1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
|
!
! Copyright (C) 2003-2010 Quantum ESPRESSO group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!----------------------------------------------------------------------------
MODULE bfgs_module
!----------------------------------------------------------------------------
!
! ... Ionic relaxation through the Newton-Raphson optimization scheme
! ... based on the Broyden-Fletcher-Goldfarb-Shanno algorithm for the
! ... estimate of the inverse Hessian matrix.
! ... The ionic relaxation is performed converting cartesian (and cell)
! ... positions into internal coordinates.
! ... The algorithm uses a "trust radius" line search based on Wolfe
! ... conditions. Steps are rejected until the first Wolfe condition
! ... (sufficient energy decrease) is satisfied. Updated step length
! ... is estimated from quadratic interpolation.
! ... When the step is accepted inverse hessian is updated according to
! ... BFGS scheme and a new search direction is obtained from NR or GDIIS
! ... method. The corresponding step length is limited by trust_radius_max
! ... and can't be larger than the previous step multiplied by a certain
! ... factor determined by Wolfe and other convergence conditions.
!
! ... Originally written ( 5/12/2003 ) and maintained ( 2003-2007 ) by
! ... Carlo Sbraccia
! ... Modified for variable-cell-shape relaxation ( 2007-2008 ) by
! ... Javier Antonio Montoya, Lorenzo Paulatto and Stefano de Gironcoli
! ... Re-analyzed by Stefano de Gironcoli ( 2010 )
!
! ... references :
!
! ... 1) Roger Fletcher, Practical Methods of Optimization, John Wiley and
! ... Sons, Chichester, 2nd edn, 1987.
! ... 2) Salomon R. Billeter, Alexander J. Turner, Walter Thiel,
! ... Phys. Chem. Chem. Phys. 2, 2177 (2000).
! ... 3) Salomon R. Billeter, Alessandro Curioni, Wanda Andreoni,
! ... Comput. Mat. Science 27, 437, (2003).
! ... 4) Ren Weiqing, PhD Thesis: Numerical Methods for the Study of Energy
! ... Landscapes and Rare Events.
!
!
USE kinds, ONLY : DP
USE io_files, ONLY : iunbfgs, prefix
USE constants, ONLY : eps16
USE cell_base, ONLY : iforceh
!
USE basic_algebra_routines
!
IMPLICIT NONE
!
PRIVATE
!
! ... public methods
!
PUBLIC :: bfgs, terminate_bfgs
!
! ... public variables
!
PUBLIC :: bfgs_ndim, &
trust_radius_ini, trust_radius_min, trust_radius_max, &
w_1, w_2
!
! ... global module variables
!
SAVE
!
CHARACTER (len=8) :: fname="energy" ! name of the function to be minimized
!
REAL(DP), ALLOCATABLE :: &
pos(:), &! positions + cell
grad(:), &! gradients + cell_force
pos_p(:), &! positions at the previous accepted iteration
grad_p(:), &! gradients at the previous accepted iteration
inv_hess(:,:), &! inverse hessian matrix (updated using BFGS formula)
metric(:,:), &
h_block(:,:), &
hinv_block(:,:), &
step(:), &! the (new) search direction (normalized NR step)
step_old(:), &! the previous search direction (normalized NR step)
pos_old(:,:), &! list of m old positions - used only by gdiis
grad_old(:,:), &! list of m old gradients - used only by gdiis
pos_best(:) ! best extrapolated positions - used only by gdiis
REAL(DP) :: &
nr_step_length, &! length of (new) Newton-Raphson step
nr_step_length_old,&! length of previous Newton-Raphson step
trust_radius, &! new displacement along the search direction
trust_radius_old, &! old displacement along the search direction
energy_p ! energy at previous accepted iteration
INTEGER :: &
scf_iter, &! number of scf iterations
bfgs_iter, &! number of bfgs iterations
gdiis_iter, &! number of gdiis iterations
tr_min_hit = 0 ! set to 1 if the trust_radius has already been
! set to the minimum value at the previous step
! set to 2 if trust_radius is reset again: exit
LOGICAL :: &
conv_bfgs ! .TRUE. when bfgs convergence has been achieved
!
! ... default values for the following variables are set in
! ... Modules/read_namelist.f90 (SUBROUTINE ions_defaults)
!
! ... Note that trust_radius_max, trust_radius_min, trust_radius_ini,
! ... w_1, w_2, bfgs_ndim have a default value, but can also be assigned
! ... in the input.
!
INTEGER :: &
bfgs_ndim ! dimension of the subspace for GDIIS
! fixed to 1 for standard BFGS algorithm
REAL(DP) :: &
trust_radius_ini, &! suggested initial displacement
trust_radius_min, &! minimum allowed displacement
trust_radius_max ! maximum allowed displacement
REAL(DP) :: &! parameters for Wolfe conditions
w_1, &! 1st Wolfe condition: sufficient energy decrease
w_2 ! 2nd Wolfe condition: sufficient gradient decrease
!
CONTAINS
!
!------------------------------------------------------------------------
SUBROUTINE bfgs( pos_in, h, energy, grad_in, fcell, fixion, scratch, stdout,&
energy_thr, grad_thr, cell_thr, energy_error, grad_error, &
cell_error, istep, nstep, step_accepted, stop_bfgs, lmovecell )
!------------------------------------------------------------------------
!
! ... list of input/output arguments :
!
! pos : vector containing 3N coordinates of the system ( x )
! energy : energy of the system ( V(x) )
! grad : vector containing 3N components of grad( V(x) )
! fixion : vector used to freeze a deg. of freedom
! scratch : scratch directory
! stdout : unit for standard output
! energy_thr : treshold on energy difference for BFGS convergence
! grad_thr : treshold on grad difference for BFGS convergence
! the largest component of grad( V(x) ) is considered
! energy_error : energy difference | V(x_i) - V(x_i-1) |
! grad_error : the largest component of
! | grad(V(x_i)) - grad(V(x_i-1)) |
! cell_error : the largest component of: omega*(stress-press*I)
! nstep : the maximun nuber of scf-steps
! step_accepted : .TRUE. if a new BFGS step is done
! stop_bfgs : .TRUE. if BFGS convergence has been achieved
!
IMPLICIT NONE
!
REAL(DP), INTENT(INOUT) :: pos_in(:)
REAL(DP), INTENT(INOUT) :: h(3,3)
REAL(DP), INTENT(INOUT) :: energy
REAL(DP), INTENT(INOUT) :: grad_in(:)
REAL(DP), INTENT(INOUT) :: fcell(3,3)
INTEGER, INTENT(IN) :: fixion(:)
CHARACTER(LEN=*), INTENT(IN) :: scratch
INTEGER, INTENT(IN) :: stdout
REAL(DP), INTENT(IN) :: energy_thr, grad_thr, cell_thr
INTEGER, INTENT(OUT) :: istep
INTEGER, INTENT(IN) :: nstep
REAL(DP), INTENT(OUT) :: energy_error, grad_error, cell_error
LOGICAL, INTENT(OUT) :: step_accepted, stop_bfgs
LOGICAL, INTENT(IN) :: lmovecell
!
INTEGER :: n, i, j, k, nat
LOGICAL :: lwolfe
REAL(DP) :: dE0s, den
! ... for scaled coordinates
REAL(DP) :: hinv(3,3),g(3,3),ginv(3,3),garbage, omega
!
!
lwolfe=.false.
n = SIZE( pos_in ) + 9
nat = size (pos_in) / 3
if (nat*3 /= size (pos_in)) call errore('bfgs',' strange dimension',1)
!
! ... work-space allocation
!
ALLOCATE( pos( n ) )
ALLOCATE( grad( n ) )
!
ALLOCATE( grad_old( n, bfgs_ndim ) )
ALLOCATE( pos_old( n, bfgs_ndim ) )
!
ALLOCATE( inv_hess( n, n ) )
!
ALLOCATE( pos_p( n ) )
ALLOCATE( grad_p( n ) )
ALLOCATE( step( n ) )
ALLOCATE( step_old( n ) )
ALLOCATE( pos_best( n ) )
! ... scaled coordinates work-space
ALLOCATE( hinv_block( n-9, n-9 ) )
! ... cell related work-space
ALLOCATE( metric( n , n ) )
!
! ... the BFGS file read (pos & grad) in scaled coordinates
!
call invmat(3, h, hinv, omega)
! volume is defined to be positve even for left-handed vector triplet
omega = abs(omega)
!
hinv_block = 0.d0
FORALL ( k=0:nat-1, i=1:3, j=1:3 ) hinv_block(i+3*k,j+3*k) = hinv(i,j)
!
! ... generate metric to work with scaled ionic coordinates
g = MATMUL(TRANSPOSE(h),h)
call invmat(3,g,ginv,garbage)
metric = 0.d0
FORALL ( k=0:nat-1, i=1:3, j=1:3 ) metric(i+3*k,j+3*k) = g(i,j)
FORALL ( k=nat:nat+2, i=1:3, j=1:3 ) metric(i+3*k,j+3*k) = 0.04 * omega * ginv(i,j)
!
! ... generate bfgs vectors for the degrees of freedom and their gradients
pos = 0.0
pos(1:n-9) = pos_in
if (lmovecell) FORALL( i=1:3, j=1:3) pos( n-9 + j+3*(i-1) ) = h(i,j)
grad = 0.0
grad(1:n-9) = grad_in
if (lmovecell) FORALL( i=1:3, j=1:3) grad( n-9 + j+3*(i-1) ) = fcell(i,j)*iforceh(i,j)
!
! if the cell moves the quantity to be minimized is the enthalpy
IF ( lmovecell ) fname="enthalpy"
!
CALL read_bfgs_file( pos, grad, fixion, energy, scratch, n, stdout )
!
scf_iter = scf_iter + 1
istep = scf_iter
!
! ... convergence is checked here
!
energy_error = ABS( energy_p - energy )
grad_error = MAXVAL( ABS( MATMUL( TRANSPOSE(hinv_block), grad(1:n-9)) ) )
conv_bfgs = energy_error < energy_thr
conv_bfgs = conv_bfgs .AND. ( grad_error < grad_thr )
!
IF( lmovecell) THEN
cell_error = MAXVAL( ABS( MATMUL ( TRANSPOSE ( RESHAPE( grad(n-8:n), (/ 3, 3 /) ) ),&
TRANSPOSE(h) ) ) ) / omega
conv_bfgs = conv_bfgs .AND. ( cell_error < cell_thr )
#undef DEBUG
#ifdef DEBUG
write (*,'(3f15.10)') TRANSPOSE ( RESHAPE( grad(n-8:n), (/ 3, 3 /) ) )
write (*,*)
write (*,'(3f15.10)') TRANSPOSE(h)
write (*,*)
write (*,'(3f15.10)') MATMUL (TRANSPOSE( RESHAPE( grad(n-8:n), (/ 3, 3 /) ) ),&
TRANSPOSE(h) ) / omega
write (*,*)
write (*,*) cell_error/cell_thr*0.5d0
#endif
END IF
!
! ... converged (or useless to go on): quick return
!
conv_bfgs = conv_bfgs .OR. ( tr_min_hit > 1 )
IF ( conv_bfgs ) GOTO 1000
!
! ... some output is written
!
WRITE( UNIT = stdout, &
& FMT = '(/,5X,"number of scf cycles",T30,"= ",I3)' ) scf_iter
WRITE( UNIT = stdout, &
& FMT = '(5X,"number of bfgs steps",T30,"= ",I3,/)' ) bfgs_iter
IF ( scf_iter > 1 ) WRITE( UNIT = stdout, &
& FMT = '(5X,A," old",T30,"= ",F18.10," Ry")' ) fname,energy_p
WRITE( UNIT = stdout, &
& FMT = '(5X,A," new",T30,"= ",F18.10," Ry",/)' ) fname,energy
!
! ... the bfgs algorithm starts here
!
IF ( .NOT. energy_wolfe_condition( energy ) .AND. (scf_iter > 1) ) THEN
!
! ... the previous step is rejected, line search goes on
!
step_accepted = .FALSE.
!
WRITE( UNIT = stdout, &
& FMT = '(5X,"CASE: ",A,"_new > ",A,"_old",/)' ) fname,fname
!
! ... the new trust radius is obtained by quadratic interpolation
!
! ... E(s) = a*s*s + b*s + c ( we use E(0), dE(0), E(s') )
!
! ... s_min = - 0.5*( dE(0)*s'*s' ) / ( E(s') - E(0) - dE(0)*s' )
!
if (abs(scnorm(step_old(:))-1._DP) > 1.d-10) call errore('bfgs', &
' step_old is NOT normalized ',1)
! (normalized) search direction is the same as in previous step
step(:) = step_old(:)
!
dE0s = ( grad_p(:) .dot. step(:) ) * trust_radius_old
IF (dE0s > 0._DP ) CALL errore( 'bfgs', &
'dE0s is positive which should never happen', 1 )
den = energy - energy_p - dE0s
!
! estimate new trust radius by interpolation
trust_radius = - 0.5_DP*dE0s*trust_radius_old / den
!
WRITE( UNIT = stdout, &
& FMT = '(5X,"new trust radius",T30,"= ",F18.10," bohr")' ) &
trust_radius
!
! ... values from the last succeseful bfgs step are restored
!
pos(:) = pos_p(:)
energy = energy_p
grad(:) = grad_p(:)
!
IF ( trust_radius < trust_radius_min ) THEN
!
! ... the history is reset ( the history can be reset at most two
! ... consecutive times )
!
WRITE( UNIT = stdout, &
FMT = '(/,5X,"trust_radius < trust_radius_min")' )
WRITE( UNIT = stdout, FMT = '(/,5X,"resetting bfgs history",/)' )
!
! ... if tr_min_hit=1 the history has already been reset at the
! ... previous step : something is going wrong
!
IF ( tr_min_hit == 1 ) THEN
CALL infomsg( 'bfgs', &
'history already reset at previous step: stopping' )
tr_min_hit = 2
ELSE
tr_min_hit = 1
END IF
!
CALL reset_bfgs( n )
!
step(:) = - ( inv_hess(:,:) .times. grad(:) )
! normalize step but remember its length
nr_step_length = scnorm(step)
step(:) = step(:) / nr_step_length
!
trust_radius = min(trust_radius_ini, nr_step_length)
!
ELSE
!
tr_min_hit = 0
!
END IF
!
ELSE
!
! ... a new bfgs step is done
!
bfgs_iter = bfgs_iter + 1
!
IF ( bfgs_iter == 1 ) THEN
!
! ... first iteration
!
step_accepted = .FALSE.
!
ELSE
!
step_accepted = .TRUE.
!
nr_step_length_old = nr_step_length
!
WRITE( UNIT = stdout, &
& FMT = '(5X,"CASE: ",A,"_new < ",A,"_old",/)' ) fname,fname
!
CALL check_wolfe_conditions( lwolfe, energy, grad )
!
CALL update_inverse_hessian( pos, grad, n, stdout )
!
END IF
! compute new search direction and store NR step length
IF ( bfgs_ndim > 1 ) THEN
!
! ... GDIIS extrapolation
!
CALL gdiis_step()
!
ELSE
!
! ... standard Newton-Raphson step
!
step(:) = - ( inv_hess(:,:) .times. grad(:) )
!
END IF
IF ( ( grad(:) .dot. step(:) ) > 0.0_DP ) THEN
!
WRITE( UNIT = stdout, &
FMT = '(5X,"uphill step: resetting bfgs history",/)' )
!
CALL reset_bfgs( n )
step(:) = - ( inv_hess(:,:) .times. grad(:) )
!
END IF
!
! normalize the step and save the step length
nr_step_length = scnorm(step)
step(:) = step(:) / nr_step_length
!
! ... the new trust radius is computed
!
IF ( bfgs_iter == 1 ) THEN
!
trust_radius = min(trust_radius_ini, nr_step_length)
tr_min_hit = 0
!
ELSE
!
CALL compute_trust_radius( lwolfe, energy, grad, n, stdout )
!
END IF
!
WRITE( UNIT = stdout, &
& FMT = '(5X,"new trust radius",T30,"= ",F18.10," bohr")' ) &
trust_radius
!
END IF
!
! ... step along the bfgs direction
!
IF ( nr_step_length < eps16 ) &
CALL errore( 'bfgs', 'NR step-length unreasonably short', 1 )
!
! ... information required by next iteration is saved here ( this must
! ... be done before positions are updated )
!
CALL write_bfgs_file( pos, energy, grad, scratch )
!
! ... positions and cell are updated
!
pos(:) = pos(:) + trust_radius * step(:)
!
1000 stop_bfgs = conv_bfgs .OR. ( scf_iter >= nstep )
! ... input ions+cell variables
IF ( lmovecell ) FORALL( i=1:3, j=1:3) h(i,j) = pos( n-9 + j+3*(i-1) )
pos_in = pos(1:n-9)
! ... update forces
grad_in = grad(1:n-9)
!
! ... work-space deallocation
!
DEALLOCATE( pos )
DEALLOCATE( grad )
DEALLOCATE( pos_p )
DEALLOCATE( grad_p )
DEALLOCATE( pos_old )
DEALLOCATE( grad_old )
DEALLOCATE( inv_hess )
DEALLOCATE( step )
DEALLOCATE( step_old )
DEALLOCATE( pos_best )
DEALLOCATE( hinv_block )
DEALLOCATE( metric )
!
RETURN
!
CONTAINS
!
!--------------------------------------------------------------------
SUBROUTINE gdiis_step()
!--------------------------------------------------------------------
USE basic_algebra_routines
IMPLICIT NONE
!
REAL(DP), ALLOCATABLE :: res(:,:), overlap(:,:), work(:)
INTEGER, ALLOCATABLE :: iwork(:)
INTEGER :: k, k_m, info
REAL(DP) :: gamma0
!
!
gdiis_iter = gdiis_iter + 1
!
k = MIN( gdiis_iter, bfgs_ndim )
k_m = k + 1
!
ALLOCATE( res( n, k ) )
ALLOCATE( overlap( k_m, k_m ) )
ALLOCATE( work( k_m ), iwork( k_m ) )
!
work(:) = 0.0_DP
iwork(:) = 0
!
! ... the new direction is added to the workspace
!
DO i = bfgs_ndim, 2, -1
!
pos_old(:,i) = pos_old(:,i-1)
grad_old(:,i) = grad_old(:,i-1)
!
END DO
!
pos_old(:,1) = pos(:)
grad_old(:,1) = grad(:)
!
! ... |res_i> = H^-1 \times |g_i>
!
CALL DGEMM( 'N', 'N', n, k, n, 1.0_DP, &
inv_hess, n, grad_old, n, 0.0_DP, res, n )
!
! ... overlap_ij = <grad_i|res_j>
!
CALL DGEMM( 'T', 'N', k, k, n, 1.0_DP, &
res, n, res, n, 0.0_DP, overlap, k_m )
!
overlap( :, k_m) = 1.0_DP
overlap(k_m, : ) = 1.0_DP
overlap(k_m,k_m) = 0.0_DP
!
! ... overlap is inverted via Bunch-Kaufman diagonal pivoting method
!
CALL DSYTRF( 'U', k_m, overlap, k_m, iwork, work, k_m, info )
CALL DSYTRI( 'U', k_m, overlap, k_m, iwork, work, info )
CALL errore( 'gdiis_step', 'error in Bunch-Kaufman inversion', info )
!
! ... overlap is symmetrised
!
FORALL( i = 1:k_m, j = 1:k_m, j > i ) overlap(j,i) = overlap(i,j)
!
pos_best(:) = 0.0_DP
step(:) = 0.0_DP
!
DO i = 1, k
!
gamma0 = overlap(k_m,i)
!
pos_best(:) = pos_best(:) + gamma0*pos_old(:,i)
!
step(:) = step(:) - gamma0*res(:,i)
!
END DO
!
! ... the step must be consistent with the last positions
!
step(:) = step(:) + ( pos_best(:) - pos(:) )
!
IF ( ( grad(:) .dot. step(:) ) > 0.0_DP ) THEN
!
! ... if the extrapolated direction is uphill use only the
! ... last gradient and reset gdiis history
!
step(:) = - ( inv_hess(:,:) .times. grad(:) )
!
gdiis_iter = 0
!
END IF
!
DEALLOCATE( res, overlap, work, iwork )
!
END SUBROUTINE gdiis_step
!
END SUBROUTINE bfgs
!
!------------------------------------------------------------------------
SUBROUTINE reset_bfgs( n )
!------------------------------------------------------------------------
! ... inv_hess in re-initalized to the initial guess
! ... defined as the inverse metric
!
INTEGER, INTENT(IN) :: n
!
REAL(DP) :: garbage
!
call invmat(n, metric, inv_hess, garbage)
!
gdiis_iter = 0
!
END SUBROUTINE reset_bfgs
!
!------------------------------------------------------------------------
SUBROUTINE read_bfgs_file( pos, grad, fixion, energy, scratch, n, stdout )
!------------------------------------------------------------------------
!
IMPLICIT NONE
!
REAL(DP), INTENT(INOUT) :: pos(:)
REAL(DP), INTENT(INOUT) :: grad(:)
INTEGER, INTENT(IN) :: fixion(:)
CHARACTER(LEN=*), INTENT(IN) :: scratch
INTEGER, INTENT(IN) :: n
INTEGER, INTENT(IN) :: stdout
REAL(DP), INTENT(INOUT) :: energy
!
CHARACTER(LEN=256) :: bfgs_file
LOGICAL :: file_exists
REAL(DP) :: garbage
!
!
bfgs_file = TRIM( scratch ) // TRIM( prefix ) // '.bfgs'
!
INQUIRE( FILE = TRIM( bfgs_file ) , EXIST = file_exists )
!
IF ( file_exists ) THEN
!
! ... bfgs is restarted from file
!
OPEN( UNIT = iunbfgs, FILE = TRIM( bfgs_file ), &
STATUS = 'UNKNOWN', ACTION = 'READ' )
!
READ( iunbfgs, * ) pos_p
READ( iunbfgs, * ) grad_p
READ( iunbfgs, * ) scf_iter
READ( iunbfgs, * ) bfgs_iter
READ( iunbfgs, * ) gdiis_iter
READ( iunbfgs, * ) energy_p
READ( iunbfgs, * ) pos_old
READ( iunbfgs, * ) grad_old
READ( iunbfgs, * ) inv_hess
READ( iunbfgs, * ) tr_min_hit
READ( iunbfgs, * ) nr_step_length
!
CLOSE( UNIT = iunbfgs )
!
step_old = ( pos(:) - pos_p(:) )
trust_radius_old = scnorm( step_old )
step_old = step_old / trust_radius_old
!
ELSE
!
! ... bfgs initialization
!
WRITE( UNIT = stdout, FMT = '(/,5X,"BFGS Geometry Optimization")' )
!
! initialize the inv_hess to the inverse of the metric
call invmat(n, metric, inv_hess, garbage)
!
pos_p = 0.0_DP
grad_p = 0.0_DP
scf_iter = 0
bfgs_iter = 0
gdiis_iter = 0
energy_p = energy
step_old = 0.0_DP
nr_step_length = 0.0_DP
!
trust_radius_old = trust_radius_ini
!
pos_old(:,:) = 0.0_DP
grad_old(:,:) = 0.0_DP
!
tr_min_hit = 0
!
END IF
!
END SUBROUTINE read_bfgs_file
!
!------------------------------------------------------------------------
SUBROUTINE write_bfgs_file( pos, energy, grad, scratch )
!------------------------------------------------------------------------
!
IMPLICIT NONE
!
REAL(DP), INTENT(IN) :: pos(:)
REAL(DP), INTENT(IN) :: energy
REAL(DP), INTENT(IN) :: grad(:)
CHARACTER(LEN=*), INTENT(IN) :: scratch
!
!
OPEN( UNIT = iunbfgs, FILE = TRIM( scratch )//TRIM( prefix )//'.bfgs', &
STATUS = 'UNKNOWN', ACTION = 'WRITE' )
!
WRITE( iunbfgs, * ) pos
WRITE( iunbfgs, * ) grad
WRITE( iunbfgs, * ) scf_iter
WRITE( iunbfgs, * ) bfgs_iter
WRITE( iunbfgs, * ) gdiis_iter
WRITE( iunbfgs, * ) energy
WRITE( iunbfgs, * ) pos_old
WRITE( iunbfgs, * ) grad_old
WRITE( iunbfgs, * ) inv_hess
WRITE( iunbfgs, * ) tr_min_hit
WRITE( iunbfgs, * ) nr_step_length
!
CLOSE( UNIT = iunbfgs )
!
END SUBROUTINE write_bfgs_file
!
!------------------------------------------------------------------------
SUBROUTINE update_inverse_hessian( pos, grad, n, stdout )
!------------------------------------------------------------------------
!
IMPLICIT NONE
!
REAL(DP), INTENT(IN) :: pos(:)
REAL(DP), INTENT(IN) :: grad(:)
INTEGER, INTENT(IN) :: n
INTEGER, INTENT(IN) :: stdout
INTEGER :: info
!
REAL(DP), ALLOCATABLE :: y(:), s(:)
REAL(DP), ALLOCATABLE :: Hy(:), yH(:)
REAL(DP) :: sdoty, sBs, Theta
REAL(DP), ALLOCATABLE :: B(:,:)
!
ALLOCATE( y( n ), s( n ), Hy( n ), yH( n ) )
!
s(:) = pos(:) - pos_p(:)
y(:) = grad(:) - grad_p(:)
!
sdoty = ( s(:) .dot. y(:) )
!
IF ( ABS( sdoty ) < eps16 ) THEN
!
! ... the history is reset
!
WRITE( stdout, '(/,5X,"WARNING: unexpected ", &
& "behaviour in update_inverse_hessian")' )
WRITE( stdout, '( 5X," resetting bfgs history",/)' )
!
CALL reset_bfgs( n )
!
RETURN
!
ELSE
! Conventional Curvature Trap here
! See section 18.2 (p538-539 ) of Nocedal and Wright "Numerical
! Optimization"for instance
! LDM Addition, April 2011
!
! While with the Wolfe conditions the Hessian in most cases
! remains positive definite, if one is far from the minimum
! and/or "bonds" are being made/broken the curvature condition
! Hy = s ; or s = By
! cannot be satisfied if s.y < 0. In addition, if s.y is small
! compared to s.B.s too greedy a step is taken.
!
! The trap below is conventional and "OK", and has been around
! for ~ 30 years but, unfortunately, is rarely mentioned in
! introductory texts and hence often neglected.
!
! First, solve for inv_hess*t = s ; i.e. t = B*s
! Use yH as workspace here
ALLOCATE (B(n,n) )
B = inv_hess
yH= s
call DPOSV('U',n,1,B,n, yH, n, info)
! Info .ne. 0 should be trapped ...
if(info .ne. 0)write( stdout, '(/,5X,"WARNING: info=",i3," for Hessian")' )info
DEALLOCATE ( B )
!
! Calculate s.B.s
sBs = ( s(:) .dot. yH(:) )
!
! Now the trap itself
if ( sdoty < 0.20D0*sBs ) then
! Conventional damping
Theta = 0.8D0*sBs/(sBs-sdoty)
WRITE( stdout, '(/,5X,"WARNING: bfgs curvature condition ", &
& "failed, Theta=",F6.3)' )theta
y = Theta*y + (1.D0 - Theta)*yH
endif
END IF
!
Hy(:) = ( inv_hess .times. y(:) )
yH(:) = ( y(:) .times. inv_hess )
!
! ... BFGS update
!
inv_hess = inv_hess + 1.0_DP / sdoty * &
( ( 1.0_DP + ( y .dot. Hy ) / sdoty ) * matrix( s, s ) - &
( matrix( s, yH ) + matrix( Hy, s ) ) )
!
DEALLOCATE( y, s, Hy, yH )
!
RETURN
!
END SUBROUTINE update_inverse_hessian
!
!------------------------------------------------------------------------
SUBROUTINE check_wolfe_conditions( lwolfe, energy, grad )
!------------------------------------------------------------------------
IMPLICIT NONE
REAL(DP), INTENT(IN) :: energy
REAL(DP), INTENT(IN) :: grad(:)
LOGICAL, INTENT(OUT) :: lwolfe
!
lwolfe = energy_wolfe_condition ( energy ) .AND. &
gradient_wolfe_condition ( grad )
!
END SUBROUTINE check_wolfe_conditions
!
!------------------------------------------------------------------------
LOGICAL FUNCTION energy_wolfe_condition ( energy )
!------------------------------------------------------------------------
IMPLICIT NONE
REAL(DP), INTENT(IN) :: energy
!
energy_wolfe_condition = &
( energy-energy_p ) < w_1 * ( grad_p.dot.step_old ) * trust_radius_old
!
END FUNCTION energy_wolfe_condition
!
!------------------------------------------------------------------------
LOGICAL FUNCTION gradient_wolfe_condition ( grad )
!------------------------------------------------------------------------
IMPLICIT NONE
REAL(DP), INTENT(IN) :: grad(:)
!
gradient_wolfe_condition = &
ABS( grad .dot. step_old ) < - w_2 * ( grad_p .dot. step_old )
!
END FUNCTION gradient_wolfe_condition
!
!------------------------------------------------------------------------
SUBROUTINE compute_trust_radius( lwolfe, energy, grad, n, stdout )
!------------------------------------------------------------------------
!
IMPLICIT NONE
!
LOGICAL, INTENT(IN) :: lwolfe
REAL(DP), INTENT(IN) :: energy
REAL(DP), INTENT(IN) :: grad(:)
INTEGER, INTENT(IN) :: n
INTEGER, INTENT(IN) :: stdout
!
REAL(DP) :: a
LOGICAL :: ltest
!
ltest = ( energy - energy_p ) < w_1 * ( grad_p .dot. step_old ) * trust_radius_old
ltest = ltest .AND. ( nr_step_length_old > trust_radius_old )
!
IF ( ltest ) THEN
a = 1.5_DP
ELSE
a = 1.1_DP
END IF
IF ( lwolfe ) a = 2._DP * a
!
trust_radius = MIN( trust_radius_max, a*trust_radius_old, nr_step_length )
!
IF ( trust_radius < trust_radius_min ) THEN
!
! ... the history is reset
!
! ... if tr_min_hit the history has already been reset at the
! ... previous step : something is going wrong
!
IF ( tr_min_hit == 1 ) THEN
CALL infomsg( 'bfgs', &
'history already reset at previous step: stopping' )
tr_min_hit = 2
ELSE
tr_min_hit = 1
END IF
!
WRITE( UNIT = stdout, &
FMT = '(5X,"small trust_radius: resetting bfgs history",/)' )
!
CALL reset_bfgs( n )
step(:) = - ( inv_hess(:,:) .times. grad(:) )
!
nr_step_length = scnorm(step)
step(:) = step(:) / nr_step_length
!
trust_radius = min(trust_radius_min, nr_step_length )
!
ELSE
!
tr_min_hit = 0
!
END IF
!
END SUBROUTINE compute_trust_radius
!
!-----------------------------------------------------------------------
REAL(DP) FUNCTION scnorm1( vect )
!-----------------------------------------------------------------------
IMPLICIT NONE
REAL(DP), INTENT(IN) :: vect(:)
!
scnorm1 = SQRT( DOT_PRODUCT( vect , MATMUL( metric, vect ) ) )
!
END FUNCTION scnorm1
!
!-----------------------------------------------------------------------
REAL(DP) FUNCTION scnorm( vect )
!-----------------------------------------------------------------------
IMPLICIT NONE
REAL(DP), INTENT(IN) :: vect(:)
REAL(DP) :: ss
INTEGER :: i,k,l,n
!
scnorm = 0._DP
n = SIZE (vect) / 3
do i=1,n
ss = 0._DP
do k=1,3
do l=1,3
ss = ss + &
vect(k+(i-1)*3)*metric(k+(i-1)*3,l+(i-1)*3)*vect(l+(i-1)*3)
end do
end do
scnorm = MAX (scnorm, SQRT (ss) )
end do
!
END FUNCTION scnorm
!
!------------------------------------------------------------------------
SUBROUTINE terminate_bfgs( energy, energy_thr, grad_thr, cell_thr, &
lmovecell, stdout, scratch )
!------------------------------------------------------------------------
!
USE io_files, ONLY : prefix, delete_if_present
!
IMPLICIT NONE
REAL(DP), INTENT(IN) :: energy, energy_thr, grad_thr, cell_thr
LOGICAL, INTENT(IN) :: lmovecell
INTEGER, INTENT(IN) :: stdout
CHARACTER(LEN=*), INTENT(IN) :: scratch
!
IF ( conv_bfgs ) THEN
!
WRITE( UNIT = stdout, &
& FMT = '(/,5X,"bfgs converged in ",I3," scf cycles and ", &
& I3," bfgs steps")' ) scf_iter, bfgs_iter
IF ( lmovecell ) THEN
WRITE( UNIT = stdout, &
& FMT = '(5X,"(criteria: energy < ",ES8.1,", force < ",ES8.1, &
& ", cell < ",ES8.1,")")') energy_thr, grad_thr, cell_thr
ELSE
WRITE( UNIT = stdout, &
& FMT = '(5X,"(criteria: energy < ",ES8.1,", force < ",ES8.1, &
& ")")') energy_thr, grad_thr
END IF
WRITE( UNIT = stdout, &
& FMT = '(/,5X,"End of BFGS Geometry Optimization")' )
WRITE( UNIT = stdout, &
& FMT = '(/,5X,"Final ",A," = ",F18.10," Ry")' ) fname, energy
!
CALL delete_if_present( TRIM( scratch ) // TRIM( prefix ) // '.bfgs' )
!
ELSE
!
WRITE( UNIT = stdout, &
FMT = '(/,5X,"The maximum number of steps has been reached.")' )
WRITE( UNIT = stdout, &
FMT = '(/,5X,"End of BFGS Geometry Optimization")' )
!
END IF
!
END SUBROUTINE terminate_bfgs
!
END MODULE bfgs_module
|