File: uspp.f90

package info (click to toggle)
espresso 5.1%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 146,004 kB
  • ctags: 17,245
  • sloc: f90: 253,041; sh: 51,271; ansic: 27,494; tcl: 15,570; xml: 14,508; makefile: 2,958; perl: 2,035; fortran: 1,924; python: 337; cpp: 200; awk: 57
file content (341 lines) | stat: -rw-r--r-- 11,426 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
!
! Copyright (C) 2004-2011 Quantum ESPRESSO group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
MODULE uspp_param
  !
  ! ... Ultrasoft and Norm-Conserving pseudopotential parameters
  !  
  USE kinds,        ONLY : DP
  USE parameters,   ONLY : npsx
  USE pseudo_types, ONLY : pseudo_upf
  !
  SAVE
  PUBLIC :: n_atom_wfc
  !
  TYPE (pseudo_upf),  ALLOCATABLE, TARGET :: upf(:)

  INTEGER :: &
       nh(npsx),             &! number of beta functions per atomic type
       nhm,                  &! max number of different beta functions per atom
       nbetam,               &! max number of beta functions
       iver(3,npsx)           ! version of the atomic code
  INTEGER :: &
       lmaxkb,               &! max angular momentum
       lmaxq                  ! max angular momentum + 1 for Q functions
  LOGICAL :: &
       newpseudo(npsx),      &! if .TRUE. multiple projectors are allowed
       oldvan(npsx)           ! old version of Vanderbilt PPs, using 
                              ! Herman-Skillman grid - obsolescent
  INTEGER :: &
       nvb,                  &! number of species with Vanderbilt PPs (CPV)
       ish(npsx)              ! for each specie the index of the first beta 
                              ! function: ish(1)=1, ish(i)=1+SUM(nh(1:i-1))
CONTAINS
  !
  !----------------------------------------------------------------------------
  FUNCTION n_atom_wfc( nat, ityp, noncolin )
  !----------------------------------------------------------------------------
  !
  ! ... Find number of starting atomic orbitals
  !
  IMPLICIT NONE
  !
  INTEGER, INTENT(IN)  :: nat, ityp(nat)
  LOGICAL, INTENT(IN), OPTIONAL  :: noncolin
  INTEGER  :: n_atom_wfc
  !
  INTEGER  :: na, nt, n
  LOGICAL  :: non_col
  !
  !
  non_col = .FALSE.
  IF ( PRESENT (noncolin) ) non_col=noncolin
  n_atom_wfc = 0
  !
  DO na = 1, nat
     !
     nt = ityp(na)
     !
     DO n = 1, upf(nt)%nwfc
        !
        IF ( upf(nt)%oc(n) >= 0.D0 ) THEN
           !
           IF ( non_col ) THEN
              !
              IF ( upf(nt)%has_so ) THEN
                 !
                 n_atom_wfc = n_atom_wfc + 2 * upf(nt)%lchi(n)
                 !
                 IF ( ABS( upf(nt)%jchi(n)-upf(nt)%lchi(n) - 0.5D0 ) < 1.D-6 ) &
                    n_atom_wfc = n_atom_wfc + 2
                 !
              ELSE
                 !
                 n_atom_wfc = n_atom_wfc + 2 * ( 2 * upf(nt)%lchi(n) + 1 )
                 !
              END IF
              !
           ELSE
              !
              n_atom_wfc = n_atom_wfc + 2 * upf(nt)%lchi(n) + 1
              !
           END IF
        END IF
     END DO
  END DO
  !
  RETURN
  !
  END FUNCTION n_atom_wfc
END MODULE uspp_param

! <<<<<<<<<<<<<<<~~~~<<<<<<<<<<<<<<<<-----------------

MODULE uspp
  !
  ! Ultrasoft PPs:
  ! - Clebsch-Gordan coefficients "ap", auxiliary variables "lpx", "lpl"
  ! - beta and q functions of the solid
  !
  USE kinds, ONLY: DP
  USE parameters, ONLY: lmaxx, lqmax
  IMPLICIT NONE
  PRIVATE
  SAVE
  PUBLIC :: nlx, lpx, lpl, ap, aainit, indv, nhtol, nhtolm, indv_ijkb0, &
            nkb, nkbus, vkb, dvan, deeq, qq, nhtoj, ijtoh, beta, &
            becsum, deallocate_uspp
       
  PUBLIC :: okvan, nlcc_any
  PUBLIC :: qq_so, dvan_so, deeq_nc 
  PUBLIC :: dbeta
  INTEGER, PARAMETER :: &
       nlx  = (lmaxx+1)**2, &! maximum number of combined angular momentum
       mx   = 2*lqmax-1      ! maximum magnetic angular momentum of Q
  INTEGER ::             &! for each pair of combined momenta lm(1),lm(2): 
       lpx(nlx,nlx),     &! maximum combined angular momentum LM
       lpl(nlx,nlx,mx)    ! list of combined angular momenta  LM
  REAL(DP) :: &
       ap(lqmax*lqmax,nlx,nlx)
  ! Clebsch-Gordan coefficients for spherical harmonics
  !
  INTEGER :: nkb,        &! total number of beta functions, with struct.fact.
             nkbus        ! as above, for US-PP only
  !
  INTEGER, ALLOCATABLE ::&
       indv(:,:),        &! indes linking  atomic beta's to beta's in the solid
       nhtol(:,:),       &! correspondence n <-> angular momentum l
       nhtolm(:,:),      &! correspondence n <-> combined lm index for (l,m)
       ijtoh(:,:,:),     &! correspondence beta indexes ih,jh -> composite index ijh
       indv_ijkb0(:)      ! first beta (index in the solid) for each atom 
  !
  LOGICAL :: &
       okvan = .FALSE.,&  ! if .TRUE. at least one pseudo is Vanderbilt
       nlcc_any=.FALSE.   ! if .TRUE. at least one pseudo has core corrections
  !
  COMPLEX(DP), ALLOCATABLE, TARGET :: &
       vkb(:,:)                ! all beta functions in reciprocal space
  REAL(DP), ALLOCATABLE :: &
       becsum(:,:,:)           ! \sum_i f(i) <psi(i)|beta_l><beta_m|psi(i)>
  REAL(DP), ALLOCATABLE :: &
       dvan(:,:,:),           &! the D functions of the solid
       deeq(:,:,:,:),         &! the integral of V_eff and Q_{nm} 
       qq(:,:,:),             &! the q functions in the solid
       nhtoj(:,:)              ! correspondence n <-> total angular momentum
  !
  COMPLEX(DP), ALLOCATABLE :: & ! variables for spin-orbit/noncolinear case:
       qq_so(:,:,:,:),           &! Q_{nm}
       dvan_so(:,:,:,:),         &! D_{nm}
       deeq_nc(:,:,:,:)           ! \int V_{eff}(r) Q_{nm}(r) dr 
  !
  ! spin-orbit coupling: qq and dvan are complex, qq has additional spin index
  ! noncolinear magnetism: deeq is complex (even in absence of spin-orbit)
  !
  REAL(DP), ALLOCATABLE :: &
       beta(:,:,:)           ! beta functions for CP (without struct.factor)
  REAL(DP), ALLOCATABLE :: &
       dbeta(:,:,:,:,:)      ! derivative of beta functions w.r.t. cell for CP (without struct.factor)
  !
CONTAINS
  !
  !-----------------------------------------------------------------------
  subroutine aainit(lli)
    !-----------------------------------------------------------------------
    !
    ! this routine computes the coefficients of the expansion of the product
    ! of two real spherical harmonics into real spherical harmonics.
    !
    !     Y_limi(r) * Y_ljmj(r) = \sum_LM  ap(LM,limi,ljmj)  Y_LM(r)
    !
    ! On output:
    ! ap     the expansion coefficients
    ! lpx    for each input limi,ljmj is the number of LM in the sum
    ! lpl    for each input limi,ljmj points to the allowed LM
    !
    ! The indices limi,ljmj and LM assume the order for real spherical
    ! harmonics given in routine ylmr2
    !
    implicit none
    !
    ! input: the maximum li considered
    !  
    integer :: lli
    !
    ! local variables
    !
    integer :: llx, l, li, lj
    real(DP) , allocatable :: r(:,:), rr(:), ylm(:,:), mly(:,:)
    ! an array of random vectors: r(3,llx)
    ! the norm of r: rr(llx)
    ! the real spherical harmonics for array r: ylm(llx,llx)
    ! the inverse of ylm considered as a matrix: mly(llx,llx)
    real(DP) :: dum
    !
    if (lli < 0) call errore('aainit','lli not allowed',lli)

    if (lli*lli > nlx) call errore('aainit','nlx is too small ',lli*lli)

    llx = (2*lli-1)**2
    if (2*lli-1 > lqmax) &
         call errore('aainit','ap leading dimension is too small',llx)

    allocate (r( 3, llx ))    
    allocate (rr( llx ))    
    allocate (ylm( llx, llx ))    
    allocate (mly( llx, llx ))    

    r(:,:)   = 0.0_DP
    ylm(:,:) = 0.0_DP
    mly(:,:) = 0.0_DP
    ap(:,:,:)= 0.0_DP

    ! - generate an array of random vectors (uniform deviate on unitary sphere)

    call gen_rndm_r(llx,r,rr)

    ! - generate the real spherical harmonics for the array: ylm(ir,lm)

    call ylmr2(llx,llx,r,rr,ylm)

    !-  store the inverse of ylm(ir,lm) in mly(lm,ir)

    call invmat(llx, ylm, mly, dum)

    !-  for each li,lj compute ap(l,li,lj) and the indices, lpx and lpl
    do li = 1, lli*lli
       do lj = 1, lli*lli
          lpx(li,lj)=0
          do l = 1, llx
             ap(l,li,lj) = compute_ap(l,li,lj,llx,ylm,mly)
             if (abs(ap(l,li,lj)) > 1.d-3) then
                lpx(li,lj) = lpx(li,lj) + 1
                if (lpx(li,lj) > mx) &
                     call errore('aainit','mx dimension too small', lpx(li,lj))
                lpl(li,lj,lpx(li,lj)) = l
             end if
          end do
       end do
    end do
    
    deallocate(mly)
    deallocate(ylm)
    deallocate(rr)
    deallocate(r)
    
    return
  end subroutine aainit
  !
  !-----------------------------------------------------------------------
  subroutine gen_rndm_r(llx,r,rr)
    !-----------------------------------------------------------------------
    ! - generate an array of random vectors (uniform deviate on unitary sphere)
    !
    USE constants,      ONLY: tpi
    USE random_numbers, ONLY: randy
    
    implicit none
    !
    ! first the I/O variables
    !
    integer :: llx         ! input: the dimension of r and rr
    
    real(DP) :: &
         r(3,llx),  &! output: an array of random vectors
         rr(llx)    ! output: the norm of r
    !
    ! here the local variables
    !
    integer :: ir
    real(DP) :: costheta, sintheta, phi
    
    do ir = 1, llx
       costheta = 2.0_DP * randy() - 1.0_DP
       sintheta = SQRT ( 1.0_DP - costheta*costheta)
       phi = tpi * randy()
       r (1,ir) = sintheta * cos(phi)
       r (2,ir) = sintheta * sin(phi)
       r (3,ir) = costheta
       rr(ir)   = 1.0_DP
    end do
    
    return
  end subroutine gen_rndm_r
  !
  !-----------------------------------------------------------------------
  function compute_ap(l,li,lj,llx,ylm,mly)
    !-----------------------------------------------------------------------
    !-  given an l and a li,lj pair compute ap(l,li,lj)
    implicit none
    !
    ! first the I/O variables
    !
    integer :: &
         llx,         &! the dimension of ylm and mly
         l,li,lj       ! the arguments of the array ap
    
    real(DP) :: &
         compute_ap,  &! this function
         ylm(llx,llx),&! the real spherical harmonics for array r
         mly(llx,llx)  ! the inverse of ylm considered as a matrix
    !
    ! here the local variables
    !
    integer :: ir
    
    compute_ap = 0.0_DP
    do ir = 1,llx
       compute_ap = compute_ap + mly(l,ir)*ylm(ir,li)*ylm(ir,lj)
    end do
    
    return
  end function compute_ap
  !
  !-----------------------------------------------------------------------
  SUBROUTINE deallocate_uspp()
    !-----------------------------------------------------------------------
    !
    IF( ALLOCATED( nhtol ) )      DEALLOCATE( nhtol )
    IF( ALLOCATED( indv ) )       DEALLOCATE( indv )
    IF( ALLOCATED( nhtolm ) )     DEALLOCATE( nhtolm )
    IF( ALLOCATED( nhtoj ) )      DEALLOCATE( nhtoj )
    IF( ALLOCATED( indv_ijkb0 ) ) DEALLOCATE( indv_ijkb0 )
    IF( ALLOCATED( ijtoh ) )      DEALLOCATE( ijtoh )
    IF( ALLOCATED( vkb ) )        DEALLOCATE( vkb )
    IF( ALLOCATED( becsum ) )     DEALLOCATE( becsum )
    IF( ALLOCATED( qq ) )         DEALLOCATE( qq )
    IF( ALLOCATED( dvan ) )       DEALLOCATE( dvan )
    IF( ALLOCATED( deeq ) )       DEALLOCATE( deeq )
    IF( ALLOCATED( qq_so ) )      DEALLOCATE( qq_so )
    IF( ALLOCATED( dvan_so ) )    DEALLOCATE( dvan_so )
    IF( ALLOCATED( deeq_nc ) )    DEALLOCATE( deeq_nc )
    IF( ALLOCATED( beta ) )       DEALLOCATE( beta )
    IF( ALLOCATED( dbeta ) )      DEALLOCATE( dbeta )
    !
  END SUBROUTINE deallocate_uspp
  !
END MODULE uspp