File: griddim.f90

package info (click to toggle)
espresso 5.1%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 146,004 kB
  • ctags: 17,245
  • sloc: f90: 253,041; sh: 51,271; ansic: 27,494; tcl: 15,570; xml: 14,508; makefile: 2,958; perl: 2,035; fortran: 1,924; python: 337; cpp: 200; awk: 57
file content (280 lines) | stat: -rw-r--r-- 9,839 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
!
! Copyright (C) 2002-2010 Quantum ESPRESSO group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!

!=----------------------------------------------------------------------------=!
   MODULE grid_subroutines
!=----------------------------------------------------------------------------=!

     ! This module contains subroutines that are related to grids 
     ! parameters

     USE kinds,     ONLY: DP
     USE fft_types, ONLY: fft_dlay_descriptor

     IMPLICIT NONE
     SAVE

     PRIVATE
     PUBLIC :: realspace_grids_init, realspace_grid_init_custom, realspace_grids_info

   CONTAINS


     SUBROUTINE realspace_grids_init( dfftp, dffts, at, bg, gcutm, gcuts )
       !
       USE fft_scalar, only: good_fft_dimension, good_fft_order
       USE io_global, only: stdout
       !
       IMPLICIT NONE
       !
       REAL(DP), INTENT(IN) :: at(3,3), bg(3,3)
       REAL(DP), INTENT(IN) :: gcutm, gcuts
       TYPE(fft_dlay_descriptor), INTENT(INOUT) :: dfftp, dffts
       !
       IF( dfftp%nr1 == 0 .OR. dfftp%nr2 == 0 .OR. dfftp%nr3 == 0 ) THEN
         !
         ! ... calculate the size of the real-space dense grid for FFT
         ! ... first, an estimate of nr1,nr2,nr3, based on the max values
         ! ... of n_i indices in:   G = i*b_1 + j*b_2 + k*b_3   
         ! ... We use G*a_i = n_i => n_i .le. |Gmax||a_i|
         !
         dfftp%nr1 = int ( sqrt (gcutm) * &
               sqrt (at(1, 1)**2 + at(2, 1)**2 + at(3, 1)**2) ) + 1
         dfftp%nr2 = int ( sqrt (gcutm) * &
               sqrt (at(1, 2)**2 + at(2, 2)**2 + at(3, 2)**2) ) + 1
         dfftp%nr3 = int ( sqrt (gcutm) * &
               sqrt (at(1, 3)**2 + at(2, 3)**2 + at(3, 3)**2) ) + 1
         !
         CALL grid_set( bg, gcutm, dfftp%nr1, dfftp%nr2, dfftp%nr3 )
         !
       ELSE
         WRITE( stdout, '( /, 3X,"Info: using nr1, nr2, nr3 values from input" )' )
       END IF

       dfftp%nr1 = good_fft_order( dfftp%nr1 )
       dfftp%nr2 = good_fft_order( dfftp%nr2 )
       dfftp%nr3 = good_fft_order( dfftp%nr3 )

       dfftp%nr1x  = good_fft_dimension( dfftp%nr1 )
       dfftp%nr2x  = dfftp%nr2
       dfftp%nr3x  = good_fft_dimension( dfftp%nr3 )

       ! ... As above, for the smooth grid

       IF( dffts%nr1 == 0 .OR. dffts%nr2 == 0 .OR. dffts%nr3 == 0 ) THEN
         !
         IF ( gcuts == gcutm ) THEN
            ! ... No double grid, the two grids are the same
            dffts%nr1 = dfftp%nr1 ; dffts%nr2 = dfftp%nr2 ; dffts%nr3 = dfftp%nr3
            dffts%nr1x= dfftp%nr1x; dffts%nr2x= dfftp%nr2x; dffts%nr3x= dfftp%nr3x
            RETURN
         END IF
         !
         dffts%nr1= int (2 * sqrt (gcuts) * &
               sqrt (at(1, 1)**2 + at(2, 1)**2 + at(3, 1)**2) ) + 1
         dffts%nr2= int (2 * sqrt (gcuts) * &
               sqrt (at(1, 2)**2 + at(2, 2)**2 + at(3, 2)**2) ) + 1
         dffts%nr3= int (2 * sqrt (gcuts) * &
               sqrt (at(1, 3)**2 + at(2, 3)**2 + at(3, 3)**2) ) + 1
         !
         CALL grid_set( bg, gcuts, dffts%nr1, dffts%nr2, dffts%nr3 )
         !
       ELSE
         WRITE( stdout, '( /, 3X,"Info: using nr1s, nr2s, nr3s values from input" )' )
       END IF

       dffts%nr1 = good_fft_order( dffts%nr1 )
       dffts%nr2 = good_fft_order( dffts%nr2 )
       dffts%nr3 = good_fft_order( dffts%nr3 )

       dffts%nr1x = good_fft_dimension(dffts%nr1)
       dffts%nr2x = dffts%nr2
       dffts%nr3x = good_fft_dimension(dffts%nr3)

       IF ( dffts%nr1 > dfftp%nr1 .or. dffts%nr2 > dfftp%nr2 .or. dffts%nr3 > dfftp%nr3 ) THEN
          CALL errore(' realspace_grids_init ', ' smooth grid larger than dense grid?',1)
       END IF

       RETURN

     END SUBROUTINE realspace_grids_init

!=----------------------------------------------------------------------------=!

     SUBROUTINE realspace_grid_init_custom( dfftp, at, bg, gcutm )
       !
       USE fft_scalar, only: good_fft_dimension, good_fft_order
       USE io_global, only: stdout
       !
       IMPLICIT NONE
       !
       REAL(DP), INTENT(IN) :: at(3,3), bg(3,3)
       REAL(DP), INTENT(IN) :: gcutm
       TYPE(fft_dlay_descriptor), INTENT(INOUT) :: dfftp
       !
       IF( dfftp%nr1 == 0 .OR. dfftp%nr2 == 0 .OR. dfftp%nr3 == 0 ) THEN
         !
         ! ... calculate the size of the real-space dense grid for FFT
         ! ... first, an estimate of nr1,nr2,nr3, based on the max values
         ! ... of n_i indices in:   G = i*b_1 + j*b_2 + k*b_3   
         ! ... We use G*a_i = n_i => n_i .le. |Gmax||a_i|
         !
         dfftp%nr1 = int ( sqrt (gcutm) * &
               sqrt (at(1, 1)**2 + at(2, 1)**2 + at(3, 1)**2) ) + 1
         dfftp%nr2 = int ( sqrt (gcutm) * &
               sqrt (at(1, 2)**2 + at(2, 2)**2 + at(3, 2)**2) ) + 1
         dfftp%nr3 = int ( sqrt (gcutm) * &
               sqrt (at(1, 3)**2 + at(2, 3)**2 + at(3, 3)**2) ) + 1
         !
         CALL grid_set( bg, gcutm, dfftp%nr1, dfftp%nr2, dfftp%nr3 )
         !
       ELSE
         WRITE( stdout, '( /, 3X,"Info: using nr1, nr2, nr3 values from input" )' )
       END IF

       dfftp%nr1 = good_fft_order( dfftp%nr1 )
       dfftp%nr2 = good_fft_order( dfftp%nr2 )
       dfftp%nr3 = good_fft_order( dfftp%nr3 )

       dfftp%nr1x  = good_fft_dimension( dfftp%nr1 )
       dfftp%nr2x  = dfftp%nr2
       dfftp%nr3x  = good_fft_dimension( dfftp%nr3 )

       RETURN

     END SUBROUTINE realspace_grid_init_custom

!=----------------------------------------------------------------------------=!

    SUBROUTINE realspace_grids_info ( dfftp, dffts, nproc_ )

      !  Print info on local and global dimensions for real space grids

      USE io_global, ONLY: ionode, stdout
      USE fft_types, ONLY: fft_dlay_descriptor

      IMPLICIT NONE

      TYPE(fft_dlay_descriptor), INTENT(IN) :: dfftp, dffts
      INTEGER, INTENT(IN) :: nproc_

      INTEGER :: i

      IF(ionode) THEN

        WRITE( stdout,*)
        WRITE( stdout,*) '  Real Mesh'
        WRITE( stdout,*) '  ---------'
        WRITE( stdout,1000) dfftp%nr1, dfftp%nr2, dfftp%nr3, dfftp%nr1, dfftp%nr2, dfftp%npl, 1, 1, nproc_
        WRITE( stdout,1010) dfftp%nr1x, dfftp%nr2x, dfftp%nr3x
        WRITE( stdout,1020) dfftp%nnr
        WRITE( stdout,*) '  Number of x-y planes for each processors: '
        WRITE( stdout, fmt = '( 3X, "nr3l = ", 10I5 )' ) &
           ( dfftp%npp( i ), i = 1, nproc_ )

        WRITE( stdout,*)
        WRITE( stdout,*) '  Smooth Real Mesh'
        WRITE( stdout,*) '  ----------------'
        WRITE( stdout,1000) dffts%nr1, dffts%nr2, dffts%nr3, dffts%nr1, dffts%nr2, dffts%npl,1,1, nproc_
        WRITE( stdout,1010) dffts%nr1x, dffts%nr2x, dffts%nr3x
        WRITE( stdout,1020) dffts%nnr
        WRITE( stdout,*) '  Number of x-y planes for each processors: '
        WRITE( stdout, fmt = '( 3X, "nr3sl = ", 10I5 )' ) &
           ( dffts%npp( i ), i = 1, nproc_ )

      END IF

1000  FORMAT(3X, &
         'Global Dimensions   Local  Dimensions   Processor Grid',/,3X, &
         '.X.   .Y.   .Z.     .X.   .Y.   .Z.     .X.   .Y.   .Z.',/, &
         3(1X,I5),2X,3(1X,I5),2X,3(1X,I5) )
1010  FORMAT(3X, 'Array leading dimensions ( nr1x, nr2x, nr3x )   = ', 3(1X,I5) )
1020  FORMAT(3X, 'Local number of cell to store the grid ( nrxx ) = ', 1X, I9 )

      RETURN
      END SUBROUTINE realspace_grids_info


   SUBROUTINE grid_set( bg, gcut, nr1, nr2, nr3 )

!  this routine returns in nr1, nr2, nr3 the minimal 3D real-space FFT 
!  grid required to fit the G-vector sphere with G^2 <= gcut
!  On input, nr1,nr2,nr3 must be set to values that match or exceed
!  the largest i,j,k (Miller) indices in G(i,j,k) = i*b1 + j*b2 + k*b3
!  ----------------------------------------------

! ... declare modules
      USE kinds, ONLY: DP
      USE mp, ONLY: mp_max, mp_min, mp_sum
      USE mp_images, ONLY: me_image, nproc_image,  intra_image_comm

      IMPLICIT NONE

! ... declare arguments
      INTEGER, INTENT(INOUT) :: nr1, nr2, nr3
      REAL(DP), INTENT(IN) :: bg(3,3), gcut

! ... declare other variables
      INTEGER :: i, j, k, nr, nb(3)
      REAL(DP) :: gsq, g(3)

!  ----------------------------------------------

      nb     = 0

! ... calculate moduli of G vectors and the range of indices where
! ... |G|^2 < gcut (in parallel whenever possible)

      DO k = -nr3, nr3
        !
        ! ... me_image = processor number, starting from 0
        !
        IF( MOD( k + nr3, nproc_image ) == me_image ) THEN
          DO j = -nr2, nr2
            DO i = -nr1, nr1

              g( 1 ) = DBLE(i)*bg(1,1) + DBLE(j)*bg(1,2) + DBLE(k)*bg(1,3)
              g( 2 ) = DBLE(i)*bg(2,1) + DBLE(j)*bg(2,2) + DBLE(k)*bg(2,3)
              g( 3 ) = DBLE(i)*bg(3,1) + DBLE(j)*bg(3,2) + DBLE(k)*bg(3,3)

! ...         calculate modulus

              gsq =  g( 1 )**2 + g( 2 )**2 + g( 3 )**2 

              IF( gsq < gcut ) THEN

! ...           calculate maximum index
                nb(1) = MAX( nb(1), ABS( i ) )
                nb(2) = MAX( nb(2), ABS( j ) )
                nb(3) = MAX( nb(3), ABS( k ) )
              END IF

            END DO
          END DO
        END IF
      END DO

      CALL mp_max( nb,  intra_image_comm )

! ... the size of the required (3-dimensional) matrix depends on the
! ... maximum indices. Note that the following choice is slightly
! ... "small": 2*nb+2 would be needed in order to guarantee that the
! ...  sphere in G-space never overlaps its periodic image

      nr1 = 2 * nb(1) + 1
      nr2 = 2 * nb(2) + 1
      nr3 = 2 * nb(3) + 1

      RETURN
   
   END SUBROUTINE grid_set

!=----------------------------------------------------------------------------=!
   END MODULE grid_subroutines
!=----------------------------------------------------------------------------=!