File: fft_scalar.f90

package info (click to toggle)
espresso 5.1%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 146,004 kB
  • ctags: 17,245
  • sloc: f90: 253,041; sh: 51,271; ansic: 27,494; tcl: 15,570; xml: 14,508; makefile: 2,958; perl: 2,035; fortran: 1,924; python: 337; cpp: 200; awk: 57
file content (2107 lines) | stat: -rw-r--r-- 63,899 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
!
! Copyright (C) 2001-2012 Quantum ESPRESSO group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!--------------------------------------------------------------------------!
! FFT scalar drivers Module - contains machine-dependent routines for:     !
! FFTW, FFTW3, ESSL, LINUX_ESSL, SCSL, SUNPERF, NEC ASL libraries          !
! (both 3d for serial execution and 1d+2d FFTs for parallel execution,     !
! excepted NEC ASL, 3d only, no parallel execution)                        !
! Written by Carlo Cavazzoni, modified by P. Giannozzi, contributions      !
! by Martin Hilgemans, Guido Roma, Pascal Thibaudeau, Stephane Lefranc,    !
! Nicolas Lacorne, Filippo Spiga - Last update Aug 2012                    !
!--------------------------------------------------------------------------!

#include "fft_defs.h"
!=----------------------------------------------------------------------=!
   MODULE fft_scalar
!=----------------------------------------------------------------------=!
       USE kinds

        IMPLICIT NONE
        SAVE

        PRIVATE
        PUBLIC :: cft_1z, cft_2xy, cft_b, cfft3d, cfft3ds
        PUBLIC :: good_fft_dimension, allowed, good_fft_order
        PUBLIC :: cft_b_omp_init, cft_b_omp

! ...   Local Parameter

        !   ndims   Number of different FFT tables that the module
        !           could keep into memory without reinitialization
        !   nfftx   Max allowed fft dimension

        INTEGER, PARAMETER :: ndims = 3, nfftx = 2049

        !   Workspace that is statically allocated is defined here
        !   in order to avoid multiple copies of the same workspace
        !   lwork:   Dimension of the work space array (if any)

#if ( defined __ESSL || defined __LINUX_ESSL ) && ! ( defined __FFTW || defined __FFTW3 )

        !   ESSL IBM library: see the ESSL manual for DCFT

        INTEGER, PARAMETER :: lwork = 20000 + ( 2*nfftx + 256 ) * 64 + 3*nfftx
        REAL (DP) :: work( lwork )

#elif defined __SCSL || defined __SUNPERF

        !   SGI scientific library scsl and SUN sunperf

        INTEGER, PARAMETER :: lwork = 2 * nfftx
        COMPLEX (DP) :: work(lwork)

#elif defined __FFTW3

#define  FFTW_MEASURE   0
#define  FFTW_UNALIGNED 2
#define  FFTW_ESTIMATE 64

#if defined _FFTW_FORCE_UNALIGNED

#define  FFTW_PLAN_TYPE FFTW_UNALIGNED + FFTW_ESTIMATE

#else 

#define  FFTW_PLAN_TYPE FFTW_ESTIMATE

#endif

#endif

#if defined __FFTW 

        INTEGER   :: cft_b_dims( 4 )
        C_POINTER :: cft_b_bw_planz = 0
        C_POINTER :: cft_b_bw_planx = 0
        C_POINTER :: cft_b_bw_plany = 0

#endif

!=----------------------------------------------------------------------=!
   CONTAINS
!=----------------------------------------------------------------------=!

!
!=----------------------------------------------------------------------=!
!
!
!
!         FFT along "z"
!
!
!
!=----------------------------------------------------------------------=!
!

   SUBROUTINE cft_1z(c, nsl, nz, ldz, isign, cout)

!     driver routine for nsl 1d complex fft's of length nz
!     ldz >= nz is the distance between sequences to be transformed
!     (ldz>nz is used on some architectures to reduce memory conflicts)
!     input  :  c(ldz*nsl)   (complex)
!     output : cout(ldz*nsl) (complex - NOTA BENE: transform is not in-place!)
!     isign > 0 : forward (f(G)=>f(R)), isign <0 backward (f(R) => f(G))
!     Up to "ndims" initializations (for different combinations of input
!     parameters nz, nsl, ldz) are stored and re-used if available

     INTEGER, INTENT(IN) :: isign
     INTEGER, INTENT(IN) :: nsl, nz, ldz

     COMPLEX (DP) :: c(:), cout(:)

     REAL (DP)  :: tscale
     INTEGER    :: i, err, idir, ip
     INTEGER, SAVE :: zdims( 3, ndims ) = -1
     INTEGER, SAVE :: icurrent = 1
     LOGICAL :: done

#if defined __HPM
     INTEGER :: OMP_GET_THREAD_NUM
#endif
     INTEGER :: tid

     ! ...   Machine-Dependent parameters, work arrays and tables of factors

     !   ltabl   Dimension of the tables of factors calculated at the
     !           initialization stage

#if defined __OPENMP
     INTEGER :: offset, ldz_t
     INTEGER :: omp_get_max_threads
     EXTERNAL :: omp_get_max_threads
#endif


#if defined __FFTW || defined __FFTW3

     !   Pointers to the "C" structures containing FFT factors ( PLAN )
     !   C_POINTER is defined in include/fft_defs.h
     !   for 32bit executables, C_POINTER is integer(4)
     !   for 64bit executables, C_POINTER is integer(8)

     C_POINTER, SAVE :: fw_planz( ndims ) = 0
     C_POINTER, SAVE :: bw_planz( ndims ) = 0

#elif defined __ESSL || defined __LINUX_ESSL

     !   ESSL IBM library: see the ESSL manual for DCFT

     INTEGER, PARAMETER :: ltabl = 20000 + 3 * nfftx
     REAL (DP), SAVE :: fw_tablez( ltabl, ndims )
     REAL (DP), SAVE :: bw_tablez( ltabl, ndims )

#elif defined __SCSL

     !   SGI scientific library scsl

     INTEGER, PARAMETER :: ltabl = 2 * nfftx + 256
     REAL (DP), SAVE :: tablez (ltabl, ndims)
     REAL (DP)       :: DUMMY
     INTEGER, SAVE :: isys(0:1) = (/ 1, 1 /)

#elif defined __SX6

     !   NEC MathKeisan

     INTEGER, PARAMETER :: ltabl = 2 * nfftx + 64
     REAL (DP), SAVE :: tablez (ltabl, ndims)
     REAL (DP)       :: work(4*nz*nsl)
     COMPLEX (DP)    :: DUMMY
     INTEGER, SAVE :: isys = 1

#elif defined __SUNPERF

     !   SUN sunperf library

     INTEGER, PARAMETER :: ltabl = 4 * nfftx + 15
     REAL (DP), SAVE :: tablez (ltabl, ndims)

#endif

     IF( nsl < 0 ) THEN
       CALL errore(" fft_scalar: cft_1z ", " nsl out of range ", nsl)
     END IF

     !
     !   Here initialize table only if necessary
     !

     DO ip = 1, ndims

        !   first check if there is already a table initialized
        !   for this combination of parameters

        done = ( nz == zdims(1,ip) )
#if defined __ESSL || defined __LINUX_ESSL || defined __FFTW3

        !   The initialization in ESSL and FFTW v.3 depends on all three parameters

        done = done .AND. ( nsl == zdims(2,ip) ) .AND. ( ldz == zdims(3,ip) )
#endif
        IF (done) EXIT
     END DO

     IF( .NOT. done ) THEN

       !   no table exist for these parameters
       !   initialize a new one

       ! WRITE( stdout, fmt="('DEBUG cft_1z, reinitializing tables ', I3)" ) icurrent

#if defined __FFTW

       IF( fw_planz( icurrent) /= 0 ) CALL DESTROY_PLAN_1D( fw_planz( icurrent) )
       IF( bw_planz( icurrent) /= 0 ) CALL DESTROY_PLAN_1D( bw_planz( icurrent) )
       idir = -1; CALL CREATE_PLAN_1D( fw_planz( icurrent), nz, idir)
       idir =  1; CALL CREATE_PLAN_1D( bw_planz( icurrent), nz, idir)

#elif defined __FFTW3


       IF( fw_planz( icurrent) /= 0 ) CALL dfftw_destroy_plan( fw_planz( icurrent) )
       IF( bw_planz( icurrent) /= 0 ) CALL dfftw_destroy_plan( bw_planz( icurrent) )
       idir = -1
       CALL dfftw_plan_many_dft( fw_planz( icurrent), 1, nz, nsl, c, &
            (/SIZE(c)/), 1, ldz, cout, (/SIZE(cout)/), 1, ldz, idir, FFTW_PLAN_TYPE)
       idir = 1
       CALL dfftw_plan_many_dft( bw_planz( icurrent), 1, nz, nsl, c, &
            (/SIZE(c)/), 1, ldz, cout, (/SIZE(cout)/), 1, ldz, idir, FFTW_PLAN_TYPE)

#elif defined __ESSL || defined __LINUX_ESSL

       tscale = 1.0_DP / nz

       CALL DCFT ( 1, c(1), 1, ldz, cout(1), 1, ldz, nz, nsl,  1, &
          tscale, fw_tablez(1, icurrent), ltabl, work(1), lwork)
       CALL DCFT ( 1, c(1), 1, ldz, cout(1), 1, ldz, nz, nsl, -1, &
          1.0_DP, bw_tablez(1, icurrent), ltabl, work(1), lwork)


#elif defined __SCSL

       CALL ZZFFTM (0, nz, 0, 0.0_DP, DUMMY, 1, DUMMY, 1, &
                    tablez (1, icurrent), DUMMY, isys)

#elif defined __SX6

       CALL ZZFFTM (0, nz, 1, 1.0_DP, DUMMY, ldz, DUMMY, ldz, &
                    tablez (1, icurrent), work, isys)

#elif defined __SUNPERF

       CALL zffti (nz, tablez (1, icurrent) )

#else

       CALL errore(' cft_1z ',' no scalar fft driver specified ', 1)

#endif

       zdims(1,icurrent) = nz; zdims(2,icurrent) = nsl; zdims(3,icurrent) = ldz;
       ip = icurrent
       icurrent = MOD( icurrent, ndims ) + 1

     END IF

     !
     !   Now perform the FFTs using machine specific drivers
     !

#if defined __FFT_CLOCKS
     CALL start_clock( 'cft_1z' )
#endif

#if defined __FFTW

#if defined __OPENMP

     ldz_t = ldz
     !
     IF (isign < 0) THEN
!$omp parallel default(none) private(tid,offset,i,tscale) shared(c,isign,nsl,fw_planz,ip,nz,cout,ldz) &
!$omp &        firstprivate(ldz_t)
!$omp do
       DO i=1, nsl
          offset = 1 + ((i-1)*ldz_t)
          CALL FFT_Z_STICK_SINGLE(fw_planz( ip), c(offset), ldz_t)
       END DO
!$omp end do
       tscale = 1.0_DP / nz
!$omp workshare
       cout( 1 : ldz * nsl ) = c( 1 : ldz * nsl ) * tscale
!$omp end workshare
!$omp end parallel
     ELSE IF (isign > 0) THEN
!$omp parallel default(none) private(tid,offset,i) shared(c,isign,nsl,bw_planz,ip,cout,ldz) &
!$omp &        firstprivate(ldz_t)
!$omp do
       DO i=1, nsl
          offset =  1 + ((i-1)* ldz_t)
          CALL FFT_Z_STICK_SINGLE(bw_planz( ip), c(offset), ldz_t)
       END DO
!$omp end do
!$omp workshare
       cout( 1 : ldz * nsl ) = c( 1 : ldz * nsl )
!$omp end workshare
!$omp end parallel
     END IF


#else

     IF (isign < 0) THEN
        CALL FFT_Z_STICK(fw_planz( ip), c(1), ldz, nsl)
        tscale = 1.0_DP / nz
        cout( 1 : ldz * nsl ) = c( 1 : ldz * nsl ) * tscale
     ELSE IF (isign > 0) THEN
        CALL FFT_Z_STICK(bw_planz( ip), c(1), ldz, nsl)
        cout( 1 : ldz * nsl ) = c( 1 : ldz * nsl )
     END IF

#endif

#elif defined __FFTW3

     IF (isign < 0) THEN
        CALL dfftw_execute_dft( fw_planz( ip), c, cout)
        tscale = 1.0_DP / nz
        cout( 1 : ldz * nsl ) = cout( 1 : ldz * nsl ) * tscale
     ELSE IF (isign > 0) THEN
        CALL dfftw_execute_dft( bw_planz( ip), c, cout)
     END IF

#elif defined __SCSL

     IF ( isign < 0 ) THEN
        idir   = -1
        tscale = 1.0_DP / nz
     ELSE IF ( isign > 0 ) THEN
        idir   = 1
        tscale = 1.0_DP
     END IF
     IF (isign /= 0) CALL ZZFFTM (idir, nz, nsl, tscale, c(1), ldz, &
          cout(1), ldz, tablez (1, ip), work, isys)

#elif defined __SX6

     IF ( isign < 0 ) THEN
        idir   = -1
        tscale = 1.0_DP / nz
     ELSE IF ( isign > 0 ) THEN
        idir   = 1
        tscale = 1.0_DP
     END IF
     IF (isign /= 0) CALL ZZFFTM (idir, nz, nsl, tscale, c(1), ldz, &
          cout(1), ldz, tablez (1, ip), work, isys)

#elif defined __ESSL || defined __LINUX_ESSL

     ! essl uses a different convention for forward/backward transforms
     ! wrt most other implementations: notice the sign of "idir"

     IF( isign < 0 ) THEN
        idir   =+1
        tscale = 1.0_DP / nz
        CALL DCFT (0, c(1), 1, ldz, cout(1), 1, ldz, nz, nsl, idir, &
             tscale, fw_tablez(1, ip), ltabl, work, lwork)
     ELSE IF( isign > 0 ) THEN
        idir   =-1
        tscale = 1.0_DP
        CALL DCFT (0, c(1), 1, ldz, cout(1), 1, ldz, nz, nsl, idir, &
             tscale, bw_tablez(1, ip), ltabl, work, lwork)
     END IF


#elif defined __SUNPERF

     IF ( isign < 0) THEN
        DO i = 1, nsl
           CALL zfftf ( nz, c(1+(i-1)*ldz), tablez ( 1, ip) )
        END DO
        cout( 1 : ldz * nsl ) = c( 1 : ldz * nsl ) / nz
     ELSE IF( isign > 0 ) THEN
        DO i = 1, nsl
           CALL zfftb ( nz, c(1+(i-1)*ldz), tablez ( 1, ip) )
        enddo
        cout( 1 : ldz * nsl ) = c( 1 : ldz * nsl )
     END IF

#else

    CALL errore(' cft_1z ',' no scalar fft driver specified ', 1)

#endif

#if defined __FFT_CLOCKS
     CALL stop_clock( 'cft_1z' )
#endif

     RETURN
   END SUBROUTINE cft_1z

!
!
!=----------------------------------------------------------------------=!
!
!
!
!         FFT along "x" and "y" direction
!
!
!
!=----------------------------------------------------------------------=!
!
!

   SUBROUTINE cft_2xy(r, nzl, nx, ny, ldx, ldy, isign, pl2ix)

!     driver routine for nzl 2d complex fft's of lengths nx and ny
!     input : r(ldx*ldy)  complex, transform is in-place
!     ldx >= nx, ldy >= ny are the physical dimensions of the equivalent
!     2d array: r2d(ldx, ldy) (x first dimension, y second dimension)
!     (ldx>nx, ldy>ny used on some architectures to reduce memory conflicts)
!     pl2ix(nx) (optional) is 1 for columns along y to be transformed
!     isign > 0 : forward (f(G)=>f(R)), isign <0 backward (f(R) => f(G))
!     Up to "ndims" initializations (for different combinations of input
!     parameters nx,ny,nzl,ldx) are stored and re-used if available

     IMPLICIT NONE

     INTEGER, INTENT(IN) :: isign, ldx, ldy, nx, ny, nzl
     INTEGER, OPTIONAL, INTENT(IN) :: pl2ix(:)
     COMPLEX (DP) :: r( : )
     INTEGER :: i, k, j, err, idir, ip, kk
     REAL(DP) :: tscale
     INTEGER, SAVE :: icurrent = 1
     INTEGER, SAVE :: dims( 4, ndims) = -1
     LOGICAL :: dofft( nfftx ), done
     INTEGER, PARAMETER  :: stdout = 6

#if defined __HPM
     INTEGER :: OMP_GET_THREAD_NUM
#endif
#if defined __OPENMP
     INTEGER :: offset
     INTEGER :: nx_t, ny_t, nzl_t, ldx_t, ldy_t
     INTEGER  :: itid, mytid, ntids
     INTEGER  :: omp_get_thread_num, omp_get_num_threads
     EXTERNAL :: omp_get_thread_num, omp_get_num_threads
#endif

#if defined __FFTW || defined __FFTW3

     C_POINTER, SAVE :: fw_plan( 2, ndims ) = 0
     C_POINTER, SAVE :: bw_plan( 2, ndims ) = 0

#elif defined __ESSL || defined __LINUX_ESSL

     INTEGER, PARAMETER :: ltabl = 20000 + 3 * nfftx
     REAL (DP), SAVE :: fw_tablex( ltabl, ndims ), fw_tabley( ltabl, ndims )
     REAL (DP), SAVE :: bw_tablex( ltabl, ndims ), bw_tabley( ltabl, ndims )

#elif defined __SCSL

     INTEGER, PARAMETER :: ltabl = 2 * nfftx + 256
     REAL (DP), SAVE :: tablex (ltabl, ndims), tabley(ltabl, ndims)
     COMPLEX (DP) :: XY(nx+nx*ny)
     REAL (DP)    :: DUMMY
     INTEGER, SAVE :: isys(0:1) = (/ 1, 1 /)

#elif defined __SX6

     INTEGER, PARAMETER :: ltabl = 2*nfftx + 64
     REAL (DP), SAVE :: tablex(ltabl, ndims), tabley(ltabl, ndims)
     REAL (DP)       :: work(4*nx*ny)
     COMPLEX (DP) :: XY(ldx*ny)
     COMPLEX (DP) :: DUMMY
     INTEGER, SAVE :: isys = 1

#elif defined __SUNPERF

     INTEGER, PARAMETER :: ltabl = 4 * nfftx + 15
     REAL (DP), SAVE :: tablex (ltabl, ndims)
     REAL (DP), SAVE :: tabley (ltabl, ndims)

#endif


#if defined __SCSL
     isys(0) = 1
#endif

     dofft( 1 : nx ) = .TRUE.
     IF( PRESENT( pl2ix ) ) THEN
       IF( SIZE( pl2ix ) < nx ) &
         CALL errore( ' cft_2xy ', ' wrong dimension for arg no. 8 ', 1 )
       DO i = 1, nx
         IF( pl2ix(i) < 1 ) dofft( i ) = .FALSE.
       END DO
     END IF

     ! WRITE( stdout,*) 'DEBUG: ', COUNT( dofft )

     !
     !   Here initialize table only if necessary
     !

     DO ip = 1, ndims

       !   first check if there is already a table initialized
       !   for this combination of parameters

       done = ( ny == dims(1,ip) ) .AND. ( nx == dims(3,ip) )
#if defined __ESSL || defined __LINUX_ESSL || defined __FFTW3
        !   The initialization in ESSL and FFTW v.3 depends on all four parameters
       done = done .AND. ( ldx == dims(2,ip) ) .AND.  ( nzl == dims(4,ip) )
#endif
       IF (done) EXIT
     END DO

     IF( .NOT. done ) THEN

       !   no table exist for these parameters
       !   initialize a new one

       ! WRITE( stdout, fmt="('DEBUG cft_2xy, reinitializing tables ', I3)" ) icurrent

#if defined __FFTW

       IF( fw_plan( 2,icurrent) /= 0 )   CALL DESTROY_PLAN_1D( fw_plan( 2,icurrent) )
       IF( bw_plan( 2,icurrent) /= 0 )   CALL DESTROY_PLAN_1D( bw_plan( 2,icurrent) )
       idir = -1; CALL CREATE_PLAN_1D( fw_plan( 2,icurrent), ny, idir)
       idir =  1; CALL CREATE_PLAN_1D( bw_plan( 2,icurrent), ny, idir)

       IF( fw_plan( 1,icurrent) /= 0 ) CALL DESTROY_PLAN_1D( fw_plan( 1,icurrent) )
       IF( bw_plan( 1,icurrent) /= 0 ) CALL DESTROY_PLAN_1D( bw_plan( 1,icurrent) )
       idir = -1; CALL CREATE_PLAN_1D( fw_plan( 1,icurrent), nx, idir)
       idir =  1; CALL CREATE_PLAN_1D( bw_plan( 1,icurrent), nx, idir)

#elif defined __FFTW3

       IF ( ldx /= nx .OR. ldy /= ny ) THEN
          IF( fw_plan(2,icurrent) /= 0 )  CALL dfftw_destroy_plan( fw_plan(2,icurrent) )
          IF( bw_plan(2,icurrent) /= 0 )  CALL dfftw_destroy_plan( bw_plan(2,icurrent) )
          idir = -1
          CALL dfftw_plan_many_dft( fw_plan(2,icurrent), 1, ny, 1, r(1:), &
               (/ldx*ldy/), ldx, 1, r(1:), (/ldx*ldy/), ldx, 1, idir, &
               FFTW_PLAN_TYPE)
          idir =  1
          CALL dfftw_plan_many_dft( bw_plan(2,icurrent), 1, ny, 1, r(1:), &
               (/ldx*ldy/), ldx, 1, r(1:), (/ldx*ldy/), ldx, 1, idir, &
               FFTW_PLAN_TYPE)

          IF( fw_plan(1,icurrent) /= 0 ) CALL dfftw_destroy_plan( fw_plan(1,icurrent) )
          IF( bw_plan(1,icurrent) /= 0 ) CALL dfftw_destroy_plan( bw_plan(1,icurrent) )
          idir = -1
          CALL dfftw_plan_many_dft( fw_plan(1,icurrent), 1, nx, ny, r(1:), &
               (/ldx*ldy/), 1, ldx, r(1:), (/ldx*ldy/), 1, ldx, idir, &
               FFTW_PLAN_TYPE)
          idir =  1
          CALL dfftw_plan_many_dft( bw_plan(1,icurrent), 1, nx, ny, r(1:), &
               (/ldx*ldy/), 1, ldx, r(1:), (/ldx*ldy/), 1, ldx, idir, &
               FFTW_PLAN_TYPE)
       ELSE
          IF( fw_plan( 1, icurrent) /= 0 ) CALL dfftw_destroy_plan( fw_plan( 1, icurrent) )
          IF( bw_plan( 1, icurrent) /= 0 ) CALL dfftw_destroy_plan( bw_plan( 1, icurrent) )
          idir = -1
          CALL dfftw_plan_many_dft( fw_plan( 1, icurrent), 2, (/nx, ny/), nzl,&
               r(1:), (/nx, ny/), 1, nx*ny, r(1:), (/nx, ny/), 1, nx*ny, idir,&
               FFTW_PLAN_TYPE)
          idir = 1
          CALL dfftw_plan_many_dft( bw_plan( 1, icurrent), 2, (/nx, ny/), nzl,&
               r(1:), (/nx, ny/), 1, nx*ny, r(1:), (/nx, ny/), 1, nx*ny, idir,&
               FFTW_PLAN_TYPE)
       END IF

#elif defined __ESSL || defined __LINUX_ESSL

#if defined __OPENMP

       tscale = 1.0_DP / ( nx * ny )
       CALL DCFT ( 1, r(1), ldx, 1, r(1), ldx, 1, ny, nx,  1, 1.0_DP, &
          fw_tabley( 1, icurrent), ltabl, work(1), lwork )
       CALL DCFT ( 1, r(1), ldx, 1, r(1), ldx, 1, ny, nx, -1, 1.0_DP, &
          bw_tabley(1, icurrent), ltabl, work(1), lwork )
       CALL DCFT ( 1, r(1), 1, ldx, r(1), 1, ldx, nx, ny,  1, &
          tscale, fw_tablex( 1, icurrent), ltabl, work(1), lwork)
       CALL DCFT ( 1, r(1), 1, ldx, r(1), 1, ldx, nx, ny, -1, &
          1.0_DP, bw_tablex(1, icurrent), ltabl, work(1), lwork)

#else

       tscale = 1.0_DP / ( nx * ny )
       CALL DCFT ( 1, r(1), ldx, 1, r(1), ldx, 1, ny, 1,  1, 1.0_DP, &
          fw_tabley( 1, icurrent), ltabl, work(1), lwork )
       CALL DCFT ( 1, r(1), ldx, 1, r(1), ldx, 1, ny, 1, -1, 1.0_DP, &
          bw_tabley(1, icurrent), ltabl, work(1), lwork )
       CALL DCFT ( 1, r(1), 1, ldx, r(1), 1, ldx, nx, ny,  1, &
          tscale, fw_tablex( 1, icurrent), ltabl, work(1), lwork)
       CALL DCFT ( 1, r(1), 1, ldx, r(1), 1, ldx, nx, ny, -1, &
          1.0_DP, bw_tablex(1, icurrent), ltabl, work(1), lwork)

#endif



#elif defined __SCSL

       CALL ZZFFTMR (0, ny, 0, 0.0_DP, DUMMY, 1, DUMMY, 1,               &
                     tabley (1, icurrent), DUMMY, isys)
       CALL ZZFFTM  (0, nx, 0, 0.0_DP, DUMMY, 1, DUMMY, 1,               &
                     tablex (1, icurrent), DUMMY, isys)

#elif defined __SX6


       CALL ZZFFT(0, ny, 1.0_DP, DUMMY, DUMMY,              &
                  tabley (1, icurrent), work, isys)
       CALL ZZFFTM  (0, nx, 1, 1.0_DP, DUMMY, ldx, DUMMY, ldx,           &
                     tablex(1, icurrent), work, isys)

#elif defined __SUNPERF

       CALL zffti (ny, tabley (1, icurrent) )
       CALL zffti (nx, tablex (1, icurrent) )

#else

       CALL errore(' cft_2xy ',' no scalar fft driver specified ', 1)

#endif

       dims(1,icurrent) = ny; dims(2,icurrent) = ldx;
       dims(3,icurrent) = nx; dims(4,icurrent) = nzl;
       ip = icurrent
       icurrent = MOD( icurrent, ndims ) + 1

     END IF

     !
     !   Now perform the FFTs using machine specific drivers
     !

#if defined __FFT_CLOCKS
     CALL start_clock( 'cft_2xy' )
#endif


#if defined __FFTW

#if defined __OPENMP

     nx_t  = nx
     ny_t  = ny
     nzl_t = nzl
     ldx_t = ldx 
     ldy_t = ldy
     !
     IF( isign < 0 ) THEN
        !
        tscale = 1.0_DP / ( nx * ny )
        !
!$omp parallel default(none) private(offset,itid,mytid,ntids,k,j,i)  shared(r,dofft,ip,fw_plan,nzl,nx,ny,ldx,ldy,tscale)  &
!$omp & firstprivate(nx_t, ny_t, nzl_t, ldx_t, ldy_t)

!$omp do
        DO i=1,nzl
           offset = 1+ ((i-1)*(ldx_t*ldy_t))
           CALL FFT_X_STICK_SINGLE( fw_plan(1,ip), r(offset), nx_t, ny_t, nzl_t, ldx_t, ldy_t )
        END DO
!$omp end do

        mytid = omp_get_thread_num()  ! take the thread ID
        ntids = omp_get_num_threads() ! take the number of threads
        itid  = 0

        do i = 1, nx
          do k = 1, nzl
            IF( dofft( i ) ) THEN
              IF( itid == mytid ) THEN
                j = i + ldx_t*ldy_t * ( k - 1 )
                call FFT_Y_STICK(fw_plan(2,ip), r(j), ny_t, ldx_t)
              END IF
              itid = MOD( itid + 1, ntids )
            END IF
          end do
        end do

!$omp barrier
 
!$omp workshare
        r = r * tscale
!$omp end workshare

!$omp end parallel

        ! CALL ZDSCAL( ldx * ldy * nzl, tscale, r(1), 1)
        !
     ELSE IF( isign > 0 ) THEN
        !
!$omp parallel default(none) private(offset,itid,mytid,ntids,k,j,i) shared(r,nx,nzl,dofft,ip,bw_plan) &
!$omp & firstprivate(nx_t, ny_t, nzl_t, ldx_t, ldy_t)

        mytid = omp_get_thread_num()  ! take the thread ID
        ntids = omp_get_num_threads() ! take the number of threads
        itid  = 0

        do i = 1, nx
          do k = 1, nzl
            IF( dofft( i ) ) THEN
              IF( itid == mytid ) THEN
                j = i + ldx_t*ldy_t * ( k - 1 )
                call FFT_Y_STICK( bw_plan(2,ip), r(j), ny_t, ldx_t)
              END IF
              itid = MOD( itid + 1, ntids )
            END IF
          end do
        end do

!$omp barrier

!$omp do
        DO i=1,nzl
           offset = 1+ ((i-1)*(ldx_t*ldy_t))
           CALL FFT_X_STICK_SINGLE( bw_plan(1,ip), r(offset), nx_t, ny_t, nzl_t, ldx_t, ldy_t )
        END DO
!$omp end do
!$omp end parallel
        !
     END IF

#else

     IF( isign < 0 ) THEN

       CALL FFT_X_STICK( fw_plan(1,ip), r(1), nx, ny, nzl, ldx, ldy )

       do i = 1, nx
         do k = 1, nzl
           IF( dofft( i ) ) THEN
             j = i + ldx*ldy * ( k - 1 )
             call FFT_Y_STICK(fw_plan(2,ip), r(j), ny, ldx)
           END IF
         end do
       end do
       tscale = 1.0_DP / ( nx * ny )
       CALL ZDSCAL( ldx * ldy * nzl, tscale, r(1), 1)

     ELSE IF( isign > 0 ) THEN

       do i = 1, nx
         do k = 1, nzl
           IF( dofft( i ) ) THEN
             j = i + ldx*ldy * ( k - 1 )
             call FFT_Y_STICK( bw_plan(2,ip), r(j), ny, ldx)
           END IF
         end do
       end do

       CALL FFT_X_STICK( bw_plan(1,ip), r(1), nx, ny, nzl, ldx, ldy )

    END IF

#endif

#elif defined __FFTW3

     IF ( ldx /= nx .OR. ldy /= ny ) THEN
        IF( isign < 0 ) THEN
           do j = 0, nzl-1
              CALL dfftw_execute_dft( fw_plan (1, ip), &
                   r(1+j*ldx*ldy:), r(1+j*ldx*ldy:))
           end do
           do i = 1, nx
              do k = 1, nzl
                 IF( dofft( i ) ) THEN
                    j = i + ldx*ldy * ( k - 1 )
                    call dfftw_execute_dft( fw_plan ( 2, ip), r(j:), r(j:))
                 END IF
              end do
           end do
           tscale = 1.0_DP / ( nx * ny )
           CALL ZDSCAL( ldx * ldy * nzl, tscale, r(1), 1)
        ELSE IF( isign > 0 ) THEN
           do i = 1, nx
              do k = 1, nzl
                 IF( dofft( i ) ) THEN
                    j = i + ldx*ldy * ( k - 1 )
                    call dfftw_execute_dft( bw_plan ( 2, ip), r(j:), r(j:))
                 END IF
              end do
           end do
           do j = 0, nzl-1
              CALL dfftw_execute_dft( bw_plan( 1, ip), &
                   r(1+j*ldx*ldy:), r(1+j*ldx*ldy:))
           end do
        END IF
     ELSE
        IF( isign < 0 ) THEN
           call dfftw_execute_dft( fw_plan( 1, ip), r(1:), r(1:))
           tscale = 1.0_DP / ( nx * ny )
           CALL ZDSCAL( ldx * ldy * nzl, tscale, r(1), 1)
        ELSE IF( isign > 0 ) THEN
           call dfftw_execute_dft( bw_plan( 1, ip), r(1:), r(1:))
        END IF
     END IF

#elif defined __ESSL || defined __LINUX_ESSL

#if defined __OPENMP

   IF( isign < 0 ) THEN
      tscale = 1.0_DP / ( nx * ny )
      do k = 1, nzl
         kk = 1 + ( k - 1 ) * ldx * ldy
         CALL DCFT ( 0, r( kk ), 1, ldx, r( kk ), 1, ldx, nx, ny, &
              1, tscale, fw_tablex( 1, ip ), ltabl, work( 1 ), lwork)
         CALL DCFT ( 0, r( kk ), ldx, 1, r( kk ), ldx, 1, ny, nx, &
              1, 1.0_DP, fw_tabley(1, ip), ltabl, work( 1 ), lwork)
      end do
   ELSE IF( isign > 0 ) THEN
      DO k = 1, nzl
         kk = 1 + ( k - 1 ) * ldx * ldy
         CALL DCFT ( 0, r( kk ), ldx, 1, r( kk ), ldx, 1, ny, nx, &
                   -1, 1.0_DP, bw_tabley(1, ip), ltabl, work( 1 ), lwork)
         CALL DCFT ( 0, r( kk ), 1, ldx, r( kk ), 1, ldx, nx, ny, &
                   -1, 1.0_DP, bw_tablex(1, ip), ltabl, work( 1 ), lwork)
      END DO
   END IF

#else

   IF( isign < 0 ) THEN
      idir = 1
      tscale = 1.0_DP / ( nx * ny )
      do k = 1, nzl
         kk = 1 + ( k - 1 ) * ldx * ldy
         CALL DCFT ( 0, r(kk), 1, ldx, r(kk), 1, ldx, nx, ny, idir, &
              tscale, fw_tablex( 1, ip ), ltabl, work( 1 ), lwork)
         do i = 1, nx
            IF( dofft( i ) ) THEN
               kk = i + ( k - 1 ) * ldx * ldy
               call DCFT ( 0, r( kk ), ldx, 1, r( kk ), ldx, 1, ny, 1, &
                    idir, 1.0_DP, fw_tabley(1, ip), ltabl, work( 1 ), lwork)
            END IF
         end do
      end do
   ELSE IF( isign > 0 ) THEN
      idir = -1
      DO k = 1, nzl
         do i = 1, nx
            IF( dofft( i ) ) THEN
               kk = i + ( k - 1 ) * ldx * ldy
               call DCFT ( 0, r( kk ), ldx, 1, r( kk ), ldx, 1, ny, 1, &
                    idir, 1.0_DP, bw_tabley(1, ip), ltabl, work( 1 ), lwork)
            END IF
         end do
         kk = 1 + ( k - 1 ) * ldx * ldy
         CALL DCFT ( 0, r( kk ), 1, ldx, r( kk ), 1, ldx, nx, ny, idir, &
              1.0_DP, bw_tablex(1, ip), ltabl, work( 1 ), lwork)
      END DO
   END IF
#endif

#elif defined __SX6

      IF( isign < 0 ) THEN

       idir = -1
       tscale = 1.0_DP / (nx * ny)
       DO k = 0, nzl-1
          kk = k * ldx * ldy
! FORWARD: ny FFTs in the X direction
          CALL ZZFFTM ( idir, nx, ny, tscale, r(kk+1), ldx, r(kk+1), ldx,   &
                        tablex (1, ip), work(1), isys )
! FORWARD: nx FFTs in the Y direction
          DO i = 1, nx
             IF ( dofft(i) ) THEN
                DO j = 0, ny-1
                   XY(j+1) = r(i + (j) * ldx + kk)
                END DO
                CALL ZZFFT(idir, ny, 1.0_DP, XY, XY, tabley (1, ip),      &
                           work(1), isys)
                DO j = 0, ny-1
                   r(i + (j) * ldx + kk) = XY(j+1)
                END DO
             END IF
          END DO
       END DO

     ELSE IF ( isign > 0 ) THEN

       idir = 1
       tscale = 1.0_DP
       DO k = 0, nzl-1
! BACKWARD: nx FFTs in the Y direction
          kk = (k) * ldx * ldy
          DO i = 1, nx
             IF ( dofft(i) ) THEN
                DO j = 0, ny-1
                   XY(j+1) = r(i + (j) * ldx + kk)
                END DO
                CALL ZZFFT(idir, ny, 1.0_DP, XY, XY, tabley (1, ip),      &
                           work(1), isys)
                DO j = 0, ny-1
                   r(i + (j) * ldx + kk) = XY(j+1)
                END DO
             END IF
          END DO
! BACKWARD: ny FFTs in the X direction
          CALL ZZFFTM ( idir, nx, ny, tscale, r(kk+1), ldx, r(kk+1), ldx,   &
                        tablex (1, ip), work(1), isys )
       END DO

     END IF

#elif defined __SCSL

      IF( isign < 0 ) THEN

       idir = -1
       tscale = 1.0_DP / (nx * ny)
       DO k = 0, nzl-1
          kk = k * ldx * ldy
! FORWARD: ny FFTs in the X direction
          CALL ZZFFTM ( idir, nx, ny, tscale, r(kk+1), ldx, r(kk+1), ldx,   &
                        tablex (1, ip), work(1), isys )
! FORWARD: nx FFTs in the Y direction
          DO i = 1, nx
             IF ( dofft(i) ) THEN
!DIR$IVDEP
!DIR$LOOP COUNT (50)
                DO j = 0, ny-1
                   XY(j+1) = r(i + (j) * ldx + kk)
                END DO
                CALL ZZFFT(idir, ny, 1.0_DP, XY, XY, tabley (1, ip),      &
                           work(1), isys)
!DIR$IVDEP
!DIR$LOOP COUNT (50)
                DO j = 0, ny-1
                   r(i + (j) * ldx + kk) = XY(j+1)
                END DO
             END IF
          END DO
       END DO

     ELSE IF ( isign > 0 ) THEN

       idir = 1
       tscale = 1.0_DP
       DO k = 0, nzl-1
! BACKWARD: nx FFTs in the Y direction
          kk = (k) * ldx * ldy
          DO i = 1, nx
             IF ( dofft(i) ) THEN
!DIR$IVDEP
!DIR$LOOP COUNT (50)
                DO j = 0, ny-1
                   XY(j+1) = r(i + (j) * ldx + kk)
                END DO
                CALL ZZFFT(idir, ny, 1.0_DP, XY, XY, tabley (1, ip),      &
                           work(1), isys)
!DIR$IVDEP
!DIR$LOOP COUNT (50)
                DO j = 0, ny-1
                   r(i + (j) * ldx + kk) = XY(j+1)
                END DO
             END IF
          END DO
! BACKWARD: ny FFTs in the X direction
          CALL ZZFFTM ( idir, nx, ny, tscale, r(kk+1), ldx, r(kk+1), ldx,   &
                        tablex (1, ip), work(1), isys )
       END DO

     END IF

#elif defined __SUNPERF

     IF ( isign < 0 ) THEN

        DO k = 1, ny * nzl
           kk = 1 + ( k - 1 ) * ldx
           CALL zfftf ( nx, r (kk), tablex (1, ip) )
        END DO

        DO i = 1, nx
           IF ( dofft(i) ) THEN
              DO j = 1, nzl
                 kk = (j - 1) * ldx * ny + i
                 CALL ZCOPY (ny, r (kk), ldx, work, 1)
                 CALL zfftf (ny, work, tabley (1, ip) )
                 CALL ZCOPY (ny, work, 1, r (kk), ldx)
              END DO
           END IF
        END DO
        CALL ZDSCAL ( ldx * ny * nzl, 1.0_DP/(nx * ny), r, 1)

     ELSE IF (isign > 0) THEN

        DO i = 1, nx
           IF ( dofft(i) ) THEN
              DO j = 1, nzl
                 kk = (j - 1) * ldx * ny + i
                 CALL ZCOPY (ny, r (kk), ldx, work, 1)
                 CALL zfftb (ny, work, tabley (1, ip) )
                 CALL ZCOPY (ny, work, 1, r (kk), ldx)
              END DO
           END IF
        END DO

        DO k = 1, ny * nzl
           kk = 1 + ( k - 1 ) * ldx
           CALL zfftb ( nx, r (kk), tablex (1, ip) )
        END DO

     END IF

#else

     CALL errore(' cft_2xy ',' no scalar fft driver specified ', 1)

#endif

#if defined __FFT_CLOCKS
     CALL stop_clock( 'cft_2xy' )
#endif

     RETURN

   END SUBROUTINE cft_2xy


!
!=----------------------------------------------------------------------=!
!
!
!
!         3D scalar FFTs
!
!
!
!=----------------------------------------------------------------------=!
!

   SUBROUTINE cfft3d( f, nx, ny, nz, ldx, ldy, ldz, isign )

  !     driver routine for 3d complex fft of lengths nx, ny, nz
  !     input  :  f(ldx*ldy*ldz)  complex, transform is in-place
  !     ldx >= nx, ldy >= ny, ldz >= nz are the physical dimensions
  !     of the equivalent 3d array: f3d(ldx,ldy,ldz)
  !     (ldx>nx, ldy>ny, ldz>nz may be used on some architectures
  !      to reduce memory conflicts - not implemented for FFTW)
  !     isign > 0 : f(G) => f(R)   ; isign < 0 : f(R) => f(G)
  !
  !     Up to "ndims" initializations (for different combinations of input
  !     parameters nx,ny,nz) are stored and re-used if available

     IMPLICIT NONE

     INTEGER, INTENT(IN) :: nx, ny, nz, ldx, ldy, ldz, isign
     COMPLEX (DP) :: f(:)
     INTEGER :: i, k, j, err, idir, ip
     REAL(DP) :: tscale
     INTEGER, SAVE :: icurrent = 1
     INTEGER, SAVE :: dims(3,ndims) = -1

#if defined __FFTW || defined __FFTW3

     C_POINTER, save :: fw_plan(ndims) = 0
     C_POINTER, save :: bw_plan(ndims) = 0

#elif defined __SCSL

     INTEGER, PARAMETER :: ltabl = (2 * nfftx + 256)*3
     REAL (DP), SAVE :: table (ltabl, ndims)
     REAL (DP)       :: DUMMY
     INTEGER, SAVE :: isys(0:1) = (/ 1, 1 /)

#elif defined __SUNPERF

     INTEGER, PARAMETER :: ltabl = (4 * nfftx + 15)*3
     REAL (DP), SAVE :: table (ltabl, ndims)

#elif defined __SX6

     INTEGER, PARAMETER :: ltabl = 60
     INTEGER, PARAMETER :: lwork = 195+6*nfftx
     INTEGER, SAVE  :: iw0(ltabl, ndims)
     INTEGER :: k_off, kj_offset
     REAL (DP), SAVE :: auxp (lwork, ndims)
     ! not sure whether auxp is work space or not
     COMPLEX(DP), DIMENSION(:), ALLOCATABLE :: cw2
     COMPLEX (DP) :: f_out(size(f))

#  if defined ASL && defined MICRO
     INTEGER :: nbtasks
     COMMON/NEC_ASL_PARA/nbtasks
#  endif

#endif

     IF ( nx < 1 ) &
         call errore('cfft3d',' nx is less than 1 ', 1)
     IF ( ny < 1 ) &
         call errore('cfft3d',' ny is less than 1 ', 1)
     IF ( nz < 1 ) &
         call errore('cfft3',' nz is less than 1 ', 1)

#if defined __SX6
#  if defined ASL
       ALLOCATE (cw2(ldx*ldy*ldz))
       CALL zfc3cl (f(1), nx, ny, nz, ldx, ldy, ldz, err)
#  else
       ALLOCATE (cw2(6*ldx*ldy*ldz))
#  endif
#endif
     !
     !   Here initialize table only if necessary
     !
     ip = -1
     DO i = 1, ndims

       !   first check if there is already a table initialized
       !   for this combination of parameters

       IF ( ( nx == dims(1,i) ) .and. &
            ( ny == dims(2,i) ) .and. &
            ( nz == dims(3,i) ) ) THEN
         ip = i
         EXIT
       END IF
     END DO

     IF( ip == -1 ) THEN

       !   no table exist for these parameters
       !   initialize a new one


#if defined __FFTW
       IF ( nx /= ldx .or. ny /= ldy .or. nz /= ldz ) &
         call errore('cfft3','not implemented',1)

       IF( fw_plan(icurrent) /= 0 ) CALL DESTROY_PLAN_3D( fw_plan(icurrent) )
       IF( bw_plan(icurrent) /= 0 ) CALL DESTROY_PLAN_3D( bw_plan(icurrent) )
       idir = -1; CALL CREATE_PLAN_3D( fw_plan(icurrent), nx, ny, nz, idir)
       idir =  1; CALL CREATE_PLAN_3D( bw_plan(icurrent), nx, ny, nz, idir)

#elif defined __FFTW3

       IF ( nx /= ldx .or. ny /= ldy .or. nz /= ldz ) &
            call errore('cfft3','not implemented',3)
       IF( fw_plan(icurrent) /= 0 ) CALL dfftw_destroy_plan( fw_plan(icurrent) )
       IF( bw_plan(icurrent) /= 0 ) CALL dfftw_destroy_plan( bw_plan(icurrent) )
       idir = -1
       CALL dfftw_plan_dft_3d ( fw_plan(icurrent), nx, ny, nz, f(1:), &
            f(1:), idir, FFTW_PLAN_TYPE)
       idir =  1
       CALL dfftw_plan_dft_3d ( bw_plan(icurrent), nx, ny, nz, f(1:), &
            f(1:), idir, FFTW_PLAN_TYPE)

#elif defined __ESSL || defined __LINUX_ESSL

       ! no initialization for 3d FFT's from ESSL

#elif defined __SCSL

       CALL zzfft3d (0, nx, ny, nz, 0.0_DP, DUMMY, 1, 1, DUMMY, 1, 1, &
                     table(1,icurrent), work(1), isys)

#elif defined __SUNPERF

       CALL zfft3i ( nx, ny, nz, table (1,icurrent) )

#elif defined __SX6

#  if defined ASL
#    if defined MICRO
       CALL hfc3fb (nx,ny,nz, f(1) , ldx, ldy, ldz, 0, &
            iw0(1,icurrent), auxp(1,icurrent), cw2(1), nbtasks, err)
#    else
       CALL zfc3fb (nx,ny,nz, f(1), ldx, ldy, ldz, 0, &
             iw0(1,icurrent), auxp(1,icurrent), cw2(1), err)
#    endif
#  else
       ! for some reason the error variable is not set by this driver on NEC SX machines
       err = 0 
       CALL ZZFFT3D (0, nx,ny,nz, 1.0_DP, f(1), ldx, ldy, &
          &             f(1), ldx, ldy, auxp(1,icurrent), cw2(1), err)
#  endif

       IF (err /= 0) CALL errore('cfft3d','FFT init returned an error ', err)

#else

       CALL errore(' cfft3d ',' no scalar fft driver specified ', 1)

#endif

       dims(1,icurrent) = nx; dims(2,icurrent) = ny; dims(3,icurrent) = nz
       ip = icurrent
       icurrent = MOD( icurrent, ndims ) + 1

     END IF

     !
     !   Now perform the 3D FFT using the machine specific driver
     !

#if defined __FFTW
     IF( isign < 0 ) THEN
       call FFTW_INPLACE_DRV_3D( fw_plan(ip), 1, f(1), 1, 1 )
       tscale = 1.0_DP / DBLE( nx * ny * nz )
       call ZDSCAL( nx * ny * nz, tscale, f(1), 1)

     ELSE IF( isign > 0 ) THEN
       call FFTW_INPLACE_DRV_3D( bw_plan(ip), 1, f(1), 1, 1 )
     END IF

#elif defined __FFTW3

   IF( isign < 0 ) THEN
      call dfftw_execute_dft( fw_plan(ip), f(1:), f(1:))
      tscale = 1.0_DP / DBLE( nx * ny * nz )
      call ZDSCAL( nx * ny * nz, tscale, f(1), 1)

   ELSE IF( isign > 0 ) THEN

      call dfftw_execute_dft( bw_plan(ip), f(1:), f(1:))

   END IF

#elif defined __ESSL || defined __LINUX_ESSL

     IF ( isign < 0 ) THEN
       tscale = 1.0_DP / ( nx * ny * nz )
       idir = +1
     ELSE IF( isign > 0 ) THEN
       tscale = 1.0_DP
       idir = -1
     END IF

     IF( isign /= 0 ) CALL dcft3( f(1), ldx,ldx*ldy, f(1), ldx,ldx*ldy, &
          nx,ny,nz, idir, tscale, work(1), lwork)

#elif defined __SCSL

     IF ( isign /= 0 ) THEN
        IF ( isign < 0 ) THEN
           idir = -1
           tscale = 1.0_DP / DBLE( nx * ny * nz )
        ELSE IF ( isign > 0 ) THEN
           idir = 1
           tscale = 1.0_DP
        END IF
        CALL ZZFFT3D ( idir, nx, ny, nz, tscale, f(1), ldx, ldy,   &
                       f(1), ldx, ldy, table(1,ip), work(1), isys )
     END IF

#elif defined __SUNPERF

     IF( isign < 0 ) THEN
        CALL zfft3f ( nx, ny, nz, f(1), ldx, ldy, table(1,ip), ltabl )
        tscale = 1.0_DP / DBLE( nx * ny * nz )
        CALL ZDSCAL ( ldx*ldy*ldz, tscale, f(1), 1 )
     ELSE IF( isign > 0 ) THEN
        CALL zfft3b ( nx, ny, nz, f(1), ldx, ldy, table(1,ip), ltabl )
     ENDIF

#elif defined __SX6

#  if defined ASL
#    if defined MICRO
     CALL hfc3bf (nx,ny,nz, f(1), ldx,ldy, ldz, &
          -isign, iw0(1,ip), auxp(1,ip), cw2(1), nbtasks, err)
#    else
     CALL zfc3bf (nx,ny,nz, f(1), ldx,ldy, ldz, &
          -isign, iw0(1,ip), auxp(1,ip), cw2(1), err)
#    endif
     IF ( isign < 0) THEN
        tscale = 1.0_DP / DBLE( nx * ny * nz )
        call ZDSCAL( ldx * ldy * ldz, tscale, f(1), 1)
     END IF
#  else
     ! for some reason the error variable is not set by this driver on NEC SX machines
     err = 0 
     tscale = 1.0_DP
     IF ( isign < 0) THEN
        tscale = tscale / DBLE( nx * ny * nz )
     END IF
     CALL ZZFFT3D (isign, nx,ny,nz, tscale, f(1), ldx,ldy, &
          f_out(1), ldx,ldy, auxp(1,ip), cw2(1), err)
!$omp parallel do private(j,i,k_off,kj_offset)
     do k=1,nz
        k_off = (k-1)*ldx*ldy
        do j=1,ny
           kj_offset = (j-1)*ldx + k_off
           do i=1,nx
              f(i+kj_offset) = f_out(i+kj_offset)
           end do
        end do
     end do
!$omp end parallel do
#   endif
     IF (err /= 0) CALL errore('cfft3d','FFT returned an error ', err)
     DEALLOCATE(cw2)

#endif

     RETURN
   END SUBROUTINE cfft3d

!
!=----------------------------------------------------------------------=!
!
!
!
!         3D scalar FFTs,  but using sticks!
!
!
!
!=----------------------------------------------------------------------=!
!

SUBROUTINE cfft3ds (f, nx, ny, nz, ldx, ldy, ldz, isign, &
     do_fft_x, do_fft_y)
  !
  !     driver routine for 3d complex "reduced" fft - see cfft3d
  !     The 3D fft are computed only on lines and planes which have
  !     non zero elements. These lines and planes are defined by
  !     the two integer vectors do_fft_x(ldy*nz) and do_fft_y(nz)
  !     (1 = perform fft, 0 = do not perform fft)
  !     This routine is implemented only for fftw, essl, acml
  !     If not implemented, cfft3d is called instead
  !
  !----------------------------------------------------------------------
  !
  implicit none

  integer :: nx, ny, nz, ldx, ldy, ldz, isign
  !
  !   logical dimensions of the fft
  !   physical dimensions of the f array
  !   sign of the transformation

  complex(DP) :: f ( ldx * ldy * ldz )
  integer :: do_fft_x(:), do_fft_y(:)
  !
  integer :: m, incx1, incx2
  INTEGER :: i, k, j, err, idir, ip,  ii, jj
  REAL(DP) :: tscale
  INTEGER, SAVE :: icurrent = 1
  INTEGER, SAVE :: dims(3,ndims) = -1

#if defined __FFTW || __FFTW3

  C_POINTER, SAVE :: fw_plan ( 3, ndims ) = 0
  C_POINTER, SAVE :: bw_plan ( 3, ndims ) = 0

#elif defined __ESSL || defined __LINUX_ESSL

  INTEGER, PARAMETER :: ltabl = 20000 + 3 * nfftx
  REAL (DP), SAVE :: fw_table( ltabl, 3, ndims )
  REAL (DP), SAVE :: bw_table( ltabl, 3, ndims )

#else

  CALL cfft3d (f, nx, ny, nz, ldx, ldy, ldz, isign)
  RETURN

#endif

  tscale = 1.0_DP

  ! WRITE( stdout, fmt="('DEBUG cfft3ds :',6I6)") nx, ny, nz, ldx, ldy, ldz
  ! WRITE( stdout, fmt="('DEBUG cfft3ds :',24I2)") do_fft_x
  ! WRITE( stdout, fmt="('DEBUG cfft3ds :',24I2)") do_fft_y


  IF( ny /= ldy ) &
    CALL errore(' cfft3ds ', ' wrong dimensions: ny /= ldy ', 1 )

     ip = -1
     DO i = 1, ndims

       !   first check if there is already a table initialized
       !   for this combination of parameters

       IF( ( nx == dims(1,i) ) .and. ( ny == dims(2,i) ) .and. &
           ( nz == dims(3,i) ) ) THEN
         ip = i
         EXIT
       END IF

     END DO

     IF( ip == -1 ) THEN

       !   no table exist for these parameters
       !   initialize a new one

#if defined __FFTW

       IF( fw_plan( 1, icurrent) /= 0 ) CALL DESTROY_PLAN_1D( fw_plan( 1, icurrent) )
       IF( bw_plan( 1, icurrent) /= 0 ) CALL DESTROY_PLAN_1D( bw_plan( 1, icurrent) )
       IF( fw_plan( 2, icurrent) /= 0 ) CALL DESTROY_PLAN_1D( fw_plan( 2, icurrent) )
       IF( bw_plan( 2, icurrent) /= 0 ) CALL DESTROY_PLAN_1D( bw_plan( 2, icurrent) )
       IF( fw_plan( 3, icurrent) /= 0 ) CALL DESTROY_PLAN_1D( fw_plan( 3, icurrent) )
       IF( bw_plan( 3, icurrent) /= 0 ) CALL DESTROY_PLAN_1D( bw_plan( 3, icurrent) )
       idir = -1; CALL CREATE_PLAN_1D( fw_plan( 1, icurrent), nx, idir)
       idir =  1; CALL CREATE_PLAN_1D( bw_plan( 1, icurrent), nx, idir)
       idir = -1; CALL CREATE_PLAN_1D( fw_plan( 2, icurrent), ny, idir)
       idir =  1; CALL CREATE_PLAN_1D( bw_plan( 2, icurrent), ny, idir)
       idir = -1; CALL CREATE_PLAN_1D( fw_plan( 3, icurrent), nz, idir)
       idir =  1; CALL CREATE_PLAN_1D( bw_plan( 3, icurrent), nz, idir)

#elif defined __FFTW3
       IF( fw_plan( 1, icurrent) /= 0 ) &
            CALL dfftw_destroy_plan( fw_plan( 1, icurrent) )
       IF( bw_plan( 1, icurrent) /= 0 ) &
            CALL dfftw_destroy_plan( bw_plan( 1, icurrent) )
       IF( fw_plan( 2, icurrent) /= 0 ) &
            CALL dfftw_destroy_plan( fw_plan( 2, icurrent) )
       IF( bw_plan( 2, icurrent) /= 0 ) &
            CALL dfftw_destroy_plan( bw_plan( 2, icurrent) )
       IF( fw_plan( 3, icurrent) /= 0 ) &
            CALL dfftw_destroy_plan( fw_plan( 3, icurrent) )
       IF( bw_plan( 3, icurrent) /= 0 ) &
            CALL dfftw_destroy_plan( bw_plan( 3, icurrent) )
       idir = -1
       CALL dfftw_plan_many_dft( fw_plan( 1, icurrent), &
            1, nx, 1, f(1:), (/ldx, ldy, ldz/), 1, ldx, &
            f(1:), (/ldx, ldy, ldz/), 1, ldx, idir, FFTW_PLAN_TYPE)
       idir = 1
       CALL dfftw_plan_many_dft( bw_plan( 1, icurrent), &
            1, nx, 1, f(1:), (/ldx, ldy, ldz/), 1, ldx, &
            f(1:), (/ldx, ldy, ldz/), 1, ldx, idir, FFTW_PLAN_TYPE)
       idir = -1
       CALL dfftw_plan_many_dft( fw_plan( 2, icurrent), &
            1, ny, nx, f(1:), (/ldx, ldy, ldz/), ldx, 1, &
            f(1:), (/ldx, ldy, ldz/), ldx, 1, idir, FFTW_PLAN_TYPE)
       idir = 1
       CALL dfftw_plan_many_dft( bw_plan( 2, icurrent), &
            1, ny, nx, f(1:), (/ldx, ldy, ldz/), ldx, 1, &
            f(1:), (/ldx, ldy, ldz/), ldx, 1, idir, FFTW_PLAN_TYPE)
       idir = -1
       CALL dfftw_plan_many_dft( fw_plan( 3, icurrent), &
            1, nz, nx*ny, f(1:), (/ldx, ldy, ldz/), ldx*ldy, 1, &
            f(1:), (/ldx, ldy, ldz/), ldx*ldy, 1, idir, FFTW_PLAN_TYPE)
       idir = 1
       CALL dfftw_plan_many_dft( bw_plan( 3, icurrent), &
            1, nz, nx*ny, f(1:), (/ldx, ldy, ldz/), ldx*ldy, 1, &
            f(1:), (/ldx, ldy, ldz/), ldx*ldy, 1, idir, FFTW_PLAN_TYPE)

#elif defined __ESSL || defined __LINUX_ESSL
       !
       ! ESSL sign convention for fft's is the opposite of the "usual" one
       !
       tscale = 1.0_DP
       !  x - direction
       incx1 = 1; incx2 = ldx; m = 1
       CALL DCFT ( 1, f(1), incx1, incx2, f(1), incx1, incx2, nx, m,  1, 1.0_DP, &
          fw_table( 1, 1, icurrent), ltabl, work(1), lwork )
       CALL DCFT ( 1, f(1), incx1, incx2, f(1), incx1, incx2, nx, m, -1, 1.0_DP, &
          bw_table(1, 1, icurrent), ltabl, work(1), lwork )
       !  y - direction
       incx1 = ldx; incx2 = 1; m = nx;
       CALL DCFT ( 1, f(1), incx1, incx2, f(1), incx1, incx2, ny, m,  1, 1.0_DP, &
          fw_table( 1, 2, icurrent), ltabl, work(1), lwork )
       CALL DCFT ( 1, f(1), incx1, incx2, f(1), incx1, incx2, ny, m, -1, 1.0_DP, &
          bw_table(1, 2, icurrent), ltabl, work(1), lwork )
       !  z - direction
       incx1 = ldx * ldy; incx2 = 1; m = ldx * ny
       CALL DCFT ( 1, f(1), incx1, incx2, f(1), incx1, incx2, nz, m,  1, 1.0_DP, &
          fw_table(1, 3, icurrent), ltabl, work(1), lwork )
       CALL DCFT ( 1, f(1), incx1, incx2, f(1), incx1, incx2, nz, m, -1, 1.0_DP, &
          bw_table(1, 3, icurrent), ltabl, work(1), lwork )

#else

       CALL errore(' cfft3ds ',' no scalar fft driver specified ', 1)

#endif

       dims(1,icurrent) = nx; dims(2,icurrent) = ny; dims(3,icurrent) = nz
       ip = icurrent
       icurrent = MOD( icurrent, ndims ) + 1

     END IF


     IF ( isign > 0 ) THEN

        !
        !  i - direction ...
        !

        incx1 = 1;  incx2 = ldx;  m = 1

        do k = 1, nz
           do j = 1, ny
              jj = j + ( k - 1 ) * ldy
              ii = 1 + ldx * ( jj - 1 )
              if ( do_fft_x( jj ) == 1 ) THEN
#if defined __FFTW
                call FFTW_INPLACE_DRV_1D( bw_plan( 1, ip), m, f( ii ), incx1, incx2 )
#elif defined __FFTW3
                call dfftw_execute_dft( bw_plan( 1, ip), f( ii: ), f( ii: ) )
#elif defined __ESSL || defined __LINUX_ESSL
                call dcft (0, f (ii), incx1,incx2, f (ii), incx1,incx2, nx, m, &
                -isign, 1.0_DP, bw_table ( 1, 1,  ip ), ltabl, work( 1 ), lwork)
#else
                call errore(' cfft3ds ',' no scalar fft driver specified ', 2)
#endif
              endif
           enddo
        enddo

        !
        !  ... j-direction ...
        !

        incx1 = ldx;  incx2 = 1;  m = nx

        do k = 1, nz
           ii = 1 + ldx * ldy * ( k - 1 )
           if ( do_fft_y( k ) == 1 ) then
#if defined __FFTW
             call FFTW_INPLACE_DRV_1D( bw_plan( 2, ip), m, f( ii ), incx1, incx2 )
#elif defined __FFTW3
             call dfftw_execute_dft( bw_plan( 2, ip), f( ii: ), f( ii: ) )
#elif defined __ESSL || defined __LINUX_ESSL
             call dcft (0, f (ii), incx1, incx2, f (ii), incx1, incx2, nx, m, &
               -isign, 1.0_DP, bw_table ( 1, 2,  ip ), ltabl, work( 1 ), lwork)
#else
             call errore(' cfft3ds ',' no scalar fft driver specified ', 3)
#endif
           endif
        enddo

        !
        !     ... k-direction
        !

        incx1 = ldx * ldy;  incx2 = 1;  m = ldx * ny

#if defined __FFTW
        call FFTW_INPLACE_DRV_1D( bw_plan( 3, ip), m, f( 1 ), incx1, incx2 )
#elif defined __FFTW3
        call dfftw_execute_dft( bw_plan( 3, ip), f(1:), f(1:) )
#elif defined __ESSL || defined __LINUX_ESSL
        call dcft (0, f( 1 ), incx1, incx2, f( 1 ), incx1, incx2, nz, m, &
          -isign, 1.0_DP, bw_table ( 1, 3, ip ), ltabl, work( 1 ), lwork)
#endif

     ELSE

        !
        !     ... k-direction
        !

        incx1 = ldx * ny;  incx2 = 1;  m = ldx * ny

#if defined __FFTW
        call FFTW_INPLACE_DRV_1D( fw_plan( 3, ip), m, f( 1 ), incx1, incx2 )
#elif defined __FFTW3
        call dfftw_execute_dft( fw_plan( 3, ip), f(1:), f(1:) )
#elif defined __ESSL || defined __LINUX_ESSL
         call dcft (0, f( 1 ), incx1, incx2, f( 1 ), incx1, incx2, nz, m, &
          -isign, 1.0_DP, fw_table ( 1, 3, ip ), ltabl, work( 1 ), lwork)

#endif

        !
        !     ... j-direction ...
        !

        incx1 = ldx;  incx2 = 1;  m = nx

        do k = 1, nz
           ii = 1 + ldx * ldy * ( k - 1 )
           if ( do_fft_y ( k ) == 1 ) then
#if defined __FFTW
             call FFTW_INPLACE_DRV_1D( fw_plan( 2, ip), m, f( ii ), incx1, incx2 )
#elif defined __FFTW3
             call dfftw_execute_dft( fw_plan( 2, ip), f( ii: ), f( ii: ) )
#elif defined __ESSL || defined __LINUX_ESSL
             call dcft (0, f (ii), incx1, incx2, f (ii), incx1, incx2, ny, m, &
               -isign, 1.0_DP, fw_table ( 1, 2, ip ), ltabl, work( 1 ), lwork)
#else
             call errore(' cfft3ds ',' no scalar fft driver specified ', 4)
#endif
           endif
        enddo

        !
        !     i - direction ...
        !

        incx1 = 1;  incx2 = ldx;  m = 1

        do k = 1, nz
           do j = 1, ny
              jj = j + ( k - 1 ) * ldy
              ii = 1 + ldx * ( jj - 1 )
              if ( do_fft_x( jj ) == 1 ) then
#if defined __FFTW
                call FFTW_INPLACE_DRV_1D( fw_plan( 1, ip), m, f( ii ), incx1, incx2 )
#elif defined __FFTW3
                call dfftw_execute_dft( fw_plan( 1, ip), f( ii: ), f( ii: ) )
#elif defined __ESSL || defined __LINUX_ESSL
                call dcft (0, f (ii), incx1,incx2, f (ii), incx1,incx2, nx, m, &
                 -isign, 1.0_DP, fw_table ( 1, 1, ip ), ltabl, work( 1 ), lwork)
#else
                call errore(' cfft3ds ',' no scalar fft driver specified ', 5)
#endif
              endif
           enddo
        enddo

        call DSCAL (2 * ldx * ldy * nz, 1.0_DP/(nx * ny * nz), f(1), 1)

     END IF
     RETURN
   END SUBROUTINE cfft3ds

!
!=----------------------------------------------------------------------=!
!
!
!
!         3D parallel FFT on sub-grids
!
!
!
!=----------------------------------------------------------------------=!
!

   SUBROUTINE cft_b ( f, nx, ny, nz, ldx, ldy, ldz, imin3, imax3, sgn )

!     driver routine for 3d complex fft's on box grid, parallel case
!     fft along xy is done only on planes that correspond to dense grid
!     planes on the current processor, i.e. planes with imin3 <= nz <= imax3
!     implemented for essl, fftw, scsl, complib, only for sgn=1 (f(R) => f(G))
!     (beware: here the "essl" convention for the sign of the fft is used!)
!
      implicit none
      integer nx,ny,nz,ldx,ldy,ldz,imin3,imax3,sgn
      complex(dp) :: f(:)

      integer isign, naux, ibid, nplanes, nstart, k
      real(DP) :: tscale

      integer :: ip, i
      integer, save :: icurrent = 1
      integer, save :: dims( 4, ndims ) = -1

#if defined __FFTW || __FFTW3

      C_POINTER, save :: bw_planz(  ndims ) = 0
      C_POINTER, save :: bw_planx(  ndims ) = 0
      C_POINTER, save :: bw_plany(  ndims ) = 0
      C_POINTER, save :: bw_planxy( ndims ) = 0

#elif defined __ESSL || defined __LINUX_ESSL

      INTEGER, PARAMETER :: ltabl = 20000 + 3 * nfftx
      real(dp), save :: aux3( ltabl, ndims )
      real(dp), save :: aux2( ltabl, ndims )
      real(dp), save :: aux1( ltabl, ndims )

#elif defined __SCSL

     INTEGER, PARAMETER :: ltabl = 2 * nfftx + 256
     real(dp), save :: bw_coeffz( ltabl,  ndims )
     real(dp), save :: bw_coeffy( ltabl,  ndims )
     real(dp), save :: bw_coeffx( ltabl,  ndims )
     REAL(DP)    :: DUMMY
     INTEGER, SAVE :: isys(0:1) = (/ 1, 1 /)

#endif

      isign = -sgn
      tscale = 1.0_DP

      if ( isign > 0 ) then
         call errore('cft_b','not implemented',isign)
      end if
!
! 2d fft on xy planes - only needed planes are transformed
! note that all others are left in an unusable state
!
      nplanes = imax3 - imin3 + 1
      nstart  = ( imin3 - 1 ) * ldx * ldy + 1

      !
      !   Here initialize table only if necessary
      !

      ip = -1
      DO i = 1, ndims

        !   first check if there is already a table initialized
        !   for this combination of parameters

        IF ( ( nx == dims(1,i) ) .and. ( ny == dims(2,i) ) .and. &
             ( nz == dims(3,i) ) .and. ( nplanes == dims(4,i) ) ) THEN
           ip = i
           EXIT
        END IF

      END DO

      IF( ip == -1 ) THEN

        !   no table exist for these parameters
        !   initialize a new one

#if defined __FFTW

        if ( bw_planz(icurrent) /= 0 ) &
             call DESTROY_PLAN_1D( bw_planz(icurrent) )
        call CREATE_PLAN_1D( bw_planz(icurrent), nz, 1 )

        if ( bw_planx(icurrent) /= 0 ) &
             call DESTROY_PLAN_1D( bw_planx(icurrent) )
        call CREATE_PLAN_1D( bw_planx(icurrent), nx, 1 )

        if ( bw_plany(icurrent) /= 0 ) &
             call DESTROY_PLAN_1D( bw_plany(icurrent) )
        call CREATE_PLAN_1D( bw_plany(icurrent), ny, 1 )

        if ( bw_planxy(icurrent) /= 0 ) &
             call DESTROY_PLAN_2D( bw_planxy(icurrent) )
        call CREATE_PLAN_2D( bw_planxy(icurrent), nx, ny, 1 )
!
#elif defined __FFTW3

        if ( bw_planz(icurrent) /= 0 ) &
             call dfftw_destroy_plan(bw_planz(icurrent))
        call dfftw_plan_many_dft( bw_planz(icurrent), 1, nz, ldx*ldy, &
             f(1:), (/SIZE(f)/), ldx*ldy, 1, f(1:), (/SIZE(f)/), ldx*ldy, 1, &
             1, FFTW_PLAN_TYPE )

        if ( bw_planxy(icurrent) /= 0 ) &
             call dfftw_destroy_plan(bw_planxy(icurrent))
        call dfftw_plan_many_dft( bw_planxy(icurrent), 2, (/nx, ny/), nplanes,&
             f(nstart:),  (/ldx, ldy/), 1, ldx*ldy, f(nstart:), (/ldx, ldy/), &
             1, ldx*ldy, 1, FFTW_PLAN_TYPE )

#elif defined __ESSL || defined __LINUX_ESSL

         if( nz /= dims(3,icurrent) ) then
           call dcft( 1, f(1), ldx*ldy, 1, f(1), ldx*ldy, 1, nz, ldx*ldy, &
              isign, tscale, aux3(1,icurrent), ltabl, work(1), lwork)
         end if
         call dcft( 1, f(1), 1, ldx, f(1), 1, ldx, nx, ldy*nplanes, isign, &
              tscale, aux1(1,icurrent), ltabl, work(1), lwork)
         if( ny /= dims(2,icurrent) ) then
           call dcft( 1, f(1), ldx, 1, f(1), ldx, 1, ny, ldx, isign,    &
              tscale, aux2(1,icurrent), ltabl, work(1), lwork)
         end if

#elif defined __SCSL

         CALL ZZFFT (0, nz, 0.0_DP, DUMMY, 1, bw_coeffz(1, icurrent),    &
                     work(1), isys)
         CALL ZZFFT (0, ny, 0.0_DP, DUMMY, 1, bw_coeffy(1, icurrent),    &
                     work(1), isys)
         CALL ZZFFT (0, nx, 0.0_DP, DUMMY, 1, bw_coeffx(1, icurrent),    &
                     work(1), isys)

#else

        CALL errore(' cft_b ',' no scalar fft driver specified ', 1)

#endif

        dims(1,icurrent) = nx; dims(2,icurrent) = ny
        dims(3,icurrent) = nz; dims(4,icurrent) = nplanes
        ip = icurrent
        icurrent = MOD( icurrent, ndims ) + 1

      END IF


#if defined __FFTW

      !
      !  fft along Z
      !
      call FFTW_INPLACE_DRV_1D( bw_planz(ip), ldx*ldy, f(1), ldx*ldy, 1 )
      !
      !  fft along Y
      !  fft along X
      !
      do k = imin3, imax3
        call FFTW_INPLACE_DRV_1D( bw_plany(ip), nx, f((k-1)*ldx*ldy + 1), ldx, 1 )
        call FFTW_INPLACE_DRV_1D( bw_planx(ip), ny, f((k-1)*ldx*ldy + 1), 1, ldx )
      end do   

#elif defined __FFTW3

      call dfftw_execute_dft(bw_planz(ip), f(1:), f(1:))
      call dfftw_execute_dft(bw_planxy(ip), f(nstart:), f(nstart:))

#elif defined __ESSL || defined __LINUX_ESSL

      !   fft in the z-direction...

      call dcft( 0, f(1), ldx*ldy, 1, f(1), ldx*ldy, 1, nz, ldx*ldy, isign, &
           tscale, aux3(1,ip), ltabl, work(1), lwork)

      !   x-direction

      call dcft( 0, f(nstart), 1, ldx, f(nstart), 1, ldx, nx, ldy*nplanes, &
           isign, tscale, aux1(1,ip), ltabl, work(1), lwork)

      !   y-direction

      DO K = imin3, imax3
        nstart = ( k - 1 ) * ldx * ldy + 1
        call dcft( 0, f(nstart), ldx, 1, f(nstart), ldx, 1, ny, ldx, isign, &
             tscale, aux2(1,ip), ltabl, work(1), lwork)
      END DO

#elif defined __SCSL

      CALL ZZFFTMR (1, nz, ldx*ldy, tscale, f(1), ldx*ldy, f(1),        &
                     ldx*ldy, bw_coeffz(1, ip), work(1), isys)
      CALL ZZFFTM (1, nx, ldy*nplanes, tscale, f(nstart), ldx,          &
                    f(nstart), ldx, bw_coeffx(1, ip), work(1), isys)
      DO k = imin3, imax3
        nstart = ( k - 1 ) * ldx * ldy + 1
        CALL ZZFFTMR (1, ny, ldx, tscale, f(nstart), ldx, f(nstart),    &
                      ldx, bw_coeffy(1, ip), work(1), isys)

      END DO

#endif
     RETURN
   END SUBROUTINE cft_b

!
!=----------------------------------------------------------------------=!
!
!
!
!   3D parallel FFT on sub-grids, to be called inside OpenMP region
!
!
!
!=----------------------------------------------------------------------=!
!

   SUBROUTINE cft_b_omp_init ( nx, ny, nz )

!     driver routine for 3d complex fft's on box grid, init subroutine
!
      implicit none
      integer, INTENT(IN) :: nx,ny,nz
      !
      !   Here initialize table 
      !
#if defined __FFTW

!$omp single

      IF( cft_b_bw_planz  == 0 ) THEN
         CALL CREATE_PLAN_1D( cft_b_bw_planz, nz, 1 )
         cft_b_dims(3) = nz
      END IF
      IF( cft_b_bw_planx  == 0 ) THEN
         CALL CREATE_PLAN_1D( cft_b_bw_planx, nx, 1 )
         cft_b_dims(1) = nx
      END IF
      IF( cft_b_bw_plany  == 0 ) THEN
         CALL CREATE_PLAN_1D( cft_b_bw_plany, ny, 1 )
         cft_b_dims(2) = ny
      END IF

!$omp end single

#else

      CALL errore(' cft_b_omp_init ',' no scalar fft driver specified ', 1)

#endif

     RETURN
   END SUBROUTINE cft_b_omp_init


   SUBROUTINE cft_b_omp ( f, nx, ny, nz, ldx, ldy, ldz, imin3, imax3, sgn )

!     driver routine for 3d complex fft's on box grid, parallel (MPI+OpenMP) case
!     fft along xy is done only on planes that correspond to dense grid
!     planes on the current processor, i.e. planes with imin3 <= nz <= imax3
!     implemented ONLY for internal fftw, and only for sgn=1 (f(R) => f(G))
!     (beware: here the "essl" convention for the sign of the fft is used!)
!
!     This driver is meant for calls inside parallel OpenMP sections
!
      implicit none
      integer, INTENT(IN) :: nx,ny,nz,ldx,ldy,ldz,imin3,imax3,sgn
      complex(dp) :: f(:)

      INTEGER, SAVE :: k
!$omp threadprivate (k)

      if ( -sgn > 0 ) then
         CALL errore('cft_b_omp','forward transform not implemented',1)
      end if

#if defined __FFTW

      IF ( ( cft_b_bw_planz == 0 ) .or. ( cft_b_bw_planx == 0 ) .or. ( cft_b_bw_plany == 0 ) ) THEN
         CALL errore('cft_b_omp','plan not initialized',1)
      END IF

      !  consistency check

      IF ( ( nx /= cft_b_dims(1) ) .or. ( ny /= cft_b_dims(2) ) .or. ( nz /= cft_b_dims(3) ) ) THEN
         CALL errore('cft_b_omp', 'dimensions are inconsistent with the existing plan',1) 
      END IF

      !  fft along Z
      !
      call FFTW_INPLACE_DRV_1D( cft_b_bw_planz, ldx*ldy, f(1), ldx*ldy, 1 )
      !
      !  fft along Y
      !  fft along X
      !
      do k = imin3, imax3
        call FFTW_INPLACE_DRV_1D( cft_b_bw_plany, nx, f((k-1)*ldx*ldy + 1), ldx, 1 )
        call FFTW_INPLACE_DRV_1D( cft_b_bw_planx, ny, f((k-1)*ldx*ldy + 1), 1, ldx )
      end do   

#else

      CALL errore(' cft_b_omp ',' no scalar fft driver specified ', 1)

#endif

     RETURN
   END SUBROUTINE cft_b_omp


!
!=----------------------------------------------------------------------=!
!
!
!
!         FFT support Functions/Subroutines
!
!
!
!=----------------------------------------------------------------------=!
!

!
integer function good_fft_dimension (n)
  !
  ! Determines the optimal maximum dimensions of fft arrays
  ! Useful on some machines to avoid memory conflicts
  !
  USE kinds, only : DP
  IMPLICIT NONE
  INTEGER :: n, nx
  REAL(DP) :: log2n
  !
  ! this is the default: max dimension = fft dimension
  nx = n
  !
#if defined(__ESSL) || defined(__LINUX_ESSL)
  log2n = LOG ( dble (n) ) / LOG ( 2.0_DP )
  ! log2n is the logarithm of n in base 2
  IF ( ABS (NINT(log2n) - log2n) < 1.0d-8 ) nx = n + 1
  ! if n is a power of 2 (log2n is integer) increase dimension by 1
#elif defined(__SX6)
  !
  if (mod (n, 2) ==0) nx = n + 1
  ! for nec vector machines: if n is even increase dimension by 1
#endif
  !
  good_fft_dimension = nx
  return
end function good_fft_dimension


!=----------------------------------------------------------------------=!

function allowed (nr)


  ! find if the fft dimension is a good one
  ! a "bad one" is either not implemented (as on IBM with ESSL)
  ! or implemented but with awful performances (most other cases)

  USE kinds

  implicit none
  integer :: nr

  logical :: allowed
  integer :: pwr (5)
  integer :: mr, i, fac, p, maxpwr
  integer :: factors( 5 ) = (/ 2, 3, 5, 7, 11 /)

  ! find the factors of the fft dimension

  mr  = nr
  pwr = 0
  factors_loop: do i = 1, 5
     fac = factors (i)
     maxpwr = NINT ( LOG( DBLE (mr) ) / LOG( DBLE (fac) ) ) + 1
     do p = 1, maxpwr
        if ( mr == 1 ) EXIT factors_loop
        if ( MOD (mr, fac) == 0 ) then
           mr = mr / fac
           pwr (i) = pwr (i) + 1
        endif
     enddo
  end do factors_loop

  IF ( nr /= ( mr * 2**pwr (1) * 3**pwr (2) * 5**pwr (3) * 7**pwr (4) * 11**pwr (5) ) ) &
     CALL errore (' allowed ', ' what ?!? ', 1 )

  if ( mr /= 1 ) then

     ! fft dimension contains factors > 11 : no good in any case

     allowed = .false.

  else

#if defined __ESSL || defined __LINUX_ESSL

     ! IBM machines with essl libraries

     allowed =  ( pwr(1) >= 1 ) .and. ( pwr(2) <= 2 ) .and. ( pwr(3) <= 1 ) .and. &
                ( pwr(4) <= 1 ) .and. ( pwr(5) <= 1 ) .and. &
                ( ( (pwr(2) == 0 ) .and. ( pwr(3) + pwr(4) + pwr(5) ) <= 2 ) .or. &
                  ( (pwr(2) /= 0 ) .and. ( pwr(3) + pwr(4) + pwr(5) ) <= 1 ) )
#else

     ! fftw and all other cases: no factors 7 and 11

     allowed = ( ( pwr(4) == 0 ) .and. ( pwr(5) == 0 ) )

#endif

  endif

  return
end function allowed

!=----------------------------------------------------------------------=!

   INTEGER FUNCTION good_fft_order( nr, np )

!
!    This function find a "good" fft order value greater or equal to "nr"
!
!    nr  (input) tentative order n of a fft
!
!    np  (optional input) if present restrict the search of the order
!        in the ensamble of multiples of np
!
!    Output: the same if n is a good number
!         the closest higher number that is good
!         an fft order is not good if not implemented (as on IBM with ESSL)
!         or implemented but with awful performances (most other cases)
!

     IMPLICIT NONE
     INTEGER, INTENT(IN) :: nr
     INTEGER, OPTIONAL, INTENT(IN) :: np
     INTEGER :: new

     new = nr
     IF( PRESENT( np ) ) THEN
       DO WHILE( ( ( .NOT. allowed( new ) ) .OR. ( MOD( new, np ) /= 0 ) ) .AND. ( new <= nfftx ) )
         new = new + 1
       END DO
     ELSE
       DO WHILE( ( .NOT. allowed( new ) ) .AND. ( new <= nfftx ) )
         new = new + 1
       END DO
     END IF

     IF( new > nfftx ) &
       CALL errore( ' good_fft_order ', ' fft order too large ', new )

     good_fft_order = new

     RETURN
   END FUNCTION good_fft_order


!=----------------------------------------------------------------------=!
   END MODULE fft_scalar
!=----------------------------------------------------------------------=!