1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
|
!
! Copyright (C) 2011 Quantum ESPRESSO group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!--------------------------------------------------------------------
! Module containing routines for fft with a custom energy cutoff
!--------------------------------------------------------------------
!
MODULE fft_custom
USE kinds, ONLY: DP
USE parallel_include
USE fft_types, ONLY: fft_dlay_descriptor
IMPLICIT NONE
TYPE fft_cus
! ... data structure containing all information
! ... about fft data distribution for a given
! ... potential grid, and its wave functions sub-grid.
TYPE ( fft_dlay_descriptor ) :: dfftt
! descriptor for the custom grid
REAL(kind=DP) :: ecutt
! Custom cutoff (rydberg)
REAL(kind=DP) :: dual_t
! Dual factor
REAL(kind=DP) :: gcutmt
INTEGER :: nr1t,nr2t,nr3t
INTEGER :: nrx1t,nrx2t,nrx3t
INTEGER :: nrxxt
INTEGER :: ngmt,ngmt_l,ngmt_g
INTEGER, DIMENSION(:), POINTER :: nlt,nltm
REAL(kind=DP), DIMENSION(:), POINTER :: ggt
REAL(kind=DP), DIMENSION(:,:),POINTER :: gt
INTEGER, DIMENSION(:), POINTER :: ig_l2gt
INTEGER :: gstart_t
INTEGER, DIMENSION(:), POINTER :: ig1t,ig2t,ig3t
INTEGER :: nlgt
INTEGER :: npwt,npwxt
LOGICAL :: initalized = .FALSE.
END TYPE fft_cus
!--------------------------------------------------------------------
CONTAINS
!=----------------------------------------------------------------------------=!
SUBROUTINE gvec_init( fc, ngm_, comm )
!
! Set local and global dimensions, allocate arrays
!
USE mp, ONLY: mp_max, mp_sum
IMPLICIT NONE
INTEGER, INTENT(IN) :: ngm_
INTEGER, INTENT(IN) :: comm ! communicator of the group on which g-vecs are distributed
TYPE(fft_cus), INTENT(INOUT) :: fc
!
fc%ngmt = ngm_
!
! calculate maximum over all processors
!
fc%ngmt_l = ngm_
CALL mp_max( fc%ngmt_l, comm )
!
! calculate sum over all processors
!
fc%ngmt_g = ngm_
CALL mp_sum( fc%ngmt_g, comm )
!
! allocate arrays - only those that are always kept until the end
!
ALLOCATE( fc%ggt(fc%ngmt) )
ALLOCATE( fc%gt (3, fc%ngmt) )
! ALLOCATE( mill(3, fc%ngmt) )
ALLOCATE( fc%nlt (fc%ngmt) )
ALLOCATE( fc%nltm(fc%ngmt) )
ALLOCATE( fc%ig_l2gt(fc%ngmt) )
! ALLOCATE( igtongl(fc%ngmt) )
!
RETURN
!
END SUBROUTINE gvec_init
!
!--------------------------------------------------------------------
SUBROUTINE set_custom_grid(fc)
!-----------------------------------------------------------------------
! This routine computes the dimensions of the minimum FFT grid
! compatible with the input cut-off
!
! NB: The values of nr1, nr2, nr3 are computed only if they are not
! given as input parameters. Input values are kept otherwise.
!
USE cell_base, ONLY : at, tpiba2
USE fft_scalar, ONLY : allowed
IMPLICIT NONE
TYPE(fft_cus) :: fc
INTEGER, PARAMETER :: nmax = 5000
! an unreasonably big number for a FFT grid
!
! the values of nr1, nr2, nr3 are computed only if they are not given
! as input parameters
!
fc%nr1t=0
fc%nr2t=0
fc%nr3t=0
IF (fc%nr1t == 0) THEN
!
! estimate nr1 and check if it is an allowed value for FFT
!
fc%nr1t = INT(2 * SQRT(fc%gcutmt) * SQRT(at(1, 1)**2 + &
&at(2, 1)**2 + at(3, 1)**2) ) + 1
10 CONTINUE
IF (fc%nr1t > nmax) &
CALL errore ('set_custom_grid', 'nr1 is unreasonably large', fc%nr1t)
IF (allowed (fc%nr1t) ) GOTO 15
fc%nr1t = fc%nr1t + 1
GOTO 10
ELSE
IF (.NOT.allowed (fc%nr1t) ) CALL errore ('set_custom_grid', &
'input nr1t value not allowed', 1)
ENDIF
15 CONTINUE
!
IF (fc%nr2t == 0) THEN
!
! estimate nr1 and check if it is an allowed value for FFT
!
fc%nr2t = INT(2 * SQRT(fc%gcutmt) * SQRT(at(1, 2)**2 + &
&at(2, 2)**2 + at(3, 2)**2) ) + 1
20 CONTINUE
IF (fc%nr2t > nmax) &
CALL errore ('set_custom_grid', 'nr2t is unreasonably large', fc%nr2t)
IF (allowed (fc%nr2t) ) GOTO 25
fc%nr2t = fc%nr2t + 1
GOTO 20
ELSE
IF (.NOT.allowed (fc%nr2t) ) CALL errore ('set_fft_dim', &
'input nr2t value not allowed', 2)
ENDIF
25 CONTINUE
!
IF (fc%nr3t == 0) THEN
!
! estimate nr3 and check if it is an allowed value for FFT
!
fc%nr3t = INT(2 * SQRT(fc%gcutmt) * SQRT(at(1, 3) **2 + &
&at(2, 3)**2 + at(3, 3) **2) ) + 1
30 CONTINUE
IF (fc%nr3t > nmax) &
CALL errore ('set_custom_grid', 'nr3 is unreasonably large', fc%nr3t)
IF (allowed (fc%nr3t) ) GOTO 35
fc%nr3t = fc%nr3t + 1
GOTO 30
ELSE
IF (.NOT.allowed (fc%nr3t) ) CALL errore ('set_custom_grid', &
'input nr3t value not allowed', 3)
ENDIF
35 CONTINUE
!
! here we compute nr3s if it is not in input
!
RETURN
END SUBROUTINE set_custom_grid
!
!--------------------------------------------------------------------
SUBROUTINE ggent(fc)
!--------------------------------------------------------------------
!
USE kinds, ONLY : DP
USE cell_base, ONLY : at, bg, tpiba2
USE control_flags, ONLY : gamma_only
USE constants, ONLY : eps8
IMPLICIT NONE
TYPE(fft_cus) :: fc
!
REAL(DP) :: t (3), tt, swap
!
INTEGER :: ngmx, n1, n2, n3, n1s, n2s, n3s
!
REAL(DP), ALLOCATABLE :: g2sort_g(:)
! array containing all g vectors, on all processors: replicated data
INTEGER, ALLOCATABLE :: mill_g(:,:), mill_unsorted(:,:)
! array containing all g vectors generators, on all processors:
! replicated data
INTEGER, ALLOCATABLE :: igsrt(:)
!
#ifdef __MPI
INTEGER :: m1, m2, mc
!
#endif
INTEGER :: i, j, k, ipol, ng, igl, iswap, indsw, ni, nj, nk
! ALLOCATE( fc%gt(3,fc%ngmt), fc%ggt(fc%ngmt) )
! ALLOCATE( fc%ig_l2gt( fc%ngmt_l ) )
ALLOCATE( mill_g( 3, fc%ngmt_g ), mill_unsorted( 3, fc%ngmt_g ) )
ALLOCATE( igsrt( fc%ngmt_g ) )
ALLOCATE( g2sort_g( fc%ngmt_g ) )
ALLOCATE( fc%ig1t(fc%ngmt), fc%ig2t(fc%ngmt), fc%ig3t(fc%ngmt) )
g2sort_g(:) = 1.0d20
!
! save present value of ngm in ngmx variable
!
ngmx = fc%ngmt
!
fc%ngmt = 0
!
! max miller indices (same convention as in module stick_set)
!
ni = (fc%dfftt%nr1-1)/2
nj = (fc%dfftt%nr2-1)/2
nk = (fc%dfftt%nr3-1)/2
!
iloop: DO i = -ni, ni
!
! gamma-only: exclude space with x < 0
!
IF ( gamma_only .AND. i < 0) CYCLE iloop
jloop: DO j = -nj, nj
!
! gamma-only: exclude plane with x = 0, y < 0
!
IF ( gamma_only .AND. i == 0 .AND. j < 0) CYCLE jloop
kloop: DO k = -nk, nk
!
! gamma-only: exclude line with x = 0, y = 0, z < 0
!
IF ( gamma_only .AND. i == 0 .AND. j == 0 .AND. k < 0) CYCLE kloop
t(:) = i * bg (:,1) + j * bg (:,2) + k * bg (:,3)
tt = SUM(t(:)**2)
IF (tt <= fc%gcutmt) THEN
fc%ngmt = fc%ngmt + 1
IF (fc%ngmt > fc%ngmt_g) CALL errore ('ggent', 'too many g-vectors', fc%ngmt)
mill_unsorted( :, fc%ngmt ) = (/ i,j,k /)
IF ( tt > eps8 ) THEN
g2sort_g(fc%ngmt) = tt
ELSE
g2sort_g(fc%ngmt) = 0.d0
ENDIF
ENDIF
ENDDO kloop
ENDDO jloop
ENDDO iloop
IF (fc%ngmt /= fc%ngmt_g ) &
CALL errore ('ggent', 'g-vectors missing !', ABS(fc%ngmt - fc%ngmt_g))
igsrt(1) = 0
CALL hpsort_eps( fc%ngmt_g, g2sort_g, igsrt, eps8 )
mill_g(1,:) = mill_unsorted(1,igsrt(:))
mill_g(2,:) = mill_unsorted(2,igsrt(:))
mill_g(3,:) = mill_unsorted(3,igsrt(:))
DEALLOCATE( g2sort_g, igsrt, mill_unsorted )
fc%ngmt = 0
ngloop: DO ng = 1, fc%ngmt_g
i = mill_g(1, ng)
j = mill_g(2, ng)
k = mill_g(3, ng)
#ifdef __MPI
m1 = MOD (i, fc%dfftt%nr1) + 1
IF (m1 < 1) m1 = m1 + fc%dfftt%nr1
m2 = MOD (j, fc%dfftt%nr2) + 1
IF (m2 < 1) m2 = m2 + fc%dfftt%nr2
mc = m1 + (m2 - 1) * fc%dfftt%nr1x
IF ( fc%dfftt%isind ( mc ) == 0) CYCLE ngloop
#endif
fc%ngmt = fc%ngmt + 1
! Here map local and global g index !!!
! N.B. the global G vectors arrangement depends on the number of processors
!
fc%ig_l2gt( fc%ngmt ) = ng
fc%gt (1:3, fc%ngmt) = i * bg (:, 1) + j * bg (:, 2) + k * bg (:, 3)
fc%ggt (fc%ngmt) = SUM(fc%gt (1:3, fc%ngmt)**2)
IF (fc%ngmt > ngmx) CALL errore ('ggent', 'too many g-vectors', fc%ngmt)
ENDDO ngloop
IF (fc%ngmt /= ngmx) &
CALL errore ('ggent', 'g-vectors missing !', ABS(fc%ngmt - ngmx))
!
! determine first nonzero g vector
!
IF (fc%ggt(1).LE.eps8) THEN
fc%gstart_t=2
ELSE
fc%gstart_t=1
ENDIF
!
! Now set nl and nls with the correct fft correspondence
!
DO ng = 1, fc%ngmt
n1 = NINT (SUM(fc%gt (:, ng) * at (:, 1))) + 1
fc%ig1t (ng) = n1 - 1
IF (n1<1) n1 = n1 + fc%dfftt%nr1
n2 = NINT (SUM(fc%gt (:, ng) * at (:, 2))) + 1
fc%ig2t (ng) = n2 - 1
IF (n2<1) n2 = n2 + fc%dfftt%nr2
n3 = NINT (SUM(fc%gt (:, ng) * at (:, 3))) + 1
fc%ig3t (ng) = n3 - 1
IF (n3<1) n3 = n3 + fc%dfftt%nr3
IF (n1>fc%dfftt%nr1 .OR. n2>fc%dfftt%nr2 .OR. n3>fc%dfftt%nr3) &
CALL errore('ggent','Mesh too small?',ng)
#if defined (__MPI) && !defined (__USE_3D_FFT)
fc%nlt (ng) = n3 + ( fc%dfftt%isind (n1 + (n2 - 1) * fc%dfftt%nr1x)&
& - 1) * fc%dfftt%nr3x
#else
fc%nlt (ng) = n1 + (n2 - 1) * fc%dfftt%nr1x + (n3 - 1) * &
& fc%dfftt%nr1x * fc%dfftt%nr2x
#endif
ENDDO
!
DEALLOCATE( mill_g )
!
! calculate number of G shells: ngl
IF ( gamma_only) CALL index_minusg_custom(fc)
!set npwt,npwxt
!This should eventually be calcualted somewhere else with
!n_plane_waves() but it is good enough for gamma_only
IF(gamma_only) THEN
fc%npwt=0
fc%npwxt=0
DO ng = 1, fc%ngmt
tt = (fc%gt (1, ng) ) **2 + (fc%gt (2, ng) ) **2 + (fc%gt&
& (3, ng) ) **2
IF (tt <= fc%ecutt / tpiba2) THEN
!
! here if |k+G|^2 <= Ecut increase the number of G
! inside the sphere
!
fc%npwt = fc%npwt + 1
ENDIF
ENDDO
fc%npwxt=fc%npwt
ENDIF
! IF( ALLOCATED( ngmpe ) ) DEALLOCATE( ngmpe )
RETURN
!
END SUBROUTINE ggent
!-----------------------------------------------------------------------
SUBROUTINE index_minusg_custom(fc)
!----------------------------------------------------------------------
!
! compute indices nlm and nlms giving the correspondence
! between the fft mesh points and -G (for gamma-only calculations)
!
!
IMPLICIT NONE
!
TYPE(fft_cus), INTENT(INOUT) :: fc
!
INTEGER :: n1, n2, n3, n1s, n2s, n3s, ng
!
DO ng = 1, fc%ngmt
n1 = -fc%ig1t (ng) + 1
IF (n1 < 1) n1 = n1 + fc%dfftt%nr1
n2 = -fc%ig2t (ng) + 1
IF (n2 < 1) n2 = n2 + fc%dfftt%nr2
n3 = -fc%ig3t (ng) + 1
IF (n3 < 1) n3 = n3 + fc%dfftt%nr3
IF (n1>fc%dfftt%nr1 .OR. n2>fc%dfftt%nr2 .OR. n3>fc%dfftt%nr3) THEN
CALL errore('index_minusg_custom','Mesh too small?',ng)
ENDIF
#if defined (__MPI) && !defined (__USE_3D_FFT)
fc%nltm(ng) = n3 + (fc%dfftt%isind (n1 + (n2 - 1) * fc&
&%dfftt%nr1x) - 1) * fc%dfftt%nr3x
#else
fc%nltm(ng) = n1 + (n2 - 1) * fc%dfftt%nr1x + (n3 - 1) * fc&
&%dfftt%nr1x * fc%dfftt%nr1x
#endif
ENDDO
END SUBROUTINE index_minusg_custom
SUBROUTINE deallocate_fft_custom(fc)
!this subroutine deallocates all the fft custom stuff
USE fft_types, ONLY : fft_dlay_deallocate
IMPLICIT NONE
TYPE(fft_cus) :: fc
IF(.NOT. fc%initalized) RETURN
DEALLOCATE(fc%nlt,fc%nltm)
CALL fft_dlay_deallocate(fc%dfftt)
DEALLOCATE(fc%ig_l2gt,fc%ggt,fc%gt)
DEALLOCATE(fc%ig1t,fc%ig2t,fc%ig3t)
fc%initalized=.FALSE.
RETURN
END SUBROUTINE deallocate_fft_custom
!
!----------------------------------------------------------------------------
SUBROUTINE reorderwfp_col ( nbands, npw1, npw2, pw1, pw2, ngwl1, ngwl2,&
& ig_l2g1, ig_l2g2, n_g, mpime, nproc, comm )
!--------------------------------------------------------------------------
!
! A routine using collective mpi calls that reorders the
! wavefunction in pw1 on a grid specified by ig_l2g1 and puts it
! in pw2 in the order required by ig_l2g2.
!
! Can transform multiple bands at once, as specifed by the nbands
! option.
!
! This operation could previously be performed by calls to
! mergewf and splitwf however that scales very badly with number
! of procs.
!
! Written by P. Umari, documentationa added by S. Binnie
!
USE kinds
USE parallel_include
USE io_global, ONLY : stdout
IMPLICIT NONE
INTEGER, INTENT(in) :: npw1, npw2
INTEGER, INTENT(IN) :: nbands ! Number of bands to be transformed
COMPLEX(DP), INTENT(IN) :: pw1(npw1,nbands) ! Input wavefunction
COMPLEX(DP), INTENT(INOUT) :: pw2(npw2,nbands) ! Output
INTEGER, INTENT(IN) :: mpime ! index of calling proc (starts at 0)
INTEGER, INTENT(IN) :: nproc ! number of procs in the communicator
INTEGER, INTENT(IN) :: comm ! communicator
INTEGER, INTENT(IN) :: ig_l2g1(ngwl1),ig_l2g2(ngwl2)
INTEGER, INTENT(IN) :: ngwl1,ngwl2
! Global maximum number of G vectors for both grids
INTEGER, INTENT(in) :: n_g
! Local variables
INTEGER :: ngwl1_max, ngwl2_max, npw1_max, npw2_max, ngwl_min
INTEGER :: gid,ierr
INTEGER, ALLOCATABLE :: npw1_loc(:),npw2_loc(:)
INTEGER, ALLOCATABLE :: ig_l2g1_tot(:,:),ig_l2g2_tot(:,:), itmp(:)
INTEGER :: ii,ip,ilast,iband
COMPLEX(kind=DP), ALLOCATABLE :: pw1_tot(:,:),pw2_tot(:,:)
COMPLEX(kind=DP), ALLOCATABLE :: pw1_tmp(:),pw2_tmp(:), pw_global(:)
#ifdef __MPI
gid=comm
ALLOCATE(npw1_loc(nproc),npw2_loc(nproc))
!
! Calculate the size of the global correspondance arrays
!
CALL MPI_ALLREDUCE( ngwl1, ngwl1_max, 1, MPI_INTEGER, MPI_MAX, gid, IERR )
CALL MPI_ALLREDUCE( ngwl2, ngwl2_max, 1, MPI_INTEGER, MPI_MAX, gid, IERR )
CALL MPI_ALLREDUCE( npw1, npw1_max, 1, MPI_INTEGER, MPI_MAX, gid, IERR )
CALL MPI_ALLREDUCE( npw2, npw2_max, 1, MPI_INTEGER, MPI_MAX, gid, IERR )
CALL MPI_ALLGATHER( npw1, 1, MPI_INTEGER, npw1_loc, 1,&
& MPI_INTEGER, gid, IERR )
CALL MPI_ALLGATHER( npw2, 1, MPI_INTEGER, npw2_loc, 1,&
& MPI_INTEGER, gid, IERR )
!
ALLOCATE(ig_l2g1_tot(ngwl1_max,nproc),ig_l2g2_tot(ngwl2_max&
&,nproc))
!
! All procs gather correspondance arrays
!
ALLOCATE(itmp(ngwl1_max))
itmp(1:ngwl1)=ig_l2g1(1:ngwl1)
CALL MPI_ALLGATHER( itmp, ngwl1_max, MPI_INTEGER, ig_l2g1_tot,&
& ngwl1_max, MPI_INTEGER, gid, IERR )
DEALLOCATE(itmp)
!
ALLOCATE(itmp(ngwl2_max))
itmp(1:ngwl2)=ig_l2g2(1:ngwl2)
CALL MPI_ALLGATHER( itmp, ngwl2_max, MPI_INTEGER, ig_l2g2_tot,&
& ngwl2_max, MPI_INTEGER, gid, IERR)
DEALLOCATE(itmp)
!
!
ALLOCATE( pw1_tot(npw1_max,nproc), pw2_tot(npw2_max,nproc) )
ALLOCATE( pw1_tmp(npw1_max), pw2_tmp(npw2_max) )
ALLOCATE( pw_global(n_g) )
!
DO ii=1, nbands, nproc
!
ilast=MIN(nbands,ii+nproc-1)
!
! Gather the input wavefunction.
!
DO iband=ii, ilast
!
ip = MOD(iband,nproc) ! ip starts from 1 to nproc-1
pw1_tmp(1:npw1)=pw1(1:npw1,iband)
CALL MPI_GATHER( pw1_tmp, npw1_max, MPI_DOUBLE_COMPLEX,&
& pw1_tot, npw1_max, MPI_DOUBLE_COMPLEX, ip, gid, ierr )
!
ENDDO
!
pw_global = ( 0.d0, 0.d0 )
!
! Put the gathered wavefunction into the standard order.
!
DO ip=1,nproc
!
pw_global( ig_l2g1_tot(1:npw1_loc(ip), ip) ) = &
& pw1_tot( 1:npw1_loc(ip), ip )
!
ENDDO
!
! Now put this into the correct order for output.
!
DO ip=1,nproc
!
pw2_tot( 1:npw2_loc(ip), ip ) = &
& pw_global ( ig_l2g2_tot(1:npw2_loc(ip),ip) )
!
ENDDO
!
! Scatter the output wavefunction across the processors.
!
DO iband=ii,ilast
!
ip=MOD(iband,nproc)
CALL MPI_SCATTER( pw2_tot, npw2_max, MPI_DOUBLE_COMPLEX,&
& pw2_tmp, npw2_max, MPI_DOUBLE_COMPLEX, ip, gid, ierr )
pw2(1:npw2,iband)=pw2_tmp(1:npw2)
!
ENDDO
!
ENDDO
!
DEALLOCATE(npw1_loc,npw2_loc)
DEALLOCATE(ig_l2g1_tot,ig_l2g2_tot)
DEALLOCATE(pw1_tot,pw2_tot)
DEALLOCATE(pw1_tmp,pw2_tmp)
DEALLOCATE(pw_global)
!
#else
!
ngwl_min = MIN( ngwl1, ngwl2 )
!
pw2(:, 1:nbands) = ( 0.0d0, 0.0d0 )
pw2( ig_l2g2(1:ngwl_min), 1:nbands ) = pw1( ig_l2g1(1:ngwl_min), 1:nbands )
!
#endif
!
RETURN
!
END SUBROUTINE reorderwfp_col
!----------------------------------------------------------------------------
END MODULE fft_custom
|