1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
|
!
! Copyright (C) 2002-2008 Quantum ESPRESSO group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!
!=----------------------------------------------------------------------------=!
!
MODULE input_parameters
!
!=----------------------------------------------------------------------------=!
!
! this module contains
! 1) the definitions of all input parameters
! (both those read from namelists and those read from cards)
! 2) the definitions of all namelists
! 3) routines that allocate data needed in input
! Note that all values are initialized, but the default values should be
! set in the appropriate routines contained in module "read_namelists"
! The documentation of input variables can be found in Doc/INPUT_PW.*
! (for pw.x) or in Doc/INPUT_CP (for cp.x)
! Originally written by Carlo Cavazzoni for FPMD
!
!=----------------------------------------------------------------------------=!
!
USE kinds, ONLY : DP
USE parameters, ONLY : nsx, lqmax
USE wannier_new,ONLY : wannier_data
!
IMPLICIT NONE
!
SAVE
!
!=----------------------------------------------------------------------------=!
! BEGIN manual
!
!
! * DESCRIPTION OF THE INPUT FILE
! (to be given as standard input)
!
! The input file has the following layout:
!
! &CONTROL
! control_parameter_1,
! control_parameter_2,
! .......
! control_parameter_Lastone
! /
! &SYSTEM
! sistem_parameter_1,
! sistem_parameter_2,
! .......
! sistem_parameter_Lastone
! /
! &ELECTRONS
! electrons_parameter_1,
! electrons_parameter_2,
! .......
! electrons_parameter_Lastone
! /
! &IONS
! ions_parameter_1,
! ions_parameter_2,
! .......
! ions_parameter_Lastone
! /
! &CELL
! cell_parameter_1,
! cell_parameter_2,
! .......
! cell_parameter_Lastone
! /
! ATOMIC_SPECIES
! slabel_1 mass_1 pseudo_file_1
! slabel_2 mass_2 pseudo_file_2
! .....
! ATOMIC_POSITIONS
! alabel_1 px_1 py_1 pz_1
! alabel_2 px_2 py_2 pz_2
! .....
! CARD_3
! ....
! CARD_N
!
! -- end of input file --
!
!=----------------------------------------------------------------------------=!
! CONTROL Namelist Input Parameters
!=----------------------------------------------------------------------------=!
!
CHARACTER(len=80) :: title = ' '
! a string describing the current job
CHARACTER(len=80) :: calculation = 'none'
! Specify the type of the simulation
! See below for allowed values
CHARACTER(len=80) :: calculation_allowed(15)
DATA calculation_allowed / 'scf', 'nscf', 'relax', 'md', 'cp', &
'vc-relax', 'vc-md', 'vc-cp', 'bands', 'neb', 'smd', 'cp-wf', &
'cp-wf-nscf','cp-wf-pbe0', 'pbe0-nscf'/ ! Lingzhu Kong
CHARACTER(len=80) :: verbosity = 'default'
! define the verbosity of the code output
CHARACTER(len=80) :: verbosity_allowed(6)
DATA verbosity_allowed / 'debug', 'high', 'medium', 'default', &
'low', 'minimal' /
CHARACTER(len=80) :: restart_mode = 'restart'
! specify how to start/restart the simulation
CHARACTER(len=80) :: restart_mode_allowed(3)
DATA restart_mode_allowed / 'from_scratch', 'restart', 'reset_counters' /
INTEGER :: nstep = 10
! number of simulation steps, see "restart_mode"
INTEGER :: iprint = 10
! number of steps/scf iterations between successive writings
! of relevant physical quantities to standard output
INTEGER :: isave = 100
! number of steps between successive savings of
! information needed to restart the run (see "ndr", "ndw")
! used only in CP
LOGICAL :: tstress = .true.
! .TRUE. calculate the stress tensor
! .FALSE. do not calculate the stress tensor
LOGICAL :: tprnfor = .true.
! .TRUE. calculate the atomic forces
! .FALSE. do not calculate the atomic forces
REAL(DP) :: dt = 1.0_DP
! time step for molecular dynamics simulation, in atomic units
! CP: 1 a.u. of time = 2.4189 * 10^-17 s, PW: twice that much
! Typical values for CP simulations are between 1 and 10 a.u.
! For Born-Oppenheimer simulations, larger values can be used,
! since it mostly depends only upon the mass of ions.
INTEGER :: ndr = 50
! Fortran unit from which the code reads the restart file
INTEGER :: ndw = 50
! Fortran unit to which the code writes the restart file
CHARACTER(len=256) :: outdir = './'
! specify the directory where the code opens output and restart
! files. When possible put this directory in the fastest available
! filesystem ( not NFS! )
CHARACTER(len=256) :: prefix = 'prefix'
! specify the prefix for the output file, if not specified the
! files are opened as standard fortran units.
CHARACTER(len=256) :: pseudo_dir = './'
! specify the directory containing the pseudopotentials
REAL(DP) :: refg = 0.05_DP
! Accurancy of the interpolation table, interval between
! table values in Rydberg
CHARACTER(len=256) :: wfcdir = 'undefined'
! scratch directory that is hopefully local to the node
! to store large, usually temporary files.
REAL(DP) :: max_seconds = 1.0E+7_DP
! smoothly terminate program after the specified number of seconds
! this parameter is typically used to prevent an hard kill from
! the queuing system.
REAL(DP) :: ekin_conv_thr = 1.0E-5_DP
! convergence criterion for electron minimization
! this criterion is met when "ekin < ekin_conv_thr"
! convergence is achieved when all criteria are met
REAL(DP) :: etot_conv_thr = 1.0E-4_DP
! convergence criterion for ion minimization
! this criterion is met when "etot(n+1)-etot(n) < etot_conv_thr",
! where "n" is the step index, "etot" the DFT energy
! convergence is achieved when all criteria are met
REAL(DP) :: forc_conv_thr = 1.0E-3_DP
! convergence criterion for ion minimization
! this criterion is met when "MAXVAL(fion) < forc_conv_thr",
! where fion are the atomic forces
! convergence is achieved when all criteria are met
CHARACTER(len=80) :: disk_io = 'default'
! Specify the amount of I/O activities
LOGICAL :: tefield = .false.
! if .TRUE. a sawtooth potential simulating a finite electric field
! is added to the local potential = only used in PW
LOGICAL :: tefield2 = .false.
! if .TRUE. a second finite electric field is added to the local potential
! only used in CP
LOGICAL :: lelfield = .false.
! if .TRUE. a static homogeneous electric field is present
! via the modern theory of polarizability - differs from tefield!
LOGICAL :: lorbm = .false.
! if .TRUE. an orbital magnetization is computed (Kubo terms)
LOGICAL :: dipfield = .false.
! if .TRUE. the dipole field is subtracted
! only used in PW for surface calculations
LOGICAL :: lberry = .false.
! if .TRUE., use modern theory of the polarization
LOGICAL :: lcalc_z2 = .false.
! if .TRUE., calculate Z2 without inversion symmetry
REAL(DP) :: z2_m_threshold = 0.8d0, z2_z_threshold = 0.05d0
! threshold for realizing the parallel transport gauge
INTEGER :: gdir = 0
! G-vector for polarization calculation ( related to lberry )
! only used in PW
INTEGER :: nppstr = 0
! number of k-points (parallel vector) ( related to lberry )
! only used in PW
INTEGER :: nberrycyc = 1
!number of covergence cycles on electric field
LOGICAL :: wf_collect = .false.
! This flag controls the way wavefunctions are stored to disk:
! .TRUE. collect wavefunctions from all processors, store them
! into a single restart file on a single processors
! .FALSE. do not collect wavefunctions, store them into distributed
! files
! Only for PW and only in the parallel case
INTEGER :: printwfc=1
! if <0 do nothing, if==0 print rho and fort.47, if == nband print band
LOGICAL :: saverho = .true.
! This flag controls the saving of charge density in CP codes:
! .TRUE. save charge density to restart dir
! .FALSE. do not save charge density
LOGICAL :: tabps = .false. ! for ab-initio pressure and/or surface
! calculations
LOGICAL :: lkpoint_dir = .true. ! opens a directory for each k point
LOGICAL :: use_wannier = .false. ! use or not Wannier functions
LOGICAL :: lecrpa = .FALSE.
! if true symmetry in scf run is neglected for RPA Ec calculation
!
LOGICAL :: tqmmm = .FALSE. ! QM/MM coupling. enabled if .true.
CHARACTER(len=256) :: vdw_table_name = ' '
CHARACTER(len=10) :: point_label_type='SC'
CHARACTER(len=80) :: memory = 'default'
! controls memory usage
CHARACTER(len=80) :: memory_allowed(3)
DATA memory_allowed / 'small', 'default', 'large' /
! if memory = 'small' then QE tries to use (when implemented) algorithms using less memory,
! even if they are slower than the default
! if memory = 'large' then QE tries to use (when implemented) algorithms using more memory
! to enhance performance.
NAMELIST / control / title, calculation, verbosity, restart_mode, &
nstep, iprint, isave, tstress, tprnfor, dt, ndr, ndw, outdir, &
prefix, wfcdir, max_seconds, ekin_conv_thr, etot_conv_thr, &
forc_conv_thr, pseudo_dir, disk_io, tefield, dipfield, lberry, &
gdir, nppstr, wf_collect, printwfc, lelfield, nberrycyc, refg, &
tefield2, saverho, tabps, lkpoint_dir, use_wannier, lecrpa, &
tqmmm, vdw_table_name, lorbm, memory, point_label_type, &
lcalc_z2, z2_m_threshold, z2_z_threshold
!
!=----------------------------------------------------------------------------=!
! SYSTEM Namelist Input Parameters
!=----------------------------------------------------------------------------=!
!
INTEGER :: ibrav = 14
! index of the the Bravais lattice
! Note: in variable cell CP molecular dynamics, usually one does
! not want to put constraints on the cell symmetries, thus
! ibrav = 14 is used
REAL(DP) :: celldm(6) = 0.0_DP
! dimensions of the cell (lattice parameters and angles)
REAL(DP) :: a = 0.0_DP
REAL(DP) :: c = 0.0_DP
REAL(DP) :: b = 0.0_DP
REAL(DP) :: cosab = 0.0_DP
REAL(DP) :: cosac = 0.0_DP
REAL(DP) :: cosbc = 0.0_DP
! Alternate definition of the cell - use either this or celldm
INTEGER :: nat = 0
! total number of atoms
INTEGER :: ntyp = 0
! number of atomic species
INTEGER :: nbnd = 0
! number of electronic states, this parameter is MANDATORY in CP
REAL(DP):: tot_charge = 0.0_DP
! total system charge
REAL(DP) :: tot_magnetization = -1.0_DP
! majority - minority spin.
! A value < 0 means unspecified
REAL(DP) :: ecutwfc = 0.0_DP
! energy cutoff for wave functions in k-space ( in Rydberg )
! this parameter is MANDATORY
REAL(DP) :: ecutrho = 0.0_DP
! energy cutoff for charge density in k-space ( in Rydberg )
! by default its value is "4 * ecutwfc"
INTEGER :: nr1 = 0
INTEGER :: nr2 = 0
INTEGER :: nr3 = 0
! dimensions of the real space grid for charge and potentials
! presently NOT used in CP
INTEGER :: nr1s = 0
INTEGER :: nr2s = 0
INTEGER :: nr3s = 0
! dimensions of the real space grid for wavefunctions
! presently NOT used in CP
INTEGER :: nr1b = 0
INTEGER :: nr2b = 0
INTEGER :: nr3b = 0
! dimensions of the "box" grid for Ultrasoft pseudopotentials
CHARACTER(len=80) :: occupations = 'fixed'
! select the way electronic states are filled
! See card 'OCCUPATIONS' if ocupations='from_input'
CHARACTER(len=80) :: smearing = 'gaussian'
! select the way electronic states are filled for metalic systems
REAL(DP) :: degauss = 0.0_DP
! parameter for the smearing functions - NOT used in CP
INTEGER :: nspin = 1
! number of spinors
! "nspin = 1" for LDA simulations
! "nspin = 2" for LSD simulations
! "nspin = 4" for NON COLLINEAR simulations
LOGICAL :: nosym = .true., noinv = .false.
! (do not) use symmetry, q => -q symmetry in k-point generation
LOGICAL :: nosym_evc = .false.
! if .true. use symmetry only to symmetrize k points
LOGICAL :: force_symmorphic = .false.
! if .true. disable fractionary translations (nonsymmorphic groups)
LOGICAL :: use_all_frac = .false.
! if .true. enable usage of all fractionary translations,
! disabling check if they are commensurate with FFT grid
REAL(DP) :: ecfixed = 0.0_DP, qcutz = 0.0_DP, q2sigma = 0.0_DP
! parameters for modified kinetic energy functional to be used
! in variable-cell constant cut-off simulations
CHARACTER(len=80) :: input_dft = 'none'
! Variable used to overwrite dft definition contained in
! pseudopotential files; 'none' means DFT is read from pseudos.
! Only used in PW - allowed values: any legal DFT value
REAL(DP) :: starting_magnetization( nsx ) = 0.0_DP
! ONLY PW
LOGICAL :: lda_plus_u = .false.
! Use DFT+U method - following are the needed parameters
INTEGER :: lda_plus_u_kind = 0
INTEGER, PARAMETER :: nspinx=2
REAL(DP) :: starting_ns_eigenvalue(lqmax,nspinx,nsx) = -1.0_DP
REAL(DP) :: hubbard_u(nsx) = 0.0_DP
REAL(DP) :: hubbard_j0(nsx) = 0.0_DP
REAL(DP) :: hubbard_j(3,nsx) = 0.0_DP
REAL(DP) :: hubbard_alpha(nsx) = 0.0_DP
REAL(DP) :: hubbard_beta(nsx) = 0.0_DP
CHARACTER(len=80) :: U_projection_type = 'atomic'
LOGICAL :: la2F = .false.
! For electron-phonon calculations
!
LOGICAL :: step_pen=.false.
REAL(DP) :: A_pen(10,nspinx) = 0.0_DP
REAL(DP) :: sigma_pen(10) = 0.01_DP
REAL(DP) :: alpha_pen(10) = 0.0_DP
! next group of variables PWSCF ONLY
!
!
REAL(DP) :: exx_fraction = -1.0_DP ! if negative, use defaults
REAL(DP) :: screening_parameter = -1.0_DP
INTEGER :: nqx1 = 0, nqx2 = 0, nqx3=0 ! use the same values as nk1, nk2, nk3
!gau-pbe in
REAL(DP) :: gau_parameter = -1.0_DP
!gau-pbe out
!
CHARACTER(len=80) :: exxdiv_treatment = 'gygi-baldereschi'
! define how ro cure the Coulomb divergence in EXX
! Allowed values are:
CHARACTER(len=80) :: exxdiv_treatment_allowed(6)
DATA exxdiv_treatment_allowed / 'gygi-baldereschi', 'gygi-bald', 'g-b',&
'vcut_ws', 'vcut_spherical', 'none' /
!
LOGICAL :: x_gamma_extrapolation = .true.
REAL(DP) :: yukawa = 0.0_DP
REAL(DP) :: ecutvcut = 0.0_DP
! auxiliary variables to define exxdiv treatment
LOGICAL :: adaptive_thr = .FALSE.
REAL(DP) :: conv_thr_init = 0.001_DP
REAL(DP) :: conv_thr_multi = 0.1_DP
REAL(DP) :: ecutfock = -1.d0
! parameters for external electric field
INTEGER :: edir = 0
REAL(DP) :: emaxpos = 0.0_DP
REAL(DP) :: eopreg = 0.0_DP
REAL(DP) :: eamp = 0.0_DP
! Various parameters for noncollinear calculations
LOGICAL :: noncolin = .false.
LOGICAL :: lspinorb = .false.
LOGICAL :: starting_spin_angle=.FALSE.
REAL(DP) :: lambda = 1.0_DP
REAL(DP) :: fixed_magnetization(3) = 0.0_DP
REAL(DP) :: angle1(nsx) = 0.0_DP
REAL(DP) :: angle2(nsx) = 0.0_DP
INTEGER :: report = 1
LOGICAL :: no_t_rev = .FALSE.
CHARACTER(len=80) :: constrained_magnetization = 'none'
REAL(DP) :: B_field(3) = 0.0_DP
! A fixed magnetic field defined by the vector B_field is added
! to the exchange and correlation magnetic field.
CHARACTER(len=80) :: sic = 'none'
! CP only - SIC correction (D'avezac Mauri)
! Parameters for SIC calculation
REAL(DP) :: sic_epsilon = 0.0_DP
REAL(DP) :: sic_alpha = 0.0_DP
LOGICAL :: force_pairing = .false.
LOGICAL :: spline_ps = .false.
! use spline interpolation for pseudopotential
LOGICAL :: one_atom_occupations=.false.
CHARACTER(len=80) :: assume_isolated = 'none'
! possible corrections for isolated systems:
! 'none', 'makov-payne', 'martyna-tuckerman', 'esm'
! plus ENVIRON-specific:
! 'slabx', 'slaby', 'slabz', 'pcc'
CHARACTER(len=80) :: vdw_corr = 'none'
! semi-empirical van der Waals corrections
! (not to be confused with nonlocal functionals,
! specified in input_dft!). Default is 'none', allowed values:
! 'dft-d' or 'grimme-d2' [S.Grimme, J.Comp.Chem. 27, 1787 (2006)]
! 'ts', 'ts-vdW', 'tkatchenko-scheffler'
! (Tkatchenko & Scheffler, Phys. Rev. Lett. 102, 073005 (2009))
! 'xdm' (Otero de la Roza and Johnson, J. Chem. Phys. 136 (2012) 174109)
LOGICAL :: london = .false.
! OBSOLESCENT: same as vdw_corr='grimme-d2'
! other DFT-D parameters ( see Modules/mm_dispersion.f90 )
! london_s6 = default global scaling parameter for PBE
REAL ( DP ) :: london_s6 = 0.75_DP , &
london_rcut = 200.00_DP
LOGICAL :: ts_vdw = .false.
! OBSOLESCENT: same as vdw_corr='Tkatchenko-Scheffler'
LOGICAL :: ts_vdw_isolated = .FALSE.
! if .TRUE., TS-vdW correction for isolated system
! if .FALSE., TS-vdW correction for periodic system
REAL(DP) :: ts_vdw_econv_thr = 1.0E-6_DP
! convergence criterion for TS-vdW energy for periodic system
!
LOGICAL :: xdm = .FALSE.
! OBSOLESCENT: same as vdw_corr='xdm'
REAL(DP) :: xdm_a1 = 0.6836_DP
REAL(DP) :: xdm_a2 = 1.5045_DP
! xdm_a1 and xdm_a2 -- parameters for the BJ damping function
! The default values are for the b86bpbe functional.
!
CHARACTER(LEN=3) :: esm_bc = 'pbc'
! 'pbc': ordinary calculation with periodic boundary conditions
! 'bc1': vacuum-slab-vacuum
! 'bc2': metal-slab-metal
! 'bc3': vacuum-slab-metal
REAL(DP) :: esm_efield = 0.0_DP
! applied electronic field [Ryd/a.u.] (used only for esm_bc='bc2')
REAL(DP) :: esm_w = 0.0_DP
! position of effective screening medium from z0=L_z/2 [a.u.]
! note: z1 is given by z1=z0+abs(esm_w)
INTEGER :: esm_nfit = 4
! number of z-grid points for polynomial fitting at cell edge
LOGICAL :: esm_debug = .FALSE.
! used to enable debug mode (output v_hartree and v_local)
INTEGER :: esm_debug_gpmax = 0
! if esm_debug is .TRUE., calcualte v_hartree and v_local
! for abs(gp)<=esm_debug_gpmax (gp is integer and has tpiba unit)
NAMELIST / system / ibrav, celldm, a, b, c, cosab, cosac, cosbc, nat, &
ntyp, nbnd, ecutwfc, ecutrho, nr1, nr2, nr3, nr1s, nr2s, &
nr3s, nr1b, nr2b, nr3b, nosym, nosym_evc, noinv, use_all_frac, &
force_symmorphic, starting_magnetization, &
occupations, degauss, nspin, ecfixed, &
qcutz, q2sigma, lda_plus_U, lda_plus_u_kind, &
Hubbard_U, Hubbard_J, Hubbard_alpha, &
Hubbard_J0, Hubbard_beta, &
edir, emaxpos, eopreg, eamp, smearing, starting_ns_eigenvalue, &
U_projection_type, input_dft, la2F, assume_isolated, &
nqx1, nqx2, nqx3, ecutfock, &
exxdiv_treatment, x_gamma_extrapolation, yukawa, ecutvcut, &
exx_fraction, screening_parameter, &
noncolin, lspinorb, starting_spin_angle, lambda, angle1, angle2, &
report, &
constrained_magnetization, B_field, fixed_magnetization, &
sic, sic_epsilon, force_pairing, sic_alpha, &
tot_charge, tot_magnetization, spline_ps, one_atom_occupations, &
vdw_corr, london, london_s6, london_rcut, &
ts_vdw, ts_vdw_isolated, ts_vdw_econv_thr, &
xdm, xdm_a1, xdm_a2, &
step_pen, A_pen, sigma_pen, alpha_pen, no_t_rev, &
esm_bc, esm_efield, esm_w, esm_nfit, esm_debug, esm_debug_gpmax
!=----------------------------------------------------------------------------=!
! ELECTRONS Namelist Input Parameters
!=----------------------------------------------------------------------------=!
REAL(DP) :: emass = 0.0_DP
! effective electron mass in the CP Lagrangian,
! in atomic units ( 1 a.u. of mass = 1/1822.9 a.m.u. = 9.10939 * 10^-31 kg )
! Typical values in CP simulation are between 100. and 1000.
REAL(DP) :: emass_cutoff = 0.0_DP
! mass cut-off (in Rydbergs) for the Fourier acceleration
! effective mass is rescaled for "G" vector components with kinetic
! energy above "emass_cutoff"
! Use a value grether than "ecutwfc" to disable Fourier acceleration.
CHARACTER(len=80) :: orthogonalization = 'ortho'
! orthogonalization = 'Gram-Schmidt' | 'ortho'*
! selects the orthonormalization method for electronic wave functions
! 'Gram-Schmidt' use Gram-Schmidt algorithm
! 'ortho' use iterative algorithm
REAL(DP) :: ortho_eps = 1.E-8_DP
! meaningful only if orthogonalization = 'ortho'
! tolerance for iterative orthonormalization,
! a value of 1.d-8 is usually sufficent
INTEGER :: ortho_max = 20
! meaningful only if orthogonalization = 'ortho'
! maximum number of iterations for orthonormalization
! usually between 15 and 30.
INTEGER :: electron_maxstep = 1000
! maximum number of steps in electronic minimization
! This parameter apply only when using 'cg' electronic or
! ionic dynamics
LOGICAL :: scf_must_converge = .true.
! stop or continue if SCF does not converge
CHARACTER(len=80) :: electron_dynamics = 'none'
! set how electrons should be moved
CHARACTER(len=80) :: electron_dynamics_allowed(6)
DATA electron_dynamics_allowed &
/ 'default', 'sd', 'cg', 'damp', 'verlet', 'none' /
REAL(DP) :: electron_damping = 0.0_DP
! meaningful only if " electron_dynamics = 'damp' "
! damping frequency times delta t, optimal values could be
! calculated with the formula
! sqrt(0.5*log((E1-E2)/(E2-E3)))
! where E1 E2 E3 are successive values of the DFT total energy
! in a steepest descent simulations
CHARACTER(len=80) :: electron_velocities = 'default'
! electron_velocities = 'zero' | 'default'*
! 'zero' restart setting electronic velocities to zero
! 'default' restart using electronic velocities of the previous run
CHARACTER(len=80) :: electron_temperature = 'not_controlled'
! electron_temperature = 'nose' | 'not_controlled'* | 'rescaling'
! 'nose' control electronic temperature using Nose thermostat
! see parameter "fnosee" and "ekincw"
! 'rescaling' control electronic temperature via velocities rescaling
! 'not_controlled' electronic temperature is not controlled
REAL(DP) :: ekincw = 0.0_DP
! meaningful only with "electron_temperature /= 'not_controlled' "
! value of the average kinetic energy (in atomic units) forced
! by the temperature control
REAL(DP) :: fnosee = 0.0_DP
! meaningful only with "electron_temperature = 'nose' "
! oscillation frequency of the nose thermostat (in terahertz)
CHARACTER(len=80) :: startingwfc = 'random'
! startingwfc = 'atomic' | 'atomic+random' | 'random' | 'file'
! define how the code should initialize the wave function
! 'atomic' start from superposition of atomic wave functions
! 'atomic+random' as above, plus randomization
! 'random' start from random wave functions
! 'file' read wavefunctions from file
REAL(DP) :: ampre = 0.0_DP
! meaningful only if "startingwfc = 'random'", amplitude of the
! randomization ( allowed values: 0.0 - 1.0 )
REAL(DP) :: grease = 0.0_DP
! a number <= 1, very close to 1: the damping in electronic
! damped dynamics is multiplied at each time step by "grease"
! (avoids overdamping close to convergence: Obsolete ?)
! grease = 1 : normal damped dynamics
! used only in CP
INTEGER :: diis_size = 0
! meaningful only with " electron_dynamics = 'diis' "
! size of the matrix used for the inversion in the iterative subspace
! default is 4, allowed value 1-5
INTEGER :: diis_nreset = 0
! meaningful only with " electron_dynamics = 'diis' "
! number of steepest descendent step after a reset of the diis
! iteration, default value is 3
REAL(DP) :: diis_hcut = 0.0_DP
! meaningful only with " electron_dynamics = 'diis' "
! energy cutoff (a.u.), above which an approximate diagonal
! hamiltonian is used in finding the direction to the minimum
! default is "1.0"
REAL(DP) :: diis_wthr = 1.E-4_DP
! meaningful only with " electron_dynamics = 'diis' "
! convergence threshold for wave function
! this criterion is satisfied when the maximum change
! in the wave functions component between two diis steps
! is less than this threshold
! default value is ekin_conv_thr
REAL(DP) :: diis_delt = 1.0_DP
! meaningful only with " electron_dynamics = 'diis' "
! electronic time step used in the steepest descendent step
! default is "dt"
INTEGER :: diis_maxstep = 100
! meaningful only with " electron_dynamics = 'diis' "
! maximum number of iteration in the diis minimization
! default is electron_maxstep
LOGICAL :: diis_rot = .false.
! meaningful only with " electron_dynamics = 'diis' "
! if "diis_rot = .TRUE." enable diis with charge mixing and rotations
! default is "diis_rot = .FALSE."
REAL(DP) :: diis_fthr = 1.E-3_DP
! meaningful only with "electron_dynamics='diis' " and "diis_rot=.TRUE."
! convergence threshold for ionic force
! this criterion is satisfied when the maximum change
! in the atomic force between two diis steps
! is less than this threshold
! default value is "0.0"
REAL(DP) :: diis_temp = 0.0_DP
! meaningful only with "electron_dynamics='diis' " and "diis_rot=.TRUE."
! electronic temperature, significant only if ???
REAL(DP) :: diis_achmix = 0.0_DP
! meaningful only with "electron_dynamics='diis' " and "diis_rot=.TRUE."
! "A" parameter in the charge mixing formula
! chmix = A * G^2 / (G^2 + G0^2) , G represents reciprocal lattice vectors
REAL(DP) :: diis_g0chmix = 0.0_DP
! meaningful only with "electron_dynamics='diis' " and "diis_rot=.TRUE."
! "G0^2" parameter in the charge mixing formula
INTEGER :: diis_nchmix = 0
! meaningful only with "electron_dynamics='diis' " and "diis_rot=.TRUE."
! dimension of the charge mixing
REAL(DP) :: diis_g1chmix = 0.0_DP
! meaningful only with "electron_dynamics='diis' " and "diis_rot=.TRUE."
! "G1^2" parameter in the charge mixing formula
! metric = (G^2 + G1^2) / G^2 , G represents reciprocal lattice vectors
INTEGER :: diis_nrot(3) = 0
! meaningful only with "electron_dynamics='diis' " and "diis_rot=.TRUE."
! start upgrading the charge density every "diis_nrot(1)" steps,
! then every "diis_nrot(2)", and at the end every "diis_nrot(3)",
! depending on "diis_rothr"
REAL(DP) :: diis_rothr(3) = 1.E-4_DP
! meaningful only with "electron_dynamics='diis' " and "diis_rot=.TRUE."
! threshold on the charge difference between two diis step
! when max charge difference is less than "diis_rothr(1)", switch
! between the "diis_nrot(1)" upgrade frequency to "diis_nrot(2)",
! then when the max charge difference is less than "diis_rothr(2)",
! switch between "diis_nrot(2)" and "diis_nrot(3)", upgrade frequency,
! finally when the max charge difference is less than "diis_nrot(3)"
! convergence is achieved
REAL(DP) :: diis_ethr = 1.E-4_DP
! meaningful only with "electron_dynamics='diis' " and "diis_rot=.TRUE."
! convergence threshold for energy
! this criterion is satisfied when the change
! in the energy between two diis steps
! is less than this threshold
! default value is etot_conv_thr
LOGICAL :: diis_chguess = .false.
! meaningful only with "electron_dynamics='diis' " and "diis_rot=.TRUE."
! if "diis_chguess = .TRUE." enable charge density guess
! between two diis step, defaut value is "diis_chguess = .FALSE."
CHARACTER(len=80) :: mixing_mode = 'default'
! type of mixing algorithm for charge self-consistency
! used only in PWscf
REAL(DP) :: mixing_beta = 0.0_DP
! parameter for mixing algorithm
! used only in PWscf
INTEGER :: mixing_ndim = 0
! dimension of mixing subspace
! used only in PWscf
CHARACTER(len=80) :: diagonalization = 'david'
! diagonalization = 'david' or 'cg'
! algorithm used by PWscf for iterative diagonalization
REAL(DP) :: diago_thr_init = 0.0_DP
! convergence threshold for the first iterative diagonalization.
! used only in PWscf
INTEGER :: diago_cg_maxiter = 100
! max number of iterations for the first iterative diagonalization
! using conjugate-gradient algorithm - used only in PWscf
INTEGER :: diago_david_ndim = 4
! dimension of the subspace used in Davidson diagonalization
! used only in PWscf
LOGICAL :: diago_full_acc = .false.
REAL(DP) :: conv_thr = 1.E-6_DP
! convergence threshold in electronic ONLY minimizations
! used only in PWscf
INTEGER :: mixing_fixed_ns = 0
! For DFT+U calculations, PWscf only
CHARACTER(len=80) :: startingpot = 'potfile'
! specify the file containing the DFT potential of the system
! used only in PWscf
INTEGER :: n_inner = 2
! number of inner loop per CG iteration.
! used only in CP
INTEGER :: niter_cold_restart = 1
!frequency of full cold smearing inner cycle (in iterations)
REAL(DP) :: lambda_cold
!step for not complete cold smearing inner cycle
LOGICAL :: tgrand = .false.
! whether to do grand-canonical calculations.
REAL(DP) :: fermi_energy = 0.0_DP
! chemical potential of the grand-canonical ensemble.
CHARACTER(len=80) :: rotation_dynamics = "line-minimization"
! evolution the rotational degrees of freedom.
CHARACTER(len=80) :: occupation_dynamics = "line-minimization"
! evolution of the occupational degrees of freedom.
REAL(DP) :: rotmass = 0
! mass for the rotational degrees of freedom.
REAL(DP) :: occmass = 0
! mass for the occupational degrees of freedom.
REAL(DP) :: occupation_damping = 0
! damping for the rotational degrees of freedom.
REAL(DP) :: rotation_damping = 0
! damping for the occupational degrees of freedom.
LOGICAL :: tcg = .true.
! if true perform in cpv conjugate gradient minimization of electron energy
INTEGER :: maxiter = 100
! max number of conjugate gradient iterations
REAL(DP) :: etresh =1.0E-7_DP
! treshhold on energy
REAL(DP) :: passop =0.3_DP
! small step for parabolic interpolation
INTEGER :: niter_cg_restart
!frequency of restart for the conjugate gradient algorithm in iterations
INTEGER :: epol = 3
! electric field direction
REAL(DP) :: efield =0.0_DP
! electric field intensity in atomic units
! real_space routines for US pps
LOGICAL :: real_space = .false.
REAL(DP) :: efield_cart(3)
! electric field vector in cartesian system of reference
INTEGER :: epol2 = 3
! electric field direction
REAL(DP) :: efield2 =0.0_DP
! electric field intensity in atomic units
LOGICAL :: tqr = .false.
! US contributions are added in real space
LOGICAL :: occupation_constraints = .false.
! If true perform CP dynamics with constrained occupations
! to be used together with penalty functional ...
NAMELIST / electrons / emass, emass_cutoff, orthogonalization, &
electron_maxstep, scf_must_converge, ortho_eps, ortho_max, electron_dynamics, &
electron_damping, electron_velocities, electron_temperature, &
ekincw, fnosee, ampre, grease, &
diis_size, diis_nreset, diis_hcut, &
diis_wthr, diis_delt, diis_maxstep, diis_rot, diis_fthr, &
diis_temp, diis_achmix, diis_g0chmix, diis_g1chmix, &
diis_nchmix, diis_nrot, diis_rothr, diis_ethr, diis_chguess, &
mixing_mode, mixing_beta, mixing_ndim, mixing_fixed_ns, &
tqr, diago_cg_maxiter, diago_david_ndim, diagonalization , &
startingpot, startingwfc , conv_thr, &
adaptive_thr, conv_thr_init, conv_thr_multi, &
diago_thr_init, n_inner, fermi_energy, rotmass, occmass, &
rotation_damping, occupation_damping, rotation_dynamics, &
occupation_dynamics, tcg, maxiter, etresh, passop, epol, &
efield, epol2, efield2, diago_full_acc, &
occupation_constraints, niter_cg_restart, &
niter_cold_restart, lambda_cold, efield_cart, real_space
!
!=----------------------------------------------------------------------------=!
! IONS Namelist Input Parameters
!=----------------------------------------------------------------------------=!
!
CHARACTER(len=80) :: phase_space = 'full'
! phase_space = 'full' | 'coarse-grained'
! 'full' the full phase-space is used for the ionic
! dynamics
! 'coarse-grained' a coarse-grained phase-space, defined by a set
! of constraints, is used for the ionic dynamics
! CHARACTER(len=80) :: phase_space_allowed(2)
! DATA phase_space_allowed / 'full', 'coarse-grained' /
CHARACTER(len=80) :: phase_space_allowed(1)
DATA phase_space_allowed / 'full' /
CHARACTER(len=80) :: ion_dynamics = 'none'
! set how ions should be moved
CHARACTER(len=80) :: ion_dynamics_allowed(9)
DATA ion_dynamics_allowed / 'none', 'sd', 'cg', 'langevin', &
'damp', 'verlet', 'bfgs', 'beeman',&
'langevin-smc' /
REAL(DP) :: ion_radius(nsx) = 0.5_DP
! pseudo-atomic radius of the i-th atomic species
! (for Ewald summation), values between 0.5 and 2.0 are usually used.
REAL(DP) :: ion_damping = 0.2_DP
! meaningful only if " ion_dynamics = 'damp' "
! damping frequency times delta t, optimal values could be
! calculated with the formula
! sqrt(0.5*log((E1-E2)/(E2-E3)))
! where E1 E2 E3 are successive values of the DFT total energy
! in a ionic steepest descent simulation
CHARACTER(len=80) :: ion_positions = 'default'
! ion_positions = 'default'* | 'from_input'
! 'default' restart the simulation with atomic positions read
! from the restart file
! 'from_input' restart the simulation with atomic positions read
! from standard input ( see the card 'ATOMIC_POSITIONS' )
CHARACTER(len=80) :: ion_velocities = 'default'
! ion_velocities = 'zero' | 'default'* | 'random' | 'from_input'
! 'default' restart the simulation with atomic velocities read
! from the restart file
! 'random' start the simulation with random atomic velocities
! 'from_input' restart the simulation with atomic velocities read
! from standard input (see the card 'ATOMIC_VELOCITIES' )
! 'zero' restart the simulation with atomic velocities set to zero
CHARACTER(len=80) :: ion_temperature = 'not_controlled'
! ion_temperature = 'nose' | 'not_controlled'* | 'rescaling' |
! 'berendsen' | 'andersen' | 'rescale-v' | 'rescale-T' | 'reduce-T'
!
! 'nose' control ionic temperature using Nose thermostat
! see parameters "fnosep" and "tempw"
! 'rescaling' control ionic temperature via velocity rescaling
! see parameters "tempw" and "tolp"
! 'rescale-v' control ionic temperature via velocity rescaling
! see parameters "tempw" and "nraise"
! 'rescale-T' control ionic temperature via velocity rescaling
! see parameter "delta_t"
! 'reduce-T' reduce ionic temperature
! see parameters "nraise", delta_t"
! 'berendsen' control ionic temperature using "soft" velocity
! rescaling - see parameters "tempw" and "nraise"
! 'andersen' control ionic temperature using Andersen thermostat
! see parameters "tempw" and "nraise"
! 'not_controlled' ionic temperature is not controlled
REAL(DP) :: tempw = 300.0_DP
! meaningful only with "ion_temperature /= 'not_controlled' "
! value of the ionic temperature (in Kelvin) forced
! by the temperature control
INTEGER, PARAMETER :: nhclm = 4
REAL(DP) :: fnosep( nhclm ) = 50.0_DP
! meaningful only with "ion_temperature = 'nose' "
! oscillation frequency of the nose thermostat (in terahertz)
! nhclm is the max length for the chain; it can be easily increased
! since the restart file should be able to handle it
! perhaps better to align nhclm by 4
INTEGER :: nhpcl = 0
! non-zero only with "ion_temperature = 'nose' "
! this defines the length of the Nose-Hoover chain
INTEGER :: nhptyp = 0
! this parameter set the nose hoover thermostat to more than one
INTEGER :: nhgrp(nsx)=0
! this is the array to assign thermostats to atomic types
! allows to use various thermostat setups
INTEGER :: ndega = 0
! this is the parameter to control active degrees of freedom
! used for temperature control and the Nose-Hoover chains
REAL(DP) :: tolp = 50.0_DP
! meaningful only with "ion_temperature = 'rescaling' "
! tolerance (in Kelvin) of the rescaling. When ionic temperature
! differs from "tempw" more than "tolp" apply rescaling.
REAL(DP) :: fnhscl(nsx)=-1.0_DP
! this is to scale the target energy, in case there are constraints
! the dimension is the same as nhgrp, meaning that atomic type
! i with a group nhgrp(i) is scaled by fnhscl(i)
LOGICAL :: tranp(nsx) = .false.
! tranp(i) control the randomization of the i-th atomic specie
! .TRUE. randomize ionic positions ( see "amprp" )
! .FALSE. do nothing
REAL(DP) :: amprp(nsx) = 0.0_DP
! amprp(i) meaningful only if "tranp(i) = .TRUE.", amplitude of the
! randomization ( allowed values: 0.0 - 1.0 ) for the i-th atomic specie.
! Add to the positions a random displacements vector ( in bohr radius )
! defined as: amprp( i ) * ( X, Y, Z )
! where X, Y, Z are pseudo random number in the interval [ -0.5 , 0.5 ]
REAL(DP) :: greasp = 0.0_DP
! same as "grease", for ionic damped dynamics
! NOT used in FPMD
INTEGER :: ion_nstepe = 1
! number of electronic steps for each ionic step
INTEGER :: ion_maxstep = 1000
! maximum number of step in ionic minimization
REAL(DP) :: upscale = 100.0_DP
! Max reduction allowed in scf threshold during optimization
CHARACTER(len=80) :: pot_extrapolation = 'default', &
wfc_extrapolation = 'default'
! These variables are used only by PWSCF
LOGICAL :: refold_pos
LOGICAL :: remove_rigid_rot = .false.
!
! ... delta_T, nraise, tolp are used to change temperature in PWscf
!
REAL(DP) :: delta_t = 1.0_DP
INTEGER :: nraise = 1
!
! ... variables added for new BFGS algorithm
!
INTEGER :: bfgs_ndim = 1
REAL(DP) :: trust_radius_max = 0.8_DP
REAL(DP) :: trust_radius_min = 1.E-3_DP
REAL(DP) :: trust_radius_ini = 0.5_DP
REAL(DP) :: w_1 = 0.5E-1_DP
REAL(DP) :: w_2 = 0.5_DP
REAL(DP) :: sic_rloc = 0.0_DP
!
! ... variable for meta-dynamics
!
INTEGER, PARAMETER :: max_nconstr = 100
INTEGER :: fe_nstep = 100
INTEGER :: sw_nstep = 10
INTEGER :: eq_nstep = 0
REAL(DP) :: g_amplitude = 0.005_DP
!
REAL(DP) :: fe_step( max_nconstr ) = 0.4_DP
!
NAMELIST / ions / phase_space, ion_dynamics, ion_radius, ion_damping, &
ion_positions, ion_velocities, ion_temperature, &
tempw, fnosep, nhgrp, fnhscl, nhpcl, nhptyp, ndega, tranp, &
amprp, greasp, tolp, ion_nstepe, ion_maxstep, &
refold_pos, upscale, delta_t, pot_extrapolation, &
wfc_extrapolation, nraise, remove_rigid_rot, &
trust_radius_max, trust_radius_min, &
trust_radius_ini, w_1, w_2, bfgs_ndim, sic_rloc, &
fe_step, fe_nstep, sw_nstep, eq_nstep, g_amplitude
!=----------------------------------------------------------------------------=!
! CELL Namelist Input Parameters
!=----------------------------------------------------------------------------=!
!
CHARACTER(len=80) :: cell_parameters = 'default'
! cell_parameters = 'default'* | 'from_input'
! 'default' restart the simulation with cell parameters read
! from the restart file or "celldm" if
! "restart = 'from_scratch'"
! 'from_input' restart the simulation with cell parameters
! from standard input ( see the card 'CELL_PARAMETERS' )
CHARACTER(len=80) :: cell_dynamics = 'none'
! set how the cell should be moved
CHARACTER(len=80) :: cell_dynamics_allowed(7)
DATA cell_dynamics_allowed / 'sd', 'pr', 'none', 'w', 'damp-pr', &
'damp-w', 'bfgs' /
CHARACTER(len=80) :: cell_velocities = 'default'
! cell_velocities = 'zero' | 'default'*
! 'zero' restart setting cell velocitiy to zero
! 'default' restart using cell velocity of the previous run
REAL(DP) :: press = 0.0_DP
! external pressure (in GPa, remember 1 kbar = 10^8 Pa)
REAL(DP) :: wmass = 0.0_DP
! effective cell mass in the Parrinello-Rahman Lagrangian (in atomic units)
! of the order of magnitude of the total atomic mass
! (sum of the mass of the atoms) within the simulation cell.
! if you do not specify this parameters, the code will compute
! its value based on some physical consideration
CHARACTER(len=80) :: cell_temperature = 'not_controlled'
! cell_temperature = 'nose' | 'not_controlled'* | 'rescaling'
! 'nose' control cell temperature using Nose thermostat
! see parameters "fnoseh" and "temph"
! 'rescaling' control cell temperature via velocities rescaling
! 'not_controlled' cell temperature is not controlled
! NOT used in FPMD
REAL(DP) :: temph = 0.0_DP
! meaningful only with "cell_temperature /= 'not_controlled' "
! value of the cell temperature (in Kelvin) forced
! by the temperature control
REAL(DP) :: fnoseh = 1.0_DP
! meaningful only with "cell_temperature = 'nose' "
! oscillation frequency of the nose thermostat (in terahertz)
REAL(DP) :: greash = 0.0_DP
! same as "grease", for cell damped dynamics
CHARACTER(len=80) :: cell_dofree = 'all'
! cell_dofree = 'all'* | 'volume' | 'x' | 'y' | 'z' | 'xy' | 'xz' | 'yz' | 'xyz'
! select which of the cell parameters should be moved
! 'all' all axis and angles are propagated (default)
! 'volume' the cell is simply rescaled, without changing the shape
! 'x' only the "x" axis is moved
! 'y' only the "y" axis is moved
! 'z' only the "z" axis is moved
! 'xy' only the "x" and "y" axis are moved, angles are unchanged
! 'xz' only the "x" and "z" axis are moved, angles are unchanged
! 'yz' only the "y" and "z" axis are moved, angles are unchanged
! 'xyz' "x", "y" and "z" axis are moved, angles are unchanged
REAL(DP) :: cell_factor = 0.0_DP
! NOT used in FPMD
INTEGER :: cell_nstepe = 1
! number of electronic steps for each cell step
REAL(DP) :: cell_damping = 0.0_DP
! meaningful only if " cell_dynamics = 'damp' "
! damping frequency times delta t, optimal values could be
! calculated with the formula
! sqrt(0.5*log((E1-E2)/(E2-E3)))
! where E1 E2 E3 are successive values of the DFT total energy
! in a ionic steepest descent simulation
REAL(DP) :: press_conv_thr = 0.5_DP
NAMELIST / cell / cell_parameters, cell_dynamics, cell_velocities, &
press, wmass, cell_temperature, temph, fnoseh, &
cell_dofree, greash, cell_factor, cell_nstepe, &
cell_damping, press_conv_thr
!
!=----------------------------------------------------------------------------=!!
! PRESS_AI Namelist Input Parameters
!=----------------------------------------------------------------------------=!
!
!
LOGICAL :: abivol = .false.
LOGICAL :: abisur = .false.
LOGICAL :: pvar = .false.
LOGICAL :: fill_vac=.false.
LOGICAL :: scale_at=.false.
LOGICAL :: t_gauss =.false.
LOGICAL :: jellium= .false.
LOGICAL :: cntr(nsx)=.false.
REAL(DP) :: P_ext = 0.0_DP
REAL(DP) :: P_in = 0.0_DP
REAL(DP) :: P_fin = 0.0_DP
REAL(DP) :: rho_thr = 0.0_DP
REAL(DP) :: step_rad(nsx) = 0.0_DP
REAL(DP) :: Surf_t = 0.0_DP
REAL(DP) :: dthr = 0.0_DP
REAL(DP) :: R_j = 0.0_DP
REAL(DP) :: h_j = 0.0_DP
REAL(DP) :: delta_eps = 0.0_DP
REAL(DP) :: delta_sigma=0.0_DP
INTEGER :: n_cntr = 0
INTEGER :: axis = 0
NAMELIST / press_ai / abivol, P_ext, pvar, P_in, P_fin, rho_thr, &
& step_rad, delta_eps, delta_sigma, n_cntr, &
& fill_vac, scale_at, t_gauss, abisur, &
& Surf_t, dthr, cntr, axis, jellium, R_j, h_j
!=----------------------------------------------------------------------------=!
! WANNIER Namelist Input Parameters
!=----------------------------------------------------------------------------=!
LOGICAL :: wf_efield
LOGICAL :: wf_switch
!
INTEGER :: sw_len
!
REAL(DP) :: efx0, efy0, efz0
REAL(DP) :: efx1, efy1, efz1
!
INTEGER :: wfsd
!
REAL(DP) :: wfdt
REAL(DP) :: maxwfdt
REAL(DP) :: wf_q
REAL(DP) :: wf_friction
!=======================================================================
!Lingzhu Kong
INTEGER :: vnbsp
INTEGER :: neigh
REAL(DP) :: poisson_eps
REAL(DP) :: dis_cutoff
REAL(DP) :: exx_ps_rcut
REAL(DP) :: exx_me_rcut
!=======================================================================
INTEGER :: nit
INTEGER :: nsd
INTEGER :: nsteps
!
REAL(DP) :: tolw
!
LOGICAL :: adapt
!
INTEGER :: calwf
INTEGER :: nwf
INTEGER :: wffort
!
LOGICAL :: writev
!==============================================================================
!Lingzhu Kong
NAMELIST / wannier / wf_efield, wf_switch, sw_len, efx0, efy0, efz0,&
efx1, efy1, efz1, wfsd, wfdt, neigh,poisson_eps,&
dis_cutoff,exx_ps_rcut, exx_me_rcut, vnbsp, &
maxwfdt, wf_q, wf_friction, nit, nsd, nsteps, &
tolw, adapt, calwf, nwf, wffort, writev
!===============================================================================
! END manual
! ----------------------------------------------------------------------
!=----------------------------------------------------------------------------=!
! WANNIER_NEW Namelist Input Parameters
!=----------------------------------------------------------------------------=!
LOGICAL :: &
plot_wannier = .false.,&
! if .TRUE. wannier number plot_wan_num is plotted
use_energy_int = .false., &
! if .TRUE. energy interval is used to generate wannier
print_wannier_coeff = .false.
! if .TRUE.
INTEGER, PARAMETER :: nwanx = 50 ! max number of wannier functions
INTEGER :: &
nwan, &! number of wannier functions
plot_wan_num = 0, &! number of wannier for plotting
plot_wan_spin = 1 ! spin of wannier for plotting
REAL(DP) :: &
constrain_pot(nwanx,2) ! constrained potential for wannier
NAMELIST / wannier_ac / plot_wannier, use_energy_int, nwan, &
plot_wan_num, plot_wan_spin, constrain_pot, print_wannier_coeff
! END manual
! ----------------------------------------------------------------------
! ----------------------------------------------------------------
! BEGIN manual
!
!=----------------------------------------------------------------------------=!
! CARDS parameters
!=----------------------------------------------------------------------------=!
!
! Note: See file read_cards.f90 for card syntax and usage
!
! ATOMIC_SPECIES
!
CHARACTER(len=3) :: atom_label(nsx) = 'XX' ! label of the atomic species being read
CHARACTER(len=80) :: atom_pfile(nsx) = 'YY' ! pseudopotential file name
REAL(DP) :: atom_mass(nsx) = 0.0_DP ! atomic mass of the i-th atomic species
! in atomic mass units: 1 a.m.u. = 1822.9 a.u. = 1.6605 * 10^-27 kg
LOGICAL :: taspc = .false.
LOGICAL :: tkpoints = .false.
LOGICAL :: tforces = .false.
LOGICAL :: tocc = .false.
LOGICAL :: tcell = .false.
LOGICAL :: tdipole = .false.
LOGICAL :: tionvel = .false.
LOGICAL :: tconstr = .false.
LOGICAL :: tesr = .false.
LOGICAL :: tksout = .false.
LOGICAL :: ttemplate = .false.
LOGICAL :: twannier = .false.
!
! ATOMIC_POSITIONS
!
REAL(DP), ALLOCATABLE :: rd_pos(:,:) ! unsorted positions from input
INTEGER, ALLOCATABLE :: sp_pos(:)
INTEGER, ALLOCATABLE :: if_pos(:,:)
INTEGER, ALLOCATABLE :: id_loc(:)
INTEGER, ALLOCATABLE :: na_inp(:)
LOGICAL :: tapos = .false.
CHARACTER(len=80) :: atomic_positions = 'crystal'
! atomic_positions = 'bohr' | 'angstrong' | 'crystal' | 'alat'
! select the units for the atomic positions being read from stdin
!
! ION_VELOCITIES
!
REAL(DP), ALLOCATABLE :: rd_vel(:,:) ! unsorted velocities from input
INTEGER, ALLOCATABLE :: sp_vel(:)
LOGICAL :: tavel = .false.
!
! ATOMIC_FORCES
!
REAL(DP), ALLOCATABLE :: rd_for(:,:) ! external forces applied to single atoms
!
! KPOINTS
!
! ... k-points inputs
LOGICAL :: tk_inp = .false.
REAL(DP), ALLOCATABLE :: xk(:,:), wk(:)
INTEGER :: nkstot = 0, nk1 = 0, nk2 = 0, nk3 = 0, k1 = 0, k2 = 0, k3 = 0
CHARACTER(len=80) :: k_points = 'gamma'
! k_points = 'automatic' | 'crystal' | 'tpiba' | 'gamma'*
! k_points = 'crystal_b' | 'tpiba_b'
! select the k points mesh
! 'automatic' k points mesh is generated automatically
! with Monkhorst-Pack algorithm
! 'crystal' k points mesh is given in stdin in scaled units
! 'tpiba' k points mesh is given in stdin in units of ( 2 PI / alat )
! 'gamma' only gamma point is used ( default in CPMD simulation )
! _b means that a band input is given. The weights is a integer
! number that gives the number of points between the present point
! and the next. The weight of the last point is not used.
!
! OCCUPATIONS
!
REAL(DP), ALLOCATABLE :: f_inp(:,:)
LOGICAL :: tf_inp = .false.
!
! DIPOLE
!
LOGICAL :: tdipole_card = .false.
!
! ESR
!
INTEGER :: iesr_inp = 1
!
! CELL_PARAMETERS
!
REAL(DP) :: rd_ht(3,3) = 0.0_DP
CHARACTER(len=80) :: cell_units = 'none'
LOGICAL :: trd_ht = .false.
!
! CONSTRAINTS
!
INTEGER :: nc_fields = 4 ! max number of fields that is allowed to
! define a constraint
INTEGER :: nconstr_inp = 0
REAL(DP) :: constr_tol_inp = 1.E-6_DP
!
CHARACTER(len=20), ALLOCATABLE :: constr_type_inp(:)
REAL(DP), ALLOCATABLE :: constr_inp(:,:)
REAL(DP), ALLOCATABLE :: constr_target_inp(:)
LOGICAL, ALLOCATABLE :: constr_target_set(:)
!
! KOHN_SHAM
!
INTEGER, ALLOCATABLE :: iprnks( :, : )
INTEGER :: nprnks( nspinx ) = 0
! logical mask used to specify which kohn sham orbital should be
! written to files 'KS.'
!
! PLOT_WANNIER
!
INTEGER, PARAMETER :: nwf_max = 1000
!
INTEGER :: wannier_index( nwf_max )
!
! WANNIER_NEW
!
TYPE (wannier_data) :: wan_data(nwanx,2)
! END manual
! ----------------------------------------------------------------------
LOGICAL :: xmloutput = .false.
! if .true. PW produce an xml output
CONTAINS
!
!----------------------------------------------------------------------------
SUBROUTINE reset_input_checks()
!-----------------------------------------------------------------------------
!
! ... This routine sets to .false. flags used to check whether some variables
! ... have been read. If called before reading, allows to read a different
! ... input file without triggering bogus error messages - useful for NEB
!
IMPLICIT NONE
!
tapos = .false.
tkpoints = .false.
taspc = .false.
twannier = .false.
tconstr = .false.
tforces = .false.
tocc = .false.
tksout = .false.
tionvel = .false.
tesr = .false.
tdipole = .false.
tcell = .false.
!
END SUBROUTINE reset_input_checks
!
!
!-----------------------------------------------------------------------------
SUBROUTINE allocate_input_ions( ntyp, nat )
!-----------------------------------------------------------------------------
!
INTEGER, INTENT(in) :: ntyp, nat
!
IF ( allocated( rd_pos ) ) DEALLOCATE( rd_pos )
IF ( allocated( sp_pos ) ) DEALLOCATE( sp_pos )
IF ( allocated( if_pos ) ) DEALLOCATE( if_pos )
IF ( allocated( id_loc ) ) DEALLOCATE( id_loc )
IF ( allocated( na_inp ) ) DEALLOCATE( na_inp )
IF ( allocated( rd_vel ) ) DEALLOCATE( rd_vel )
IF ( allocated( sp_vel ) ) DEALLOCATE( sp_vel )
IF ( allocated( rd_for ) ) DEALLOCATE( rd_for )
!
ALLOCATE( rd_pos( 3, nat ) )
ALLOCATE( sp_pos( nat) )
ALLOCATE( if_pos( 3, nat ) )
ALLOCATE( id_loc( nat) )
ALLOCATE( na_inp( ntyp) )
ALLOCATE( rd_vel( 3, nat ) )
ALLOCATE( sp_vel( nat) )
ALLOCATE( rd_for( 3, nat ) )
!
rd_pos = 0.0_DP
sp_pos = 0
if_pos = 1
id_loc = 0
na_inp = 0
rd_vel = 0.0_DP
sp_vel = 0
rd_for = 0.0_DP
!
RETURN
!
END SUBROUTINE allocate_input_ions
!-----------------------------------------------------------------------------
SUBROUTINE allocate_input_constr()
!-----------------------------------------------------------------------------
!
IF ( allocated( constr_type_inp ) ) DEALLOCATE( constr_type_inp )
IF ( allocated( constr_inp ) ) DEALLOCATE( constr_inp )
IF ( allocated( constr_target_inp ) ) DEALLOCATE( constr_target_inp )
IF ( allocated( constr_target_set ) ) DEALLOCATE( constr_target_set )
!
ALLOCATE( constr_type_inp( nconstr_inp ) )
ALLOCATE( constr_target_inp( nconstr_inp ) )
ALLOCATE( constr_target_set( nconstr_inp ) )
!
ALLOCATE( constr_inp( nc_fields, nconstr_inp ) )
!
constr_type_inp = ' '
constr_inp = 0.0_DP
constr_target_inp = 0.0_DP
constr_target_set = .false.
!
RETURN
!
END SUBROUTINE allocate_input_constr
!-----------------------------------------------------------------------------
SUBROUTINE allocate_input_iprnks( nksx, nspin )
!-----------------------------------------------------------------------------
!
INTEGER, INTENT(in) :: nksx, nspin
!
IF( allocated( iprnks ) ) DEALLOCATE( iprnks )
!
ALLOCATE( iprnks( max( 1, nksx), nspin ) )
!
iprnks = 0
!
RETURN
!
END SUBROUTINE allocate_input_iprnks
!-----------------------------------------------------------------------------
SUBROUTINE deallocate_input_parameters()
!-----------------------------------------------------------------------------
!
IF ( allocated( xk ) ) DEALLOCATE( xk )
IF ( allocated( wk ) ) DEALLOCATE( wk )
IF ( allocated( rd_pos ) ) DEALLOCATE( rd_pos )
IF ( allocated( sp_pos ) ) DEALLOCATE( sp_pos )
IF ( allocated( if_pos ) ) DEALLOCATE( if_pos )
IF ( allocated( id_loc ) ) DEALLOCATE( id_loc )
IF ( allocated( na_inp ) ) DEALLOCATE( na_inp )
IF ( allocated( rd_vel ) ) DEALLOCATE( rd_vel )
IF ( allocated( sp_vel ) ) DEALLOCATE( sp_vel )
IF ( allocated( rd_for ) ) DEALLOCATE( rd_for )
!
!
IF ( allocated( constr_type_inp ) ) DEALLOCATE( constr_type_inp )
IF ( allocated( constr_inp ) ) DEALLOCATE( constr_inp )
IF ( allocated( constr_target_inp ) ) DEALLOCATE( constr_target_inp )
IF ( allocated( constr_target_set ) ) DEALLOCATE( constr_target_set )
!
IF ( allocated( iprnks ) ) DEALLOCATE( iprnks )
!
RETURN
!
END SUBROUTINE deallocate_input_parameters
!
!=----------------------------------------------------------------------------=!
!
END MODULE input_parameters
!
!=----------------------------------------------------------------------------=!
|