1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
|
!
! Copyright (C) 2001-2012 Quantum ESPRESSO group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!----------------------------------------------------------------------------
MODULE random_numbers
!----------------------------------------------------------------------------
!
USE kinds, ONLY : DP
!
IMPLICIT NONE
!
INTERFACE gauss_dist
!
MODULE PROCEDURE gauss_dist_scal, gauss_dist_vect
!
END INTERFACE
!
CONTAINS
!
!------------------------------------------------------------------------
FUNCTION randy ( irand )
!------------------------------------------------------------------------
!
! x=randy(n): reseed with initial seed idum=n ( 0 <= n <= ic, see below)
! if randy is not explicitly initialized, it will be
! initialized with seed idum=0 the first time it is called
! x=randy() : generate uniform real(DP) numbers x in [0,1]
!
REAL(DP) :: randy
INTEGER, optional :: irand
!
INTEGER , PARAMETER :: m = 714025, &
ia = 1366, &
ic = 150889, &
ntab = 97
REAL(DP), PARAMETER :: rm = 1.0_DP / m
INTEGER :: j
INTEGER, SAVE :: ir(ntab), iy, idum=0
LOGICAL, SAVE :: first=.true.
!
IF ( present(irand) ) THEN
idum = MIN( ABS(irand), ic)
first=.true.
END IF
IF ( first ) THEN
!
first = .false.
idum = MOD( ic - idum, m )
!
DO j=1,ntab
idum=mod(ia*idum+ic,m)
ir(j)=idum
END DO
idum=mod(ia*idum+ic,m)
iy=idum
END IF
j=1+(ntab*iy)/m
IF( j > ntab .OR. j < 1 ) call errore('randy','j out of range',ABS(j)+1)
iy=ir(j)
randy=iy*rm
idum=mod(ia*idum+ic,m)
ir(j)=idum
!
RETURN
!
END FUNCTION randy
!
!------------------------------------------------------------------------
SUBROUTINE set_random_seed ( )
!------------------------------------------------------------------------
!
! poor-man random seed for randy
!
INTEGER, DIMENSION (8) :: itime
INTEGER :: iseed, irand
!
CALL date_and_time ( values = itime )
! itime contains: year, month, day, time difference in minutes, hours,
! minutes, seconds and milliseconds.
iseed = ( itime(8) + itime(6) ) * ( itime(7) + itime(4) )
irand = randy ( iseed )
!
END SUBROUTINE set_random_seed
!
!-----------------------------------------------------------------------
FUNCTION gauss_dist_scal( mu, sigma )
!-----------------------------------------------------------------------
!
! ... this function generates a number taken from a normal
! ... distribution of mean value \mu and variance \sigma
!
IMPLICIT NONE
!
REAL(DP), INTENT(IN) :: mu
REAL(DP), INTENT(IN) :: sigma
REAL(DP) :: gauss_dist_scal
!
REAL(DP) :: x1, x2, w
!
!
gaussian_loop: DO
!
x1 = 2.0_DP * randy() - 1.0_DP
x2 = 2.0_DP * randy() - 1.0_DP
!
w = x1 * x1 + x2 * x2
!
IF ( w < 1.0_DP ) EXIT gaussian_loop
!
END DO gaussian_loop
!
w = SQRT( ( - 2.0_DP * LOG( w ) ) / w )
!
gauss_dist_scal = x1 * w * sigma + mu
!
RETURN
!
END FUNCTION gauss_dist_scal
!
!-----------------------------------------------------------------------
FUNCTION gauss_dist_vect( mu, sigma, dim )
!-----------------------------------------------------------------------
!
! ... this function generates an array of numbers taken from a normal
! ... distribution of mean value \mu and variance \sigma
!
IMPLICIT NONE
!
REAL(DP), INTENT(IN) :: mu
REAL(DP), INTENT(IN) :: sigma
INTEGER, INTENT(IN) :: dim
REAL(DP) :: gauss_dist_vect( dim )
!
REAL(DP) :: x1, x2, w
INTEGER :: i
!
!
DO i = 1, dim, 2
!
gaussian_loop: DO
!
x1 = 2.0_DP * randy() - 1.0_DP
x2 = 2.0_DP * randy() - 1.0_DP
!
w = x1 * x1 + x2 * x2
!
IF ( w < 1.0_DP ) EXIT gaussian_loop
!
END DO gaussian_loop
!
w = SQRT( ( - 2.0_DP * LOG( w ) ) / w )
!
gauss_dist_vect(i) = x1 * w * sigma
!
IF ( i >= dim ) EXIT
!
gauss_dist_vect(i+1) = x2 * w * sigma
!
END DO
!
gauss_dist_vect(:) = gauss_dist_vect(:) + mu
!
RETURN
!
END FUNCTION gauss_dist_vect
!
END MODULE random_numbers
|