File: radial_grids.f90

package info (click to toggle)
espresso 5.1%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 146,004 kB
  • ctags: 17,245
  • sloc: f90: 253,041; sh: 51,271; ansic: 27,494; tcl: 15,570; xml: 14,508; makefile: 2,958; perl: 2,035; fortran: 1,924; python: 337; cpp: 200; awk: 57
file content (481 lines) | stat: -rw-r--r-- 16,215 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
!
! Copyright (C) 2004 PWSCF group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
MODULE radial_grids
  !============================================================================
  !
  !   Module containing type definitions and auxiliary routines to deal with
  !   data on logarithmic radial grids.
  !   Should contain low level routines and no reference to other modules
  !   (with the possible exception of kinds and parameters) so as to be 
  !   call-able from any other module.
  !
  ! content:
  !
  ! - ndmx     : parameter definition max grid dimension
  !
  ! - radial_grid_type : derived type definition for radial grids
  !
  ! - do_mesh  : a routine to build the radial mesh
  !
  ! - check_mesh  : a routine to check if grid is consistently set 
  !
  ! - hartree  : a routine that solve the Poisson's equation on radial grid
  !
  ! - series   : a simple routine returning the coefficient of the polynomial 
  !              describing the leading behavior of a function f at small r.
  !
  ! - write_grid_on_file, read_grid_from_file : I/O routines 
  !
  !============================================================================
  !
  USE kinds, ONLY: dp
  !
  IMPLICIT NONE
  !
  integer, parameter :: &
       ndmx=3500     ! the maximum mesh size 

TYPE radial_grid_type

  INTEGER :: &
       mesh          ! the actual number of mesh points
  REAL(DP),POINTER :: &
       r(:),    & ! the radial mesh
       r2(:),   & ! the square of the radial mesh
       rab(:),  & ! d r(x) / d x where x is the linear grid
       sqr(:),  & ! the square root of the radial mesh
       rm1(:),  & ! 1 / r
       rm2(:),  & ! 1 / r**2
       rm3(:)     ! 1 / r**3
  REAL(DP) :: &
       xmin,       & ! the minimum x
       rmax,       & ! the maximum radial point
       zmesh,      & ! the ionic charge used for the mesh
       dx            ! the deltax of the linear mesh
END TYPE radial_grid_type

  PRIVATE
  PUBLIC :: ndmx, radial_grid_type, &
            do_mesh, check_mesh, hartree, series, &
            write_grid_on_file, read_grid_from_file, &
            allocate_radial_grid,&
            deallocate_radial_grid,&
            nullify_radial_grid,&
            radial_grid_COPY

      interface deallocate_radial_grid
         module procedure &
            deallocate_radial_grid_s,& ! only one
            deallocate_radial_grid_v   ! an array
      end interface

  !============================================================================
  !
 CONTAINS
!
!   Build the radial (logarithmic) grid 
!
!   r(i) = exp ( xmin + (i-1) dx ) / zmesh  i=1,mesh
!   r2(i) is r(i) square, sqr(i) is sqrt(r(i)) and 
!   rab(i) is the integration element = r(i)*dx
!  
!   more general grid definitions are possible but currently not implemented
!   (example: Vanderbilt's grid, same as above but starting at r=0)
!   r(i) = exp ( xmin ) * ( exp( (i-1)*dx ) - 1.0_dp ) / zmesh
!   rab(i) = ( r(i) + exp(xmin)/zmesh ) * dx
!
!---------------------------------------------------------------
      subroutine radial_grid_COPY(X,Y)
!---------------------------------------------------------------
      type(radial_grid_type),intent(in)    :: X
      type(radial_grid_type),intent(inout) :: Y
      !
      call deallocate_radial_grid(Y)
      call allocate_radial_grid(Y, X%mesh)
      !
         Y%r(1:X%mesh)   = X%r(1:X%mesh)
         Y%r2(1:X%mesh)  = X%r2(1:X%mesh)
         Y%rab(1:X%mesh) = X%rab(1:X%mesh)
         Y%sqr(1:X%mesh) = X%sqr(1:X%mesh)
         Y%rm1(1:X%mesh) = X%rm1(1:X%mesh)
         Y%rm2(1:X%mesh) = X%rm2(1:X%mesh)
         Y%rm3(1:X%mesh) = X%rm3(1:X%mesh)
         !
         Y%xmin  = X%xmin
         Y%rmax  = X%rmax
         Y%zmesh = X%zmesh
         Y%dx    = X%dx
      end subroutine radial_grid_COPY
!
!---------------------------------------------------------------
      subroutine allocate_radial_grid(grid,mesh)
!---------------------------------------------------------------
      type(radial_grid_type),intent(inout) :: grid
      integer,intent(in) :: mesh
      if(mesh>ndmx) &
         call errore('allocate_radial_grid', 'mesh>ndmx',1)
      allocate(           &
         grid%r(mesh),    &
         grid%r2(mesh),   & ! the square of the radial mesh
         grid%rab(mesh),  & ! d r(x) / d x where x is the linear grid
         grid%sqr(mesh),  & ! the square root of the radial mesh
         grid%rm1(mesh),  & ! 1 / r
         grid%rm2(mesh),  & ! 1 / r**2
         grid%rm3(mesh)   ) ! 1 / r**3
      grid%mesh = mesh
      end subroutine allocate_radial_grid
!
!---------------------------------------------------------------
      subroutine deallocate_radial_grid_s(grid)
!---------------------------------------------------------------
      type(radial_grid_type),intent(inout) :: grid
       if (associated(grid%r))   deallocate(grid%r)
       if (associated(grid%r2))  deallocate(grid%r2)
       if (associated(grid%rab)) deallocate(grid%rab)
       if (associated(grid%sqr)) deallocate(grid%sqr)
       if (associated(grid%rm1)) deallocate(grid%rm1)
       if (associated(grid%rm2)) deallocate(grid%rm2)
       if (associated(grid%rm3)) deallocate(grid%rm3)
       grid%mesh = 0
       call nullify_radial_grid(grid)
      end subroutine deallocate_radial_grid_s
!---------------------------------------------------------------
      subroutine deallocate_radial_grid_v(grid)
!---------------------------------------------------------------
      type(radial_grid_type),intent(inout) :: grid(:)
      integer :: n
       do n = 1,size(grid)
         if (associated(grid(n)%r))   deallocate(grid(n)%r)
         if (associated(grid(n)%r2))  deallocate(grid(n)%r2)
         if (associated(grid(n)%rab)) deallocate(grid(n)%rab)
         if (associated(grid(n)%sqr)) deallocate(grid(n)%sqr)
         if (associated(grid(n)%rm1)) deallocate(grid(n)%rm1)
         if (associated(grid(n)%rm2)) deallocate(grid(n)%rm2)
         if (associated(grid(n)%rm3)) deallocate(grid(n)%rm3)
         grid(n)%mesh = 0
       enddo
       !deallocate(grid)
      end subroutine deallocate_radial_grid_v

!---------------------------------------------------------------
      subroutine nullify_radial_grid(grid)
!---------------------------------------------------------------
      type(radial_grid_type),intent(inout) :: grid
      nullify(           &
         grid%r,    &
         grid%r2,   & ! the square of the radial mesh
         grid%rab,  & ! d r(x) / d x where x is the linear grid
         grid%sqr,  & ! the square root of the radial mesh
         grid%rm1,  & ! 1 / r
         grid%rm2,  & ! 1 / r**2
         grid%rm3   ) ! 1 / r**3
      grid%mesh = -1
      end subroutine nullify_radial_grid
!
!---------------------------------------------------------------
      subroutine do_mesh(rmax,zmesh,xmin,dx,ibound,grid)
!---------------------------------------------------------------
!
      use kinds, only : DP
      implicit none
      type(radial_grid_type),intent(out) :: grid

      integer, intent(in)   :: ibound
      real(DP),intent(in)   :: rmax, zmesh, dx
      real(DP),intent(inout):: xmin

      real(DP) :: xmax, x
      integer  :: mesh, i
      !
      xmax=log(rmax*zmesh)
      mesh=(xmax-xmin)/dx+1
      !
      !  mesh must be odd for simpson integration.
      !
      mesh=2*(mesh/2)+1
      if(mesh+1 > ndmx) call errore('do_mesh','ndmx is too small',1)
      if(ibound == 1) xmin=xmax-dx*(mesh-1)
      !
      call deallocate_radial_grid(grid)
      call allocate_radial_grid(grid,mesh)
      !
      do i=1,mesh
         x=xmin+DBLE(i-1)*dx
         grid%r(i)   = exp(x)/zmesh
         grid%r2(i)  = grid%r(i)*grid%r(i)
         grid%rab(i) = grid%r(i)*dx
         grid%sqr(i) = sqrt(grid%r(i))
         grid%rm1(i) = 1._dp/grid%r(i)
         grid%rm2(i) = 1._dp/grid%r(i)**2
         grid%rm3(i) = 1._dp/grid%r(i)**3
      end do
      !
      grid%mesh = mesh
      grid%dx   = dx
      grid%xmin = xmin
      grid%rmax = rmax
      grid%zmesh = zmesh

      return
      end subroutine do_mesh
!
!  check that logarithmic grid is consistently set
!---------------------------------------------------------------
   subroutine check_mesh(grid)
!---------------------------------------------------------------
!
   use kinds, only : DP
   use constants, only : eps8
   implicit none
   type(radial_grid_type),intent(in) :: grid
   integer :: i

   if (grid%mesh < 0 ) call errore('check_mesh','grid%mesh < 0 ',1)
   do i=1,grid%mesh
      if (abs(grid%r2(i)/grid%r(i)**2-1.d0) > eps8 ) &
         call errore('check_mesh',' r2(i) is different ',i)
      if (abs(grid%sqr(i)/sqrt(grid%r(i))-1.d0) > eps8 ) &
         call errore('check_mesh',' sqr(i) is different ',i)
      if (abs(grid%rab(i)/(grid%r(i)*grid%dx)-1.d0) > eps8 ) &
         call errore('check_mesh',' rab(i) is different ',i)
   end do

   return
   end subroutine check_mesh
!
! Solution of the Poisson's equation on a radial (logarithmic) grid
!---------------------------------------------------------------
subroutine hartree(k,nst,mesh,grid,f,vh)
  !---------------------------------------------------------------
  !
  use kinds, only : DP
!  use radial_grids, only: radial_grid_type
  implicit none
  integer,intent(in)::       & 
       k,   & ! input: the k of the equation
       nst, & ! input: at low r, f goes as r**nst
       mesh   ! input: the dimension of the mesh

  type(radial_grid_type), intent(in) :: &
       grid   ! input: the radial grid
  real(DP), intent(in)::        &
       f(mesh)  ! input: the 4\pi r2 \rho function
  real(DP), intent(out)::       &
       vh(mesh) ! output: the required solution
  !
  ! local variables
  !
  integer ::        &
       k21,  &   ! 2k+1
       nk1,  &   ! nst-k-1
       ierr, &   ! integer variable for allocation control
       i         ! counter

  real(DP)::        &
       c0,c2,c3, & ! coefficients of the polynomial expansion close to r=0
       ch,       & ! dx squared / 12.0
       xkh2,     & ! ch * f
       ei, di,   & ! auxiliary variables for the diagonal and 
                   ! off diagonal elements of the matrix
       f1, fn,   & ! variables used for the boundary condition
       vhim1, vhi  ! variables for the right hand side

  real(DP), allocatable:: &
       d(:), &       ! the diagonal elements of 
                     ! the tridiagonal sys.
       e(:)          ! the off diagonal elements 
                     ! of the trid. sys.
  !
  ! Allocate space for the diagonal and off diagonal elements
  !
  if (mesh.ne.grid%mesh) call errore('hartree',' grid dimension mismatch',1) 
  allocate(d(mesh),stat=ierr)
  allocate(e(mesh),stat=ierr)

  if (ierr.ne.0) call errore('hartree',' error allocating d or e',1)
  !
  ! Find the series expansion of the solution close to r=0
  !
  k21=2*k+1
  nk1=nst-k-1
  if(nk1.le.0) then
     write(6,100) k,nst
100  format(5x,'stop in "hartree": k=',i3,'  nst=',i3)
     stop
  !else if(nk1.ge.4) then
  ! not sure whether the following is really correct, but the above wasn't
  else if(nk1.ge.3) then
     c2=0.0_dp
     c3=0.0_dp
  else
     e(1)=0.0_dp
     do i=1,4
        d(i)=-k21*f(i)/grid%r(i)**nst
     end do
     call series(d,grid%r,grid%r2,e(nk1))
     c2=e(1)/(4.0_dp*k+6.0_dp)
     c3=e(2)/(6.0_dp*k+12.0_dp)
  end if
  !
  ! Set the main auxiliary parameters
  !
  ch=grid%dx*grid%dx/12.0_dp
  xkh2=ch*(DBLE(k)+0.5_dp)**2
  ei=1.0_dp-xkh2
  di=-(2.0_dp+10.0_dp*xkh2)
  !
  ! Set the diagonal and the off diagonal elements of the 
  ! linear system, compute a part of the right hand side 
  !
  do i=2,mesh
     d(i)=-di
     e(i)=-ei
     vh(i)=k21*ch*grid%sqr(i)*f(i)
  end do
  !
  ! Use the boundary condition to eliminate the value of the 
  ! solution in the first point from the first equation. This 
  ! part for the diagonal element
  !
  f1=(grid%sqr(1)/grid%sqr(2))**k21
  d(2)=d(2)-ei*f1
  !
  ! Use the boundary condition to eliminate the value of the 
  ! solution in the last point from the last equation
  !
  fn=(grid%sqr(mesh-1)/grid%sqr(mesh))**k21
  d(mesh-1)=d(mesh-1)-ei*fn
  !
  ! In the first point vh(1) has the same definition as in the other points
  !
  vhim1=k21*ch*grid%sqr(1)*f(1)
  !
  ! Compute the right hand side using the auxiliary quantity vh(i).
  !
  do i=2,mesh-1
     vhi=vh(i)
     vh(i)=vhim1+10.0_dp*vhi+vh(i+1)
     vhim1=vhi
  end do
  !
  ! Use the boundary condition to eliminate the value of the solution in the 
  ! first point from the first equation. This part for the right hand side.
  !
  vh(2)=vh(2)-ei*grid%sqr(1)**k21*(c2*(grid%r2(2)-grid%r2(1)) &
       +c3*(grid%r(2)**3-grid%r(1)**3))
  !
  ! solve the linear system with lapack routine dptsv
  !
  call dptsv(mesh-2,1,d(2),e(2),vh(2),mesh-2,ierr)
  if (ierr.ne.0) call errore('hartree', 'error in lapack', ierr)
  !
  ! Set the value of the solution at the first and last point
  ! First, find c0 from the solution in the second point
  !
  c0=vh(2)/grid%sqr(2)**k21-c2*grid%r2(2)-c3*grid%r(2)*grid%r2(2)
  !
  ! and then use the series expansion at the first point
  !
  vh(1)=grid%sqr(1)**k21*(c0+c2*grid%r2(1)+c3*grid%r(1)**3)
  !
  ! the solution at the last point is given  by the boundary 
  ! condition
  !
  vh(mesh)=vh(mesh-1)*fn
  !
  ! The solution must be divided by r (from the equation) 
  ! and multiplied by the square root of r (from the log 
  ! mesh transformation)
  !
  do i=1,mesh
     vh(i)= vh(i) / grid%sqr(i)
  end do

  deallocate(e)
  deallocate(d)

  return
end subroutine hartree
!
! simple routine returning the coefficient of the polynomial 
! describing the leading behavior of a function f at small r.
!---------------------------------------------------------------
subroutine series(f,r,r2,b)
  !---------------------------------------------------------------
  !
  use kinds, only : DP
  implicit none
  real(DP):: dr21,dr31,dr32,dr41,dr42,dr43,df21,df32,df43, &
       ddf42,ddf31 
  real(DP):: f(4),r(4),r2(4),b(0:3)
  dr21=r(2)-r(1)
  dr31=r(3)-r(1)
  dr32=r(3)-r(2)
  dr41=r(4)-r(1)
  dr42=r(4)-r(2)
  dr43=r(4)-r(3)
  df21=(f(2)-f(1))/dr21
  df32=(f(3)-f(2))/dr32
  df43=(f(4)-f(3))/dr43
  ddf42=(df43-df32)/dr42
  ddf31=(df32-df21)/dr31
  b(3)=(ddf42-ddf31)/dr41
  b(2)=ddf31-b(3)*(r(1)+r(2)+r(3))
  b(1)=df21-b(2)*(r(2)+r(1))-b(3)*(r2(1)+r2(2)+r(1)*r(2))
  b(0)=f(1)-r(1)*(b(1)+r(1)*(b(2)+r(1)*b(3)))
  return
end subroutine series
!----------------------------------------------------------------------
!----------------------------------------------------------------------
!
! I/O routines 
!
!----------------------------------------------------------------------
subroutine write_grid_on_file(iunit,grid)
!  use radial_grids, only: radial_grid_type
  implicit none
  type(radial_grid_type), intent(in) :: grid
  integer, intent(in) :: iunit
  integer :: n
!
  WRITE(iunit,'(i8)') grid%mesh
  WRITE(iunit,'(e20.10)') grid%dx
  WRITE(iunit,'(e20.10)') grid%xmin
  WRITE(iunit,'(e20.10)') grid%zmesh
  WRITE(iunit,'(e20.10)') (grid%r(n), n=1,grid%mesh)
  WRITE(iunit,'(e20.10)') (grid%r2(n), n=1,grid%mesh)
  WRITE(iunit,'(e20.10)') (grid%sqr(n), n=1,grid%mesh)
!  WRITE(iunit,'(e20.10)') (grid%rab(n), n=1,grid%mesh)
  return
end subroutine write_grid_on_file

subroutine read_grid_from_file(iunit,grid)
!  use radial_grids, only: radial_grid_type
  implicit none
  type(radial_grid_type), intent(out) :: grid
  integer, intent(in) :: iunit
  integer :: n
!
  READ(iunit,'(i8)')     grid%mesh
  READ(iunit,'(e20.10)') grid%dx
  READ(iunit,'(e20.10)') grid%xmin
  READ(iunit,'(e20.10)') grid%zmesh
  READ(iunit,'(e20.10)') (grid%r(n), n=1,grid%mesh)
  READ(iunit,'(e20.10)') (grid%r2(n), n=1,grid%mesh)
  READ(iunit,'(e20.10)') (grid%sqr(n), n=1,grid%mesh)
!  READ(iunit,'(e20.10)') (grid%rab(n), n=1,grid%mesh)
  grid%rab(1:grid%mesh) = grid%r(1:grid%mesh) * grid%dx
  grid%rm1(1:grid%mesh) = 1._dp/grid%r(1:grid%mesh)
  grid%rm2(1:grid%mesh) = 1._dp/grid%r2(1:grid%mesh)
  grid%rm3(1:grid%mesh) = 1._dp/grid%r(1:grid%mesh)**3

  return
end subroutine read_grid_from_file
 
!----------------------------------------------------------------------
END MODULE radial_grids