1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
|
!
! Copyright (C) 2004 PWSCF group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
MODULE radial_grids
!============================================================================
!
! Module containing type definitions and auxiliary routines to deal with
! data on logarithmic radial grids.
! Should contain low level routines and no reference to other modules
! (with the possible exception of kinds and parameters) so as to be
! call-able from any other module.
!
! content:
!
! - ndmx : parameter definition max grid dimension
!
! - radial_grid_type : derived type definition for radial grids
!
! - do_mesh : a routine to build the radial mesh
!
! - check_mesh : a routine to check if grid is consistently set
!
! - hartree : a routine that solve the Poisson's equation on radial grid
!
! - series : a simple routine returning the coefficient of the polynomial
! describing the leading behavior of a function f at small r.
!
! - write_grid_on_file, read_grid_from_file : I/O routines
!
!============================================================================
!
USE kinds, ONLY: dp
!
IMPLICIT NONE
!
integer, parameter :: &
ndmx=3500 ! the maximum mesh size
TYPE radial_grid_type
INTEGER :: &
mesh ! the actual number of mesh points
REAL(DP),POINTER :: &
r(:), & ! the radial mesh
r2(:), & ! the square of the radial mesh
rab(:), & ! d r(x) / d x where x is the linear grid
sqr(:), & ! the square root of the radial mesh
rm1(:), & ! 1 / r
rm2(:), & ! 1 / r**2
rm3(:) ! 1 / r**3
REAL(DP) :: &
xmin, & ! the minimum x
rmax, & ! the maximum radial point
zmesh, & ! the ionic charge used for the mesh
dx ! the deltax of the linear mesh
END TYPE radial_grid_type
PRIVATE
PUBLIC :: ndmx, radial_grid_type, &
do_mesh, check_mesh, hartree, series, &
write_grid_on_file, read_grid_from_file, &
allocate_radial_grid,&
deallocate_radial_grid,&
nullify_radial_grid,&
radial_grid_COPY
interface deallocate_radial_grid
module procedure &
deallocate_radial_grid_s,& ! only one
deallocate_radial_grid_v ! an array
end interface
!============================================================================
!
CONTAINS
!
! Build the radial (logarithmic) grid
!
! r(i) = exp ( xmin + (i-1) dx ) / zmesh i=1,mesh
! r2(i) is r(i) square, sqr(i) is sqrt(r(i)) and
! rab(i) is the integration element = r(i)*dx
!
! more general grid definitions are possible but currently not implemented
! (example: Vanderbilt's grid, same as above but starting at r=0)
! r(i) = exp ( xmin ) * ( exp( (i-1)*dx ) - 1.0_dp ) / zmesh
! rab(i) = ( r(i) + exp(xmin)/zmesh ) * dx
!
!---------------------------------------------------------------
subroutine radial_grid_COPY(X,Y)
!---------------------------------------------------------------
type(radial_grid_type),intent(in) :: X
type(radial_grid_type),intent(inout) :: Y
!
call deallocate_radial_grid(Y)
call allocate_radial_grid(Y, X%mesh)
!
Y%r(1:X%mesh) = X%r(1:X%mesh)
Y%r2(1:X%mesh) = X%r2(1:X%mesh)
Y%rab(1:X%mesh) = X%rab(1:X%mesh)
Y%sqr(1:X%mesh) = X%sqr(1:X%mesh)
Y%rm1(1:X%mesh) = X%rm1(1:X%mesh)
Y%rm2(1:X%mesh) = X%rm2(1:X%mesh)
Y%rm3(1:X%mesh) = X%rm3(1:X%mesh)
!
Y%xmin = X%xmin
Y%rmax = X%rmax
Y%zmesh = X%zmesh
Y%dx = X%dx
end subroutine radial_grid_COPY
!
!---------------------------------------------------------------
subroutine allocate_radial_grid(grid,mesh)
!---------------------------------------------------------------
type(radial_grid_type),intent(inout) :: grid
integer,intent(in) :: mesh
if(mesh>ndmx) &
call errore('allocate_radial_grid', 'mesh>ndmx',1)
allocate( &
grid%r(mesh), &
grid%r2(mesh), & ! the square of the radial mesh
grid%rab(mesh), & ! d r(x) / d x where x is the linear grid
grid%sqr(mesh), & ! the square root of the radial mesh
grid%rm1(mesh), & ! 1 / r
grid%rm2(mesh), & ! 1 / r**2
grid%rm3(mesh) ) ! 1 / r**3
grid%mesh = mesh
end subroutine allocate_radial_grid
!
!---------------------------------------------------------------
subroutine deallocate_radial_grid_s(grid)
!---------------------------------------------------------------
type(radial_grid_type),intent(inout) :: grid
if (associated(grid%r)) deallocate(grid%r)
if (associated(grid%r2)) deallocate(grid%r2)
if (associated(grid%rab)) deallocate(grid%rab)
if (associated(grid%sqr)) deallocate(grid%sqr)
if (associated(grid%rm1)) deallocate(grid%rm1)
if (associated(grid%rm2)) deallocate(grid%rm2)
if (associated(grid%rm3)) deallocate(grid%rm3)
grid%mesh = 0
call nullify_radial_grid(grid)
end subroutine deallocate_radial_grid_s
!---------------------------------------------------------------
subroutine deallocate_radial_grid_v(grid)
!---------------------------------------------------------------
type(radial_grid_type),intent(inout) :: grid(:)
integer :: n
do n = 1,size(grid)
if (associated(grid(n)%r)) deallocate(grid(n)%r)
if (associated(grid(n)%r2)) deallocate(grid(n)%r2)
if (associated(grid(n)%rab)) deallocate(grid(n)%rab)
if (associated(grid(n)%sqr)) deallocate(grid(n)%sqr)
if (associated(grid(n)%rm1)) deallocate(grid(n)%rm1)
if (associated(grid(n)%rm2)) deallocate(grid(n)%rm2)
if (associated(grid(n)%rm3)) deallocate(grid(n)%rm3)
grid(n)%mesh = 0
enddo
!deallocate(grid)
end subroutine deallocate_radial_grid_v
!---------------------------------------------------------------
subroutine nullify_radial_grid(grid)
!---------------------------------------------------------------
type(radial_grid_type),intent(inout) :: grid
nullify( &
grid%r, &
grid%r2, & ! the square of the radial mesh
grid%rab, & ! d r(x) / d x where x is the linear grid
grid%sqr, & ! the square root of the radial mesh
grid%rm1, & ! 1 / r
grid%rm2, & ! 1 / r**2
grid%rm3 ) ! 1 / r**3
grid%mesh = -1
end subroutine nullify_radial_grid
!
!---------------------------------------------------------------
subroutine do_mesh(rmax,zmesh,xmin,dx,ibound,grid)
!---------------------------------------------------------------
!
use kinds, only : DP
implicit none
type(radial_grid_type),intent(out) :: grid
integer, intent(in) :: ibound
real(DP),intent(in) :: rmax, zmesh, dx
real(DP),intent(inout):: xmin
real(DP) :: xmax, x
integer :: mesh, i
!
xmax=log(rmax*zmesh)
mesh=(xmax-xmin)/dx+1
!
! mesh must be odd for simpson integration.
!
mesh=2*(mesh/2)+1
if(mesh+1 > ndmx) call errore('do_mesh','ndmx is too small',1)
if(ibound == 1) xmin=xmax-dx*(mesh-1)
!
call deallocate_radial_grid(grid)
call allocate_radial_grid(grid,mesh)
!
do i=1,mesh
x=xmin+DBLE(i-1)*dx
grid%r(i) = exp(x)/zmesh
grid%r2(i) = grid%r(i)*grid%r(i)
grid%rab(i) = grid%r(i)*dx
grid%sqr(i) = sqrt(grid%r(i))
grid%rm1(i) = 1._dp/grid%r(i)
grid%rm2(i) = 1._dp/grid%r(i)**2
grid%rm3(i) = 1._dp/grid%r(i)**3
end do
!
grid%mesh = mesh
grid%dx = dx
grid%xmin = xmin
grid%rmax = rmax
grid%zmesh = zmesh
return
end subroutine do_mesh
!
! check that logarithmic grid is consistently set
!---------------------------------------------------------------
subroutine check_mesh(grid)
!---------------------------------------------------------------
!
use kinds, only : DP
use constants, only : eps8
implicit none
type(radial_grid_type),intent(in) :: grid
integer :: i
if (grid%mesh < 0 ) call errore('check_mesh','grid%mesh < 0 ',1)
do i=1,grid%mesh
if (abs(grid%r2(i)/grid%r(i)**2-1.d0) > eps8 ) &
call errore('check_mesh',' r2(i) is different ',i)
if (abs(grid%sqr(i)/sqrt(grid%r(i))-1.d0) > eps8 ) &
call errore('check_mesh',' sqr(i) is different ',i)
if (abs(grid%rab(i)/(grid%r(i)*grid%dx)-1.d0) > eps8 ) &
call errore('check_mesh',' rab(i) is different ',i)
end do
return
end subroutine check_mesh
!
! Solution of the Poisson's equation on a radial (logarithmic) grid
!---------------------------------------------------------------
subroutine hartree(k,nst,mesh,grid,f,vh)
!---------------------------------------------------------------
!
use kinds, only : DP
! use radial_grids, only: radial_grid_type
implicit none
integer,intent(in):: &
k, & ! input: the k of the equation
nst, & ! input: at low r, f goes as r**nst
mesh ! input: the dimension of the mesh
type(radial_grid_type), intent(in) :: &
grid ! input: the radial grid
real(DP), intent(in):: &
f(mesh) ! input: the 4\pi r2 \rho function
real(DP), intent(out):: &
vh(mesh) ! output: the required solution
!
! local variables
!
integer :: &
k21, & ! 2k+1
nk1, & ! nst-k-1
ierr, & ! integer variable for allocation control
i ! counter
real(DP):: &
c0,c2,c3, & ! coefficients of the polynomial expansion close to r=0
ch, & ! dx squared / 12.0
xkh2, & ! ch * f
ei, di, & ! auxiliary variables for the diagonal and
! off diagonal elements of the matrix
f1, fn, & ! variables used for the boundary condition
vhim1, vhi ! variables for the right hand side
real(DP), allocatable:: &
d(:), & ! the diagonal elements of
! the tridiagonal sys.
e(:) ! the off diagonal elements
! of the trid. sys.
!
! Allocate space for the diagonal and off diagonal elements
!
if (mesh.ne.grid%mesh) call errore('hartree',' grid dimension mismatch',1)
allocate(d(mesh),stat=ierr)
allocate(e(mesh),stat=ierr)
if (ierr.ne.0) call errore('hartree',' error allocating d or e',1)
!
! Find the series expansion of the solution close to r=0
!
k21=2*k+1
nk1=nst-k-1
if(nk1.le.0) then
write(6,100) k,nst
100 format(5x,'stop in "hartree": k=',i3,' nst=',i3)
stop
!else if(nk1.ge.4) then
! not sure whether the following is really correct, but the above wasn't
else if(nk1.ge.3) then
c2=0.0_dp
c3=0.0_dp
else
e(1)=0.0_dp
do i=1,4
d(i)=-k21*f(i)/grid%r(i)**nst
end do
call series(d,grid%r,grid%r2,e(nk1))
c2=e(1)/(4.0_dp*k+6.0_dp)
c3=e(2)/(6.0_dp*k+12.0_dp)
end if
!
! Set the main auxiliary parameters
!
ch=grid%dx*grid%dx/12.0_dp
xkh2=ch*(DBLE(k)+0.5_dp)**2
ei=1.0_dp-xkh2
di=-(2.0_dp+10.0_dp*xkh2)
!
! Set the diagonal and the off diagonal elements of the
! linear system, compute a part of the right hand side
!
do i=2,mesh
d(i)=-di
e(i)=-ei
vh(i)=k21*ch*grid%sqr(i)*f(i)
end do
!
! Use the boundary condition to eliminate the value of the
! solution in the first point from the first equation. This
! part for the diagonal element
!
f1=(grid%sqr(1)/grid%sqr(2))**k21
d(2)=d(2)-ei*f1
!
! Use the boundary condition to eliminate the value of the
! solution in the last point from the last equation
!
fn=(grid%sqr(mesh-1)/grid%sqr(mesh))**k21
d(mesh-1)=d(mesh-1)-ei*fn
!
! In the first point vh(1) has the same definition as in the other points
!
vhim1=k21*ch*grid%sqr(1)*f(1)
!
! Compute the right hand side using the auxiliary quantity vh(i).
!
do i=2,mesh-1
vhi=vh(i)
vh(i)=vhim1+10.0_dp*vhi+vh(i+1)
vhim1=vhi
end do
!
! Use the boundary condition to eliminate the value of the solution in the
! first point from the first equation. This part for the right hand side.
!
vh(2)=vh(2)-ei*grid%sqr(1)**k21*(c2*(grid%r2(2)-grid%r2(1)) &
+c3*(grid%r(2)**3-grid%r(1)**3))
!
! solve the linear system with lapack routine dptsv
!
call dptsv(mesh-2,1,d(2),e(2),vh(2),mesh-2,ierr)
if (ierr.ne.0) call errore('hartree', 'error in lapack', ierr)
!
! Set the value of the solution at the first and last point
! First, find c0 from the solution in the second point
!
c0=vh(2)/grid%sqr(2)**k21-c2*grid%r2(2)-c3*grid%r(2)*grid%r2(2)
!
! and then use the series expansion at the first point
!
vh(1)=grid%sqr(1)**k21*(c0+c2*grid%r2(1)+c3*grid%r(1)**3)
!
! the solution at the last point is given by the boundary
! condition
!
vh(mesh)=vh(mesh-1)*fn
!
! The solution must be divided by r (from the equation)
! and multiplied by the square root of r (from the log
! mesh transformation)
!
do i=1,mesh
vh(i)= vh(i) / grid%sqr(i)
end do
deallocate(e)
deallocate(d)
return
end subroutine hartree
!
! simple routine returning the coefficient of the polynomial
! describing the leading behavior of a function f at small r.
!---------------------------------------------------------------
subroutine series(f,r,r2,b)
!---------------------------------------------------------------
!
use kinds, only : DP
implicit none
real(DP):: dr21,dr31,dr32,dr41,dr42,dr43,df21,df32,df43, &
ddf42,ddf31
real(DP):: f(4),r(4),r2(4),b(0:3)
dr21=r(2)-r(1)
dr31=r(3)-r(1)
dr32=r(3)-r(2)
dr41=r(4)-r(1)
dr42=r(4)-r(2)
dr43=r(4)-r(3)
df21=(f(2)-f(1))/dr21
df32=(f(3)-f(2))/dr32
df43=(f(4)-f(3))/dr43
ddf42=(df43-df32)/dr42
ddf31=(df32-df21)/dr31
b(3)=(ddf42-ddf31)/dr41
b(2)=ddf31-b(3)*(r(1)+r(2)+r(3))
b(1)=df21-b(2)*(r(2)+r(1))-b(3)*(r2(1)+r2(2)+r(1)*r(2))
b(0)=f(1)-r(1)*(b(1)+r(1)*(b(2)+r(1)*b(3)))
return
end subroutine series
!----------------------------------------------------------------------
!----------------------------------------------------------------------
!
! I/O routines
!
!----------------------------------------------------------------------
subroutine write_grid_on_file(iunit,grid)
! use radial_grids, only: radial_grid_type
implicit none
type(radial_grid_type), intent(in) :: grid
integer, intent(in) :: iunit
integer :: n
!
WRITE(iunit,'(i8)') grid%mesh
WRITE(iunit,'(e20.10)') grid%dx
WRITE(iunit,'(e20.10)') grid%xmin
WRITE(iunit,'(e20.10)') grid%zmesh
WRITE(iunit,'(e20.10)') (grid%r(n), n=1,grid%mesh)
WRITE(iunit,'(e20.10)') (grid%r2(n), n=1,grid%mesh)
WRITE(iunit,'(e20.10)') (grid%sqr(n), n=1,grid%mesh)
! WRITE(iunit,'(e20.10)') (grid%rab(n), n=1,grid%mesh)
return
end subroutine write_grid_on_file
subroutine read_grid_from_file(iunit,grid)
! use radial_grids, only: radial_grid_type
implicit none
type(radial_grid_type), intent(out) :: grid
integer, intent(in) :: iunit
integer :: n
!
READ(iunit,'(i8)') grid%mesh
READ(iunit,'(e20.10)') grid%dx
READ(iunit,'(e20.10)') grid%xmin
READ(iunit,'(e20.10)') grid%zmesh
READ(iunit,'(e20.10)') (grid%r(n), n=1,grid%mesh)
READ(iunit,'(e20.10)') (grid%r2(n), n=1,grid%mesh)
READ(iunit,'(e20.10)') (grid%sqr(n), n=1,grid%mesh)
! READ(iunit,'(e20.10)') (grid%rab(n), n=1,grid%mesh)
grid%rab(1:grid%mesh) = grid%r(1:grid%mesh) * grid%dx
grid%rm1(1:grid%mesh) = 1._dp/grid%r(1:grid%mesh)
grid%rm2(1:grid%mesh) = 1._dp/grid%r2(1:grid%mesh)
grid%rm3(1:grid%mesh) = 1._dp/grid%r(1:grid%mesh)**3
return
end subroutine read_grid_from_file
!----------------------------------------------------------------------
END MODULE radial_grids
|