v,v), v2 = a' (v,u,v), v3 = a' (v,v,u)
where u and v are defined as
u = tz - 2*sqrt(2)*ty, v = tz + sqrt(2)*ty
and tx, ty, tz as for case ibrav=5
Note: if you prefer x,y,z as axis in the cubic limit,
set u = tz + 2*sqrt(2)*ty, v = tz - sqrt(2)*ty
See also the note in flib/latgen.f90
6 Tetragonal P (st) celldm(3)=c/a
v1 = a(1,0,0), v2 = a(0,1,0), v3 = a(0,0,c/a)
7 Tetragonal I (bct) celldm(3)=c/a
v1=(a/2)(1,-1,c/a), v2=(a/2)(1,1,c/a), v3=(a/2)(-1,-1,c/a)
8 Orthorhombic P celldm(2)=b/a
celldm(3)=c/a
v1 = (a,0,0), v2 = (0,b,0), v3 = (0,0,c)
9 Orthorhombic base-centered(bco) celldm(2)=b/a
celldm(3)=c/a
v1 = (a/2, b/2,0), v2 = (-a/2,b/2,0), v3 = (0,0,c)
-9 as 9, alternate description
v1 = (a/2,-b/2,0), v2 = (a/2,-b/2,0), v3 = (0,0,c)
10 Orthorhombic face-centered celldm(2)=b/a
celldm(3)=c/a
v1 = (a/2,0,c/2), v2 = (a/2,b/2,0), v3 = (0,b/2,c/2)
11 Orthorhombic body-centered celldm(2)=b/a
celldm(3)=c/a
v1=(a/2,b/2,c/2), v2=(-a/2,b/2,c/2), v3=(-a/2,-b/2,c/2)
12 Monoclinic P, unique axis c celldm(2)=b/a
celldm(3)=c/a,
celldm(4)=cos(ab)
v1=(a,0,0), v2=(b*cos(gamma),b*sin(gamma),0), v3 = (0,0,c)
where gamma is the angle between axis a and b.
-12 Monoclinic P, unique axis b celldm(2)=b/a
celldm(3)=c/a,
celldm(5)=cos(ac)
v1 = (a,0,0), v2 = (0,b,0), v3 = (c*sin(beta),0,c*cos(beta))
where beta is the angle between axis a and c
13 Monoclinic base-centered celldm(2)=b/a
celldm(3)=c/a,
celldm(4)=cos(ab)
v1 = ( a/2, 0, -c/2),
v2 = (b*cos(gamma), b*sin(gamma), 0),
v3 = ( a/2, 0, c/2),
where gamma is the angle between axis a and b
14 Triclinic celldm(2)= b/a,
celldm(3)= c/a,
celldm(4)= cos(bc),
celldm(5)= cos(ac),
celldm(6)= cos(ab)
v1 = (a, 0, 0),
v2 = (b*cos(gamma), b*sin(gamma), 0)
v3 = (c*cos(beta), c*(cos(alpha)-cos(beta)cos(gamma))/sin(gamma),
c*sqrt( 1 + 2*cos(alpha)cos(beta)cos(gamma)
- cos(alpha)^2-cos(beta)^2-cos(gamma)^2 )/sin(gamma) )
where alpha is the angle between axis b and c
beta is the angle between axis a and c
gamma is the angle between axis a and b
</info>
</var>
<group>
<label> Either:
</label>
<dimension name="celldm" start="1" end="6" type="REAL" >
<see> ibrav
</see>
<info>
Crystallographic constants - see description of ibrav variable.
Specify either these OR A,B,C,cosAB,cosBC,cosAC NOT both.
Only needed celldm (depending on ibrav) must be specified
alat = celldm(1) is the lattice parameter "a" (in BOHR)
If ibrav=0, only celldm(1) is used if present;
cell vectors are read from card CELL_PARAMETERS
</info>
</dimension>
<label> Or:
</label>
<vargroup type="REAL" >
<var name="A" >
</var>
<var name="B" >
</var>
<var name="C" >
</var>
<var name="cosAB" >
</var>
<var name="cosAC" >
</var>
<var name="cosBC" >
</var>
<info>
Traditional crystallographic constants: a,b,c in ANGSTROM
cosAB = cosine of the angle between axis a and b (gamma)
cosAC = cosine of the angle between axis a and c (beta)
cosBC = cosine of the angle between axis b and c (alpha)
The axis are chosen according to the value of ibrav.
Specify either these OR celldm but NOT both.
Only needed values (depending on ibrav) must be specified
The lattice parameter alat = A (in ANGSTROM )
If ibrav = 0, only A is used if present;
cell vectors are read from card CELL_PARAMETERS
</info>
</vargroup>
</group>
<var name="nat" type="INTEGER" >
<status> REQUIRED
</status>
<info>
number of atoms in the unit cell
</info>
</var>
<var name="ntyp" type="INTEGER" >
<status> REQUIRED
</status>
<info>
number of types of atoms in the unit cell
</info>
</var>
<var name="nbnd" type="INTEGER" >
<default>
for an insulator, nbnd = number of valence bands
(nbnd = # of electrons /2);
for a metal, 20% more (minimum 4 more)
</default>
<info>
number of electronic states (bands) to be calculated.
Note that in spin-polarized calculations the number of
k-point, not the number of bands per k-point, is doubled
</info>
</var>
<var name="tot_charge" type="REAL" >
<default> 0.0
</default>
<info>
total charge of the system. Useful for simulations with charged cells.
By default the unit cell is assumed to be neutral (tot_charge=0).
tot_charge=+1 means one electron missing from the system,
tot_charge=-1 means one additional electron, and so on.
In a periodic calculation a compensating jellium background is
inserted to remove divergences if the cell is not neutral.
</info>
</var>
<var name="tot_magnetization" type="REAL" >
<default> -1 [unspecified]
</default>
<info>
total majority spin charge - minority spin charge.
Used to impose a specific total electronic magnetization.
If unspecified, the tot_magnetization variable is ignored
and the electronic magnetization is determined by the
occupation numbers (see card OCCUPATIONS) read from input.
</info>
</var>
<var name="ecutwfc" type="REAL" >
<status> REQUIRED
</status>
<info>
kinetic energy cutoff (Ry) for wavefunctions
</info>
</var>
<var name="ecutrho" type="REAL" >
<default> 4 * ecutwfc
</default>
<info>
kinetic energy cutoff (Ry) for charge density and potential
For norm-conserving pseudopotential you should stick to the
default value, you can reduce it by a little but it will
introduce noise especially on forces and stress.
If there are ultrasoft PP, a larger value than the default is
often desirable (ecutrho = 8 to 12 times ecutwfc, typically).
PAW datasets can often be used at 4*ecutwfc, but it depends
on the shape of augmentation charge: testing is mandatory.
The use of gradient-corrected functional, especially in cells
with vacuum, or for pseudopotential without non-linear core
correction, usually requires an higher values of ecutrho
to be accurately converged.
</info>
</var>
<vargroup type="INTEGER" >
<see> ecutrho
</see>
<var name="nr1" >
</var>
<var name="nr2" >
</var>
<var name="nr3" >
</var>
<info>
three-dimensional FFT mesh (hard grid) for charge
density (and scf potential). If not specified
the grid is calculated based on the cutoff for
charge density.
</info>
</vargroup>
<vargroup type="INTEGER" >
<var name="nr1s" >
</var>
<var name="nr2s" >
</var>
<var name="nr3s" >
</var>
<info>
three-dimensional mesh for wavefunction FFT and for the smooth
part of charge density ( smooth grid ).
Coincides with nr1, nr2, nr3 if ecutrho = 4 * ecutwfc ( default )
</info>
</vargroup>
<vargroup type="INTEGER" >
<var name="nr1b" >
</var>
<var name="nr2b" >
</var>
<var name="nr3b" >
</var>
<info>
dimensions of the "box" grid for Ultrasoft pseudopotentials
must be specified if Ultrasoft PP are present
</info>
</vargroup>
<var name="occupations" type="CHARACTER" >
<info>
a string describing the occupation of the electronic states.
In the case of conjugate gradient style of minimization
of the electronic states, if occupations is set to 'ensemble',
this allows ensemble DFT calculations for metallic systems
</info>
</var>
<var name="degauss" type="REAL" >
<default> 0.D0 Ry
</default>
<info>
parameter for the smearing function, only used for ensemble DFT
calculations
</info>
</var>
<var name="smearing" type="CHARACTER" >
<info>
a string describing the kind of occupations for electronic states
in the case of ensemble DFT (occupations == 'ensemble' );
now only Fermi-Dirac ('fd') case is implemented
</info>
</var>
<var name="nspin" type="INTEGER" >
<default> 1
</default>
<info>
nspin = 1 : non-polarized calculation (default)
nspin = 2 : spin-polarized calculation, LSDA
(magnetization along z axis)
</info>
</var>
<var name="ecfixed" type="REAL" >
<default> 0.0
</default>
<see> q2sigma
</see>
</var>
<var name="qcutz" type="REAL" >
<default> 0.0
</default>
<see> q2sigma
</see>
</var>
<var name="q2sigma" type="REAL" >
<default> 0.1
</default>
<info>
ecfixed, qcutz, q2sigma: parameters for modified functional to be
used in variable-cell molecular dynamics (or in stress calculation).
"ecfixed" is the value (in Rydberg) of the constant-cutoff;
"qcutz" and "q2sigma" are the height and the width (in Rydberg)
of the energy step for reciprocal vectors whose square modulus
is greater than "ecfixed". In the kinetic energy, G^2 is
replaced by G^2 + qcutz * (1 + erf ( (G^2 - ecfixed)/q2sigma) )
See: M. Bernasconi et al, J. Phys. Chem. Solids 56, 501 (1995)
</info>
</var>
<var name="input_dft" type="CHARACTER" >
<default> read from pseudopotential files
</default>
<info>
Exchange-correlation functional: eg 'PBE', 'BLYP' etc
See Modules/functionals.f90 for allowed values.
Overrides the value read from pseudopotential files.
Use with care and if you know what you are doing!
</info>
</var>
<var name="lda_plus_u" type="LOGICAL" >
<default> .FALSE.
</default>
<info>
lda_plus_u = .TRUE. enables calculation with LDA+U
("rotationally invariant"). See also Hubbard_U.
Anisimov, Zaanen, and Andersen, PRB 44, 943 (1991);
Anisimov et al., PRB 48, 16929 (1993);
Liechtenstein, Anisimov, and Zaanen, PRB 52, R5467 (1994);
Cococcioni and de Gironcoli, PRB 71, 035105 (2005).
</info>
</var>
<dimension name="Hubbard_U" start="1" end="ntyp" type="REAL" >
<default> 0.D0 for all species
</default>
<status>
LDA+U works only for a few selected elements. Modify
CPV/ldaU.f90 if you plan to use LDA+U with an
element that is not configured there.
</status>
<info>
Hubbard_U(i): parameter U (in eV) for LDA+U calculations.
Currently only the simpler, one-parameter LDA+U is
implemented (no "alpha" or "J" terms)
</info>
</dimension>
<var name="vdw_corr" type="CHARACTER" >
<default> 'none'
</default>
<info>
Type of Van der Waals correction. Allowed values:
'grimme-d2', 'Grimme-D2', 'DFT-D', 'dft-d': semiempirical Grimme's DFT-D2.
Optional variables: "london_s6", "london_rcut"
S. Grimme, J. Comp. Chem. 27, 1787 (2006),
V. Barone et al., J. Comp. Chem. 30, 934 (2009).
'TS', 'ts', 'ts-vdw', 'ts-vdW', 'tkatchenko-scheffler': Tkatchenko-Scheffler
dispersion corrections with first-principle derived C6 coefficients
Optional variables: "ts_vdw_econv_thr", "ts_vdw_isolated"
See A. Tkatchenko and M. Scheffler, Phys. Rev. Lett. 102, 073005 (2009)
'XDM', 'xdm': Exchange-hole dipole-moment model. Optional variables: "xdm_a1", "xdm_a2"
(implemented in PW only)
A. D. Becke and E. R. Johnson, J. Chem. Phys. 127, 154108 (2007)
A. Otero de la Roza, E. R. Johnson, J. Chem. Phys. 136, 174109 (2012)
Note that non-local functionals (eg vdw-DF) are NOT specified here but in "input_dft"
</info>
</var>
<var name="london_s6" type="REAL" >
<default> 0.75
</default>
<info>
global scaling parameter for DFT-D. Default is good for PBE.
</info>
</var>
<var name="london_rcut" type="REAL" >
<default> 200
</default>
<info>
cutoff radius (a.u.) for dispersion interactions
</info>
</var>
<var name="ts_vdw" type="LOGICAL" >
<default> .FALSE.
</default>
<info>
OBSOLESCENT, same as vdw_corr='TS'
</info>
</var>
<var name="ts_vdw_econv_thr" type="REAL" >
<default> 1.D-6
</default>
<info>
Optional: controls the convergence of the vdW energy (and forces). The default value
is a safe choice, likely too safe, but you do not gain much in increasing it
</info>
</var>
<var name="ts_vdw_isolated" type="LOGICAL" >
<default> .FALSE.
</default>
<info>
Optional: set it to .TRUE. when computing the Tkatchenko-Scheffler vdW energy
for an isolated (non-periodic) system.
</info>
</var>
<var name="assume_isolated" type="CHARACTER" >
<default> 'none'
</default>
<info>
Used to perform calculation assuming the system to be
isolated (a molecule of a clustr in a 3D supercell).
Currently available choices:
'none' (default): regular periodic calculation w/o any correction.
'makov-payne', 'm-p', 'mp' : the Makov-Payne correction to the
total energy is computed.
Theory:
G.Makov, and M.C.Payne,
"Periodic boundary conditions in ab initio
calculations" , Phys.Rev.B 51, 4014 (1995)
</info>
</var>
</namelist>
<namelist name="ELECTRONS" >
<var name="electron_maxstep" type="INTEGER" >
<default> 100
</default>
<info>
maximum number of iterations in a scf step
</info>
</var>
<var name="electron_dynamics" type="CHARACTER" >
<default> 'none'
</default>
<info>
set how electrons should be moved
'none' : electronic degrees of freedom (d.o.f.) are kept fixed
'sd' : steepest descent algorithm is used to minimize
electronic d.o.f.
'damp' : damped dynamics is used to propagate electronic d.o.f.
'verlet' : standard Verlet algorithm is used to propagate
electronic d.o.f.
'cg' : conjugate gradient is used to converge the
wavefunction at each ionic step. 'cg' can be used
interchangeably with 'verlet' for a couple of ionic
steps in order to "cool down" the electrons and
return them back to the Born-Oppenheimer surface.
Then 'verlet' can be restarted again. This procedure
is useful when electronic adiabaticity in CP is lost
yet the ionic velocities need to be preserved.
</info>
</var>
<var name="conv_thr" type="REAL" >
<default> 1.D-6
</default>
<info>
Convergence threshold for selfconsistency:
estimated energy error < conv_thr
</info>
</var>
<var name="niter_cg_restart" type="INTEGER" >
<default> 20
</default>
<info>
frequency in iterations for which the conjugate-gradient algorithm
for electronic relaxation is restarted
</info>
</var>
<var name="efield" type="REAL" >
<default> 0.D0
</default>
<info>
Amplitude of the finite electric field (in a.u.;
1 a.u. = 51.4220632*10^10 V/m). Used only if tefield=.TRUE.
</info>
</var>
<var name="epol" type="INTEGER" >
<default> 3
</default>
<info>
direction of the finite electric field (only if tefield == .TRUE.)
In the case of a PARALLEL calculation only the case epol==3
is implemented
</info>
</var>
<var name="emass" type="REAL" >
<default> 400.D0
</default>
<info>
effective electron mass in the CP Lagrangian, in atomic units
( 1 a.u. of mass = 1/1822.9 a.m.u. = 9.10939 * 10^-31 kg )
</info>
</var>
<var name="emass_cutoff" type="REAL" >
<default> 2.5D0
</default>
<info>
mass cut-off (in Rydberg) for the Fourier acceleration
effective mass is rescaled for "G" vector components with
kinetic energy above "emass_cutoff"
</info>
</var>
<var name="orthogonalization" type="CHARACTER" >
<default> 'ortho'
</default>
<info>
selects the orthonormalization method for electronic wave
functions
'ortho' : use iterative algorithm - if it doesn't converge,
reduce the timestep, or use options ortho_max
and ortho_eps, or use Gram-Schmidt instead just
to start the simulation
'Gram-Schmidt' : use Gram-Schmidt algorithm - to be used ONLY in
the first few steps.
YIELDS INCORRECT ENERGIES AND EIGENVALUES.
</info>
</var>
<var name="ortho_eps" type="REAL" >
<default> 1.D-8
</default>
<info>
tolerance for iterative orthonormalization
meaningful only if orthogonalization = 'ortho'
</info>
</var>
<var name="ortho_max" type="INTEGER" >
<default> 20
</default>
<info>
maximum number of iterations for orthonormalization
meaningful only if orthogonalization = 'ortho'
</info>
</var>
<var name="ortho_para" type="INTEGER" >
<default> 0
</default>
<status> OBSOLETE: use command-line option " -nd XX" instead
</status>
<info>
</info>
</var>
<var name="electron_damping" type="REAL" >
<default> 0.1D0
</default>
<info>
damping frequency times delta t, optimal values could be
calculated with the formula :
SQRT( 0.5 * LOG( ( E1 - E2 ) / ( E2 - E3 ) ) )
where E1, E2, E3 are successive values of the DFT total energy
in a steepest descent simulations.
meaningful only if " electron_dynamics = 'damp' "
</info>
</var>
<var name="electron_velocities" type="CHARACTER" >
<info>
'zero' : restart setting electronic velocities to zero
'default' : restart using electronic velocities of the
previous run
</info>
</var>
<var name="electron_temperature" type="CHARACTER" >
<default> 'not_controlled'
</default>
<info>
'nose' : control electronic temperature using Nose
thermostat. See also "fnosee" and "ekincw".
'rescaling' : control electronic temperature via velocities
rescaling.
'not_controlled' : electronic temperature is not controlled.
</info>
</var>
<var name="ekincw" type="REAL" >
<default> 0.001D0
</default>
<info>
value of the average kinetic energy (in atomic units) forced
by the temperature control
meaningful only with " electron_temperature /= 'not_controlled' "
</info>
</var>
<var name="fnosee" type="REAL" >
<default> 1.D0
</default>
<info>
oscillation frequency of the nose thermostat (in terahertz)
meaningful only with " electron_temperature = 'nose' "
</info>
</var>
<var name="startingwfc" type="CHARACTER" >
<default> 'random'
</default>
<info>
'atomic': start from superposition of atomic orbitals
(not yet implemented)
'random': start from random wfcs. See "ampre".
</info>
</var>
<var name="tcg" type="LOGICAL" >
<default> .FALSE.
</default>
<info>
if .TRUE. perform a conjugate gradient minimization of the
electronic states for every ionic step.
It requires Gram-Schmidt orthogonalization of the electronic
states.
</info>
</var>
<var name="maxiter" type="INTEGER" >
<default> 100
</default>
<info>
maximum number of conjugate gradient iterations for
conjugate gradient minimizations of electronic states
</info>
</var>
<var name="passop" type="REAL" >
<default> 0.3D0
</default>
<info>
small step used in the conjugate gradient minimization
of the electronic states.
</info>
</var>
<var name="n_inner" type="INTEGER" >
<default> 2
</default>
<info>
number of internal cycles for every conjugate gradient
iteration only for ensemble DFT
</info>
</var>
<var name="ninter_cold_restart" type="INTEGER" >
<default> 1
</default>
<info>
frequency in iterations at which a full inner cycle, only
for cold smearing, is performed
</info>
</var>
<var name="lambda_cold" type="REAL" >
<default> 0.03D0
</default>
<info>
step for inner cycle with cold smearing, used when a not full
cycle is performed
</info>
</var>
<var name="grease" type="REAL" >
<default> 1.D0
</default>
<info>
a number <= 1, very close to 1: the damping in electronic
damped dynamics is multiplied at each time step by "grease"
(avoids overdamping close to convergence: Obsolete ?)
grease = 1 : normal damped dynamics
</info>
</var>
<var name="ampre" type="REAL" >
<default> 0.D0
</default>
<info>
amplitude of the randomization ( allowed values: 0.0 - 1.0 )
meaningful only if " startingwfc = 'random' "
</info>
</var>
</namelist>
<namelist name="IONS" >
<label>
input this namelist only if calculation = 'cp', 'relax', 'vc-relax', 'vc_cp'
</label>
<var name="ion_dynamics" type="CHARACTER" >
<info>
Specify the type of ionic dynamics.
For constrained dynamics or constrained optimisations add the
CONSTRAINTS card (when the card is present the SHAKE algorithm is
automatically used).
'none' : ions are kept fixed
'sd' : steepest descent algorithm is used to minimize ionic
configuration
'cg' : conjugate gradient algorithm is used to minimize ionic
configuration
'damp' : damped dynamics is used to propagate ions
'verlet' : standard Verlet algorithm is used to propagate ions
</info>
</var>
<var name="ion_positions" type="CHARACTER" >
<default> 'default'
</default>
<info>
'default ' : if restarting, use atomic positions read from the
restart file; in all other cases, use atomic
positions from standard input.
'from_input' : restart the simulation with atomic positions read
from standard input, even if restarting.
</info>
</var>
<var name="ion_velocities" type="CHARACTER" >
<default> 'default'
</default>
<see> tempw
</see>
<info>
initial ionic velocities
'default' : restart the simulation with atomic velocities read
from the restart file
'change_step' : restart the simulation with atomic velocities read
from the restart file, with rescaling due to the
timestep change, specify the old step via tolp
as in tolp = 'old_time_step_value' in au
'random' : start the simulation with random atomic velocities
'from_input' : restart the simulation with atomic velocities read
from standard input - see card 'ATOMIC_VELOCITIES'
BEWARE: works only if restart_mode='from_scratch',
tested only with electrons_dynamics='cg'
'zero' : restart the simulation with atomic velocities set
to zero
</info>
</var>
<var name="ion_nstepe" type="INTEGER" >
<default> 1
</default>
<info>
number of electronic steps per ionic step.
</info>
</var>
<var name="remove_rigid_rot" type="LOGICAL" >
<default> .FALSE.
</default>
<info>
This keyword is useful when simulating the dynamics and/or the
thermodynamics of an isolated system. If set to true the total
torque of the internal forces is set to zero by adding new forces
that compensate the spurious interaction with the periodic
images. This allows for the use of smaller supercells.
BEWARE: since the potential energy is no longer consistent with
the forces (it still contains the spurious interaction with the
repeated images), the total energy is not conserved anymore.
However the dynamical and thermodynamical properties should be
in closer agreement with those of an isolated system.
Also the final energy of a structural relaxation will be higher,
but the relaxation itself should be faster.
</info>
</var>
<var name="ion_temperature" type="CHARACTER" >
<default> 'not_controlled'
</default>
<info>
'nose' : control ionic temperature using Nose-Hoover
thermostat see parameters "fnosep", "tempw",
"nhpcl", "ndega", "nhptyp"
'rescaling' : control ionic temperature via velocities
rescaling. see parameter "tolp"
'not_controlled' : ionic temperature is not controlled
</info>
</var>
<var name="tempw" type="REAL" >
<default> 300.D0
</default>
<info>
value of the ionic temperature (in Kelvin) forced by the
temperature control.
meaningful only with " ion_temperature /= 'not_controlled' "
or when the initial velocities are set to 'random'
"ndega" controls number of degrees of freedom used in
temperature calculation
</info>
</var>
<var name="fnosep" type="REAL" >
<default> 1.D0
</default>
<info>
oscillation frequency of the nose thermostat (in terahertz)
[note that 3 terahertz = 100 cm^-1]
meaningful only with " ion_temperature = 'nose' "
for Nose-Hoover chain one can set frequencies of all thermostats
( fnosep = X Y Z etc. ) If only first is set, the defaults for
the others will be same.
</info>
</var>
<var name="tolp" type="REAL" >
<default> 100.D0
</default>
<info>
tolerance (in Kelvin) of the rescaling. When ionic temperature
differs from "tempw" more than "tolp" apply rescaling.
meaningful only with " ion_temperature = 'rescaling' "
and with ion_velocities='change_step', where it specifies
the old timestep
</info>
</var>
<var name="nhpcl" type="INTEGER" >
<default> 1
</default>
<info>
number of thermostats in the Nose-Hoover chain
currently maximum allowed is 4
</info>
</var>
<var name="nhptyp" type="INTEGER" >
<default> 0
</default>
<info>
type of the "massive" Nose-Hoover chain thermostat
nhptyp=1 uses a NH chain per each atomic type
nhptyp=2 uses a NH chain per atom, this one is useful
for extremely rapid equipartitioning (equilibration is a
different beast)
nhptyp=3 together with nhgrp allows fine grained thermostat
control
NOTE: if using more than 1 thermostat per system there will
be a common thermostat added on top of them all, to disable
this common thermostat specify nhptyp=-X instead of nhptyp=X
</info>
</var>
<dimension name="nhgrp" start="1" end="ntyp" type="INTEGER" >
<default> 0
</default>
<info>
specifies which thermostat group to use for given atomic type
when >0 assigns all the atoms in this type to thermostat
labeled nhgrp(i), when =0 each atom in the type gets its own
thermostat. Finally, when <0, then this atomic type will have
temperature "not controlled". Example: HCOOLi, with types H (1), C(2), O(3), Li(4);
setting nhgrp={2 2 0 -1} will add a common thermostat for both H & C,
one thermostat per each O (2 in total), and a non-updated thermostat
for Li which will effectively make temperature for Li "not controlled"
</info>
</dimension>
<dimension name="fnhscl" start="1" end="ntyp" type="REAL" >
<default> (Nat_{total}-1)/Nat_{total}
</default>
<info>
these are the scaling factors to be used together with nhptyp=3 and nhgrp(i)
in order to take care of possible reduction in the degrees of freedom due to
constraints. Suppose that with the previous example HCOOLi, C-H bond is
constrained. Then, these 2 atoms will have 5 degrees of freedom in total instead
of 6, and one can set fnhscl={5/6 5/6 1. 1.}. This way the target kinetic energy
for H&C will become 6(kT/2)*5/6 = 5(kT/2). This option is to be used for
simulations with many constraints, such as rigid water with something else in there
</info>
</dimension>
<var name="ndega" type="INTEGER" >
<default> 0
</default>
<info>
number of degrees of freedom used for temperature calculation
ndega <= 0 sets the number of degrees of freedom to
[3*nat-abs(ndega)], ndega > 0 is used as the target number
</info>
</var>
<dimension name="tranp" start="1" end="ntyp" type="LOGICAL" >
<see> amprp
</see>
<default> .false.
</default>
<info>
If .TRUE. randomize ionic positions for the
atomic type corresponding to the index.
</info>
</dimension>
<dimension name="amprp" start="1" end="ntyp" type="REAL" >
<see> amprp
</see>
<default> 0.D0
</default>
<info>
amplitude of the randomization for the atomic type corresponding
to the index i ( allowed values: 0.0 - 1.0 ).
meaningful only if " tranp(i) = .TRUE.".
</info>
</dimension>
<var name="greasp" type="REAL" >
<default> 1.D0
</default>
<info>
same as "grease", for ionic damped dynamics.
</info>
</var>
</namelist>
<namelist name="CELL" >
<label>
input this namelist only if calculation = 'vc-relax', 'vc-cp'
</label>
<var name="cell_parameters" type="CHARACTER" >
<info>
'default' : restart the simulation with cell parameters read
from the restart file or "celldm" if
"restart = 'from_scratch'"
'from_input' : restart the simulation with cell parameters
from standard input.
( see the card 'CELL_PARAMETERS' )
</info>
</var>
<var name="cell_dynamics" type="CHARACTER" >
<default> 'none'
</default>
<info>
set how cell should be moved
'none' : cell is kept fixed
'sd' : steepest descent algorithm is used to optimise the
cell
'damp-pr' : damped dynamics is used to optimise the cell
( Parrinello-Rahman method ).
'pr' : standard Verlet algorithm is used to propagate
the cell ( Parrinello-Rahman method ).
</info>
</var>
<var name="cell_velocities" type="CHARACTER" >
<info>
'zero' : restart setting cell velocity to zero
'default' : restart using cell velocity of the previous run
</info>
</var>
<var name="cell_damping" type="REAL" >
<default> 0.1D0
</default>
<info>
damping frequency times delta t, optimal values could be
calculated with the formula :
SQRT( 0.5 * LOG( ( E1 - E2 ) / ( E2 - E3 ) ) )
where E1, E2, E3 are successive values of the DFT total energy
in a steepest descent simulations.
meaningful only if " cell_dynamics = 'damp' "
</info>
</var>
<var name="press" type="REAL" >
<default> 0.D0
</default>
<info>
Target pressure [KBar] in a variable-cell md or relaxation run.
</info>
</var>
<var name="wmass" type="REAL" >
<default>
0.75*Tot_Mass/pi**2 for Parrinello-Rahman MD;
0.75*Tot_Mass/pi**2/Omega**(2/3) for Wentzcovitch MD
</default>
<info>
Fictitious cell mass [amu] for variable-cell simulations
(both 'vc-md' and 'vc-relax')
</info>
</var>
<var name="cell_factor" type="REAL" >
<default> 1.2D0
</default>
<info>
Used in the construction of the pseudopotential tables.
It should exceed the maximum linear contraction of the
cell during a simulation.
</info>
</var>
<var name="cell_temperature" type="CHARACTER" >
<default> 'not_controlled'
</default>
<info>
'nose' : control cell temperature using Nose thermostat
see parameters "fnoseh" and "temph".
'rescaling' : control cell temperature via velocities
rescaling.
'not_controlled' : cell temperature is not controlled.
</info>
</var>
<var name="temph" type="REAL" >
<default> 0.D0
</default>
<info>
value of the cell temperature (in ???) forced
by the temperature control.
meaningful only with " cell_temperature /= 'not_controlled' "
</info>
</var>
<var name="fnoseh" type="REAL" >
<default> 1.D0
</default>
<info>
oscillation frequency of the nose thermostat (in terahertz)
meaningful only with " cell_temperature = 'nose' "
</info>
</var>
<var name="greash" type="REAL" >
<default> 1.D0
</default>
<info>
same as "grease", for cell damped dynamics
</info>
</var>
<var name="cell_dofree" type="CHARACTER" >
<default> 'all'
</default>
<info>
Select which of the cell parameters should be moved:
all = all axis and angles are moved
x = only the x component of axis 1 (v1_x) is moved
y = only the y component of axis 2 (v2_y) is moved
z = only the z component of axis 3 (v3_z) is moved
xy = only v1_x and v2_y are moved
xz = only v1_x and v3_z are moved
yz = only v2_y and v3_z are moved
xyz = only v1_x, v2_y, v3_z are moved
shape = all axis and angles, keeping the volume fixed
2Dxy = only x and y components are allowed to change
2Dshape = as above, keeping the area in xy plane fixed
</info>
</var>
</namelist>
<namelist name="PRESS_AI" >
<label>
input this namelist only when tabps = .true.
</label>
<var name="abivol" type="LOGICAL" >
<default> .false.
</default>
<info>
.true. for finite pressure calculations
</info>
</var>
<var name="abivol" type="LOGICAL" >
<default> .false.
</default>
<info>
.true. for finite surface tension calculations
</info>
</var>
<var name="P_ext" type="REAL" >
<default> 0.D0
</default>
<info>
external pressure in GPa
</info>
</var>
<var name="pvar" type="LOGICAL" >
<default> .false.
</default>
<info>
.true. for variable pressure calculations
pressure changes linearly with time:
Delta_P = (P_fin - P_in)/nstep
</info>
</var>
<var name="P_in" type="REAL" >
<default> 0.D0
</default>
<info>
only if pvar = .true.
initial value of the external pressure (GPa)
</info>
</var>
<var name="P_fin" type="REAL" >
<default> 0.D0
</default>
<info>
only if pvar = .true.
final value of the external pressure (GPa)
</info>
</var>
<var name="Surf_t" type="REAL" >
<default> 0.D0
</default>
<info>
Surface tension (in a.u.; typical values 1.d-4 - 1.d-3)
</info>
</var>
<var name="rho_thr" type="REAL" >
<default> 0.D0
</default>
<info>
threshold parameter which defines the electronic charge density
isosurface to compute the 'quantum' volume of the system
(typical values: 1.d-4 - 1.d-3)
(corresponds to alpha in PRL 94 145501 (2005))
</info>
</var>
<var name="dthr" type="REAL" >
<default> 0.D0
</default>
<info>
thikness of the external skin of the electronic charge density
used to compute the 'quantum' surface
(typical values: 1.d-4 - 1.d-3; 50% to 100% of rho_thr)
(corresponds to Delta in PRL 94 145501 (2005))
</info>
</var>
</namelist>
<namelist name="WANNIER" >
<label>
only if calculation = 'cp-wf'
</label>
<message>
Output files used by Wannier Function options are the following
fort.21: Used only when calwf=5, contains the full list of g-vecs.
fort.22: Used Only when calwf=5, contains the coeffs. corresponding
to the g-vectors in fort.21
fort.24: Used with calwf=3,contains the average spread
fort.25: Used with calwf=3, contains the individual Wannier
Function Spread of each state
fort.26: Used with calwf=3, contains the wannier centers along a
trajectory.
fort.27: Used with calwf=3 and 4, contains some general runtime
information from ddyn, the subroutine that actually
does the localization of the orbitals.
fort.28: Used only if efield=.TRUE. , contains the polarization
contribution to the total energy.
Also, The center of mass is fixed during the Molecular Dynamics.
BEWARE : THIS WILL ONLY WORK IF THE NUMBER OF PROCESSORS IS LESS THAN OR
EQUAL TO THE NUMBER OF STATES.
Nota Bene 1: For calwf = 5, wffort is not used. The
Wannier/Wave(function) coefficients are written to unit 22
and the corresponding g-vectors (basis vectors) are
written to unit 21. This option gives the g-vecs and
their coeffs. in reciprocal space, and the coeffs. are
complex. You will have to convert them to real space
if you want to plot them for visualization. calwf=1 gives
the orbital densities in real space, and this is usually
good enough for visualization.
</message>
<var name="wf_efield" type="LOGICAL" >
<default> .false.
</default>
<info>
If dynamics will be done in the presence of a field
</info>
</var>
<var name="wf_switch" type="LOGICAL" >
<default> .false.
</default>
<info>
Whether to turn on the field adiabatically (adiabatic switch)
if true, then nbeg is set to 0.
</info>
</var>
<var name="sw_len" type="INTEGER" >
<default> 1
</default>
<info>
No. of iterations over which the field will be turned on
to its final value. Starting value is 0.0
If sw_len < 0, then it is set to 1.
If you want to just optimize structures on the presence of a
field, then you may set this to 1 and run a regular geometry
optimization.
</info>
</var>
<vargroup type="REAL" >
<see> 0.D0
</see>
<var name="efx0" >
</var>
<var name="efy0" >
</var>
<var name="efz0" >
</var>
<info>
Initial values of the field along x, y, and z directions
</info>
</vargroup>
<vargroup type="REAL" >
<see> 0.D0
</see>
<var name="efx1" >
</var>
<var name="efy1" >
</var>
<var name="efz1" >
</var>
<info>
Final values of the field along x, y, and z directions
</info>
</vargroup>
<var name="wfsd" type="INTEGER" >
<default> 1
</default>
<info>
Localization algorithm for Wannier function calculation:
wfsd=1 Damped Dynamics
wfsd=2 Steepest-Descent / Conjugate-Gradient
wfsd=3 Jocobi Rotation
Remember, this is consistent with all the calwf options
as well as the tolw (see below).
Not a good idea to Wannier dynamics with this if you are
using restart='from_scratch' option, since the spreads
converge fast in the beginning and ortho goes bananas.
</info>
</var>
<var name="wfdt" type="REAL" >
<default> 5.D0
</default>
<info>
The minimum step size to take in the SD/CG direction
</info>
</var>
<var name="maxwfdt" type="REAL" >
<default> 0.3D0
</default>
<info>
The maximum step size to take in the SD/CG direction
The code calculates an optimum step size, but that may be
either too small (takes forever to converge) or too large
(code goes crazy) . This option keeps the step size between
wfdt and maxwfdt. In my experience 0.1 and 0.5 work quite
well. (but don't blame me if it doesn't work for you)
</info>
</var>
<var name="nit" type="INTEGER" >
<default> 10
</default>
<info>
Number of iterations to do for Wannier convergence.
</info>
</var>
<var name="nsd" type="INTEGER" >
<default> 10
</default>
<info>
Out of a total of NIT iterations, NSD will be Steepest-Descent
and ( nit - nsd ) will be Conjugate-Gradient.
</info>
</var>
<var name="wf_q" type="REAL" >
<default> 1500.D0
</default>
<info>
Fictitious mass of the A matrix used for obtaining
maximally localized Wannier functions. The unitary
transformation matrix U is written as exp(A) where
A is a anti-hermitian matrix. The Damped-Dynamics is performed
in terms of the A matrix, and then U is computed from A.
Usually a value between 1500 and 2500 works fine, but should
be tested.
</info>
</var>
<var name="wf_friction" type="REAL" >
<default> 0.3D0
</default>
<info>
Damping coefficient for Damped-Dynamics.
</info>
</var>
<var name="nsteps" type="INTEGER" >
<default> 20
</default>
<info>
Number of Damped-Dynamics steps to be performed per CP
iteration.
</info>
</var>
<var name="tolw" type="REAL" >
<default> 1.D-8
</default>
<info>
Convergence criterion for localization.
</info>
</var>
<var name="adapt" type="LOGICAL" >
<default> .true.
</default>
<info>
Whether to adapt the damping parameter dynamically.
</info>
</var>
<var name="calwf" type="INTEGER" >
<default> 3
</default>
<info>
Wannier Function Options, can be 1,2,3,4,5
1. Output the Wannier function density, nwf and wffort
are used for this option. see below.
2. Output the Overlap matrix O_i,j=<w_i|exp{iGr}|w_j>. O is
written to unit 38. For details on how O is constructed,
see below.
3. Perform nsteps of Wannier dynamics per CP iteration, the
orbitals are now Wannier Functions, not Kohn-Sham orbitals.
This is a Unitary transformation of the occupied subspace
and does not leave the CP Lagrangian invariant. Expectation
values remain the same. So you will **NOT** have a constant
of motion during the run. Don't freak out, its normal.
4. This option starts for the KS states and does 1 CP iteration
and nsteps of Damped-Dynamics to generate maximally
localized wannier functions. Its useful when you have the
converged KS groundstate and want to get to the converged
Wannier function groundstate in 1 CP Iteration.
5. This option is similar to calwf 1, except that the output is
the Wannier function/wavefunction, and not the orbital
density. See nwf below.
</info>
</var>
<var name="nwf" type="INTEGER" >
<default> 0
</default>
<info>
This option is used with calwf 1 and calwf 5. with calwf=1,
it tells the code how many Orbital densities are to be
output. With calwf=5, set this to 1(i.e calwf=5 only writes
one state during one run. so if you want 10 states, you have
to run the code 10 times). With calwf=1, you can print many
orbital densities in a single run.
See also the PLOT_WANNIER card for specifying the states to
be printed.
</info>
</var>
<var name="wffort" type="INTEGER" >
<default> 40
</default>
<info>
This tells the code where to dump the orbital densities. Used
only with CALWF=1. for e.g. if you want to print 2 orbital
densities, set calwf=1, nwf=2 and wffort to an appropriate
number (e.g. 40) then the first orbital density will be
output to fort.40, the second to fort.41 and so on. Note that
in the current implementation, the following units are used
21,22,24,25,26,27,28,38,39,77,78 and whatever you define as
ndr and ndw. so use number other than these.
</info>
</var>
<var name="writev" type="LOGICAL" >
<default> .false.
</default>
<info>
Output the charge density (g-space) and the list of g-vectors
This is useful if you want to reconstruct the electrostatic
potential using the Poisson equation. If .TRUE. then the
code will output the g-space charge density and the list
if G-vectors, and STOP.
Charge density is written to : CH_DEN_G_PARA.ispin (1 or 2
depending on the number of spin types) or CH_DEN_G_SERL.ispin
depending on if the code is being run in parallel or serial
G-vectors are written to G_PARA or G_SERL.
</info>
</var>
</namelist>
<card name="ATOMIC_SPECIES" >
<syntax>
<table name="atomic_species" >
<rows start="1" end="ntyp" >
<col name="X" type="CHARACTER" >
<info> label of the atom
</info>
</col>
<col name="Mass_X" type="REAL" >
<info>
mass of the atomic species [amu: mass of C = 12]
not used if calculation='scf', 'nscf', 'bands'
</info>
</col>
<col name="PseudoPot_X" type="CHARACTER" >
<info>
File containing PP for this species.
The pseudopotential file is assumed to be in the new UPF format.
If it doesn't work, the pseudopotential format is determined by
the file name:
*.vdb or *.van Vanderbilt US pseudopotential code
*.RRKJ3 Andrea Dal Corso's code (old format)
none of the above old PWscf norm-conserving format
</info>
</col>
</rows>
</table>
</syntax>
</card>
<card name="ATOMIC_POSITIONS" >
<flag name="atompos_unit" use="optional" >
<enum> alat | bohr | angstrom | crystal
</enum>
<default> bohr (DEPRECATED)
</default>
<info>
alat : atomic positions are in cartesian coordinates,
in units of the lattice parameter (either
celldm(1) or A).
bohr : atomic positions are in cartesian coordinate,
in atomic units (i.e. Bohr).
If no option is specified, 'bohr' is assumed;
not specifying units is DEPRECATED and will no
longer be allowed in the future
angstrom: atomic positions are in cartesian coordinates,
in Angstrom
crystal : atomic positions are in crystal coordinates, i.e.
in relative coordinates of the primitive lattice
vectors as defined either in card CELL_PARAMETERS
or via the ibrav + celldm / a,b,c... variables
</info>
</flag>
<choose>
<when test="calculation == 'bands' OR calculation == 'nscf'" >
<message>
Specified atomic positions will be IGNORED and those from the
previous scf calculation will be used instead !!!
</message>
</when>
<elsewhen>
<syntax>
<table name="atomic_coordinates" >
<rows start="1" end="nat" >
<col name="X" type="CHARACTER" >
<info> label of the atom as specified in ATOMIC_SPECIES
</info>
</col>
<colgroup type="REAL" >
<info> atomic positions
</info>
<col name="x" >
</col>
<col name="y" >
</col>
<col name="z" >
</col>
</colgroup>
<optional>
<colgroup type="INTEGER" >
<info>
component i of the force for this atom is multiplied by if_pos(i),
which must be either 0 or 1. Used to keep selected atoms and/or
selected components fixed in MD dynamics or
structural optimization run.
</info>
<default> 1
</default>
<col name="if_pos(1)" >
</col>
<col name="if_pos(2)" >
</col>
<col name="if_pos(3)" >
</col>
</colgroup>
</optional>
</rows>
</table>
</syntax>
</elsewhen>
</choose>
</card>
<card name="ATOMIC_VELOCITIES" >
<flag name="atomvel_type" use="optional" >
<enum> a.u
</enum>
</flag>
<label>
Optional card, reads velocities (in atomic units) from standard input
</label>
<message>
when starting with ion_velocities="from_input" it is convenient
to perform few steps (~5-10) with a smaller time step (0.5 a.u.)
</message>
<syntax>
<table name="atomic_velocities" >
<rows start="1" end="nat" >
<col name="V" type="CHARACTER" >
<info> label of the atom as specified in ATOMIC_SPECIES
</info>
</col>
<colgroup type="REAL" >
<info> atomic velocities along x y and z direction
</info>
<col name="vx" >
</col>
<col name="vy" >
</col>
<col name="vz" >
</col>
</colgroup>
</rows>
</table>
</syntax>
</card>
<card name="CELL_PARAMETERS" >
<flag name="lattice_type" use="optional" >
<enum> bohr | angstrom | alat
</enum>
<info>
'bohr'/'angstrom': lattice vectors in bohr radii / angstrom.
'alat' / nothing specified: lattice vectors in units or the
lattice parameter (either celldm(1) or a). Not specifing
units is DEPRECATED and will not be allowed in the future.
If nothing specified and no lattice parameter specified,
'bohr' is assumed - DEPRECATED, will no longer be allowed
</info>
</flag>
<label>
Optional card, needed only if ibrav = 0 is specified, ignored otherwise !
</label>
<syntax>
<table name="lattice" >
<cols start="1" end="3" >
<rowgroup type="REAL" >
<info>
Crystal lattice vectors:
v1(1) v1(2) v1(3) ... 1st lattice vector
v2(1) v2(2) v2(3) ... 2nd lattice vector
v3(1) v3(2) v3(3) ... 3rd lattice vector
</info>
<row name="v1" >
</row>
<row name="v2" >
</row>
<row name="v3" >
</row>
</rowgroup>
</cols>
</table>
</syntax>
</card>
<card name="CONSTRAINTS" >
<label>
Optional card, used for constrained dynamics or constrained optimisations
</label>
<message>
When this card is present the SHAKE algorithm is automatically used.
</message>
<syntax>
<line>
<var name="nconstr" type="INTEGER" >
<info> Number of constraints.
</info>
</var>
<optional>
<var name="constr_tol" type="REAL" >
<info> Tolerance for keeping the constraints satisfied.
</info>
</var>
</optional>
</line>
<table name="constraints_table" >
<rows start="1" end="nconstr" >
<col name="constr_type" type="CHARACTER" >
<info>
Type of constrain :
'type_coord' : constraint on global coordination-number, i.e. the
average number of atoms of type B surrounding the
atoms of type A. The coordination is defined by
using a Fermi-Dirac.
(four indexes must be specified).
'atom_coord' : constraint on local coordination-number, i.e. the
average number of atoms of type A surrounding a
specific atom. The coordination is defined by
using a Fermi-Dirac.
(four indexes must be specified).
'distance' : constraint on interatomic distance
(two atom indexes must be specified).
'planar_angle' : constraint on planar angle
(three atom indexes must be specified).
'torsional_angle' : constraint on torsional angle
(four atom indexes must be specified).
'bennett_proj' : constraint on the projection onto a given direction
of the vector defined by the position of one atom
minus the center of mass of the others.
( Ch.H. Bennett in Diffusion in Solids, Recent
Developments, Ed. by A.S. Nowick and J.J. Burton,
New York 1975 ).
</info>
</col>
<colgroup>
<col name="constr(1)" >
</col>
<col name="constr(2)" >
</col>
<conditional>
<col name="constr(3)" >
</col>
<col name="constr(4)" >
</col>
</conditional>
<info>
These variables have different meanings
for different constraint types:
'type_coord' : constr(1) is the first index of the
atomic type involved
constr(2) is the second index of the
atomic type involved
constr(3) is the cut-off radius for
estimating the coordination
constr(4) is a smoothing parameter
'atom_coord' : constr(1) is the atom index of the
atom with constrained coordination
constr(2) is the index of the atomic
type involved in the coordination
constr(3) is the cut-off radius for
estimating the coordination
constr(4) is a smoothing parameter
'distance' : atoms indices object of the
constraint, as they appear in
the 'ATOMIC_POSITION' CARD
'planar_angle', 'torsional_angle' : atoms indices object of the
constraint, as they appear in the
'ATOMIC_POSITION' CARD (beware the
order)
'bennett_proj' : constr(1) is the index of the atom
whose position is constrained.
constr(2:4) are the three coordinates
of the vector that specifies the
constraint direction.
</info>
</colgroup>
<optional>
<col name="constr_target" type="REAL" >
<info>
Target for the constrain ( angles are specified in degrees ).
This variable is optional.
</info>
</col>
</optional>
</rows>
</table>
</syntax>
</card>
<card name="OCCUPATIONS" >
<label> Optional card, used only if occupations = 'from_input', ignored otherwise !
</label>
<syntax>
<table name="occupations_table" >
<cols start="1" end="nbnd" >
<row name="f_inp1" type="REAL" >
<info>
Occupations of individual states (MAX 10 PER LINE).
For spin-polarized calculations, these are majority spin states.
</info>
</row>
<conditional>
<row name="f_inp2" type="REAL" >
<info>
Occupations of minority spin states (MAX 10 PER LINE)
To be specified only for spin-polarized calculations.
</info>
</row>
</conditional>
</cols>
</table>
</syntax>
</card>
<card name="PLOT_WANNIER" >
<label>
Optional card, indices of the states that have to be printed (only for calf=1 and calf=5).
</label>
<syntax>
<table name="state_index" >
<rows start="1" end="nwf" >
<col name="iwf" type="INTEGER" >
<info>
These are the indices of the states that you want to output.
Also used with calwf = 1 and 5. If calwf = 1, then you need
nwf indices here (each in a new line). If CALWF=5, then just
one index in needed.
</info>
</col>
</rows>
</table>
</syntax>
</card>
</input_description>
|