File: ws_base.f90

package info (click to toggle)
espresso 5.1%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 146,004 kB
  • ctags: 17,245
  • sloc: f90: 253,041; sh: 51,271; ansic: 27,494; tcl: 15,570; xml: 14,508; makefile: 2,958; perl: 2,035; fortran: 1,924; python: 337; cpp: 200; awk: 57
file content (253 lines) | stat: -rw-r--r-- 7,808 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
!
! Copyright (C) 2009 PWSCF group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
MODULE ws_base
  !============================================================================
  !
  !   Module containing type definitions and auxiliary routines to deal with
  !   basic operations on the Wigner-Seitz cell associated to a given set
  !   of Bravais fundamental lattice vectors.
  !
  !   Should contain low level routines and no reference to other modules
  !   (with the possible exception of kinds and parameters) so as to be 
  !   call-able from any other module.
  !
  ! content:
  !
  ! - ws_type   : derived type definition used to encoded the auxiliary 
  !               quantities needed by the other WS functions or routines
  !
  ! - ws_init(a,ws) 
  !             : a routine that initializes a ws_type variable
  !
  ! - ws_clear(ws) 
  !             : a routine that un-sets a ws_type variable
  !
  ! - ws_test(ws)
  !             : a routine that tests whether a ws_type variable has been
  !               initialized
  !
  ! - ws_vect(r,ws,r_ws) 
  !             : a routine that given a vector returns an equivalent 
  !               vector inside the WS cell
  !
  ! - ws_dist(r,ws)
  !             : a routine that, given a vector, returns the shortest 
  !               distance from any point in the Bravais lattice
  !
  ! - ws_weight(r,ws)
  !             : a routine that given a vector 
  !               returns 1.0      if the vector is inside the WS cell
  !               returns 0.0      if the vector is outside the WS cell
  !               returns 1/(1+NR) if the vector is on the frontier of the 
  !                                WS cell and NR is the number of Bravais 
  !                                lattice points whose distance is the same
  !                                as the one from the origin
  !
  !============================================================================
  !
  USE kinds, ONLY: dp
  !
  IMPLICIT NONE
  !
  TYPE ws_type

    PRIVATE ! this means (I hope) that internal variables can only
            ! be accessed through calls of routines inside the module.
    REAL(DP) ::  &
        a(3,3),  & ! the fundamental Bravais lattice vectors
        aa(3,3), & ! a^T*a
        b(3,3),  & ! the inverse of a, i.e. the transponse of the fundamental 
                   ! reciprocal lattice vectors
        norm_b(3)  ! the norm of the fundamental reciprocal lattice vectors
    LOGICAL  ::  &
        initialized = .FALSE. ! .TRUE. when  initialized

  END TYPE ws_type

  PRIVATE
  PUBLIC :: ws_type, ws_init, ws_clean, ws_test, ws_vect, ws_dist, ws_weight, ws_dist_stupid

  !============================================================================
  !
 CONTAINS
!---------------------------------------------------------------
    SUBROUTINE ws_init(a,ws)
!---------------------------------------------------------------
      REAL(DP), INTENT(IN) :: a(3,3)
      TYPE(ws_type), INTENT(OUT) :: ws

      REAL(DP) :: garbage
      INTEGER :: i
      !
      ws%a = a
      CALL invmat( 3, ws%a, ws%b, garbage ) ! invmat is defined in flib
      ws%aa = MATMUL(TRANSPOSE(a),a)
      do i=1,3
         ws%norm_b(i) =  DSQRT(SUM(ws%b(i,:)*ws%b(i,:)))
      end do
      ws%initialized = .TRUE.

      RETURN
    END SUBROUTINE ws_init
!
!---------------------------------------------------------------
    SUBROUTINE ws_clean(ws)
!---------------------------------------------------------------
      TYPE(ws_type), INTENT(OUT) :: ws

      ws%initialized = .FALSE.

      RETURN
    END SUBROUTINE ws_clean
!
!---------------------------------------------------------------
    SUBROUTINE ws_test(ws)
!---------------------------------------------------------------
      TYPE(ws_type), INTENT(IN) :: ws

      IF (.NOT.ws%initialized) CALL errore &
               ('ws_test','trying to use an uninitialized ws_type variable',1)

      RETURN
    END SUBROUTINE ws_test

!---------------------------------------------------------------
    SUBROUTINE ws_vect(r,ws,r_ws)
!---------------------------------------------------------------
      REAL(DP), INTENT(IN) :: r(3)
      TYPE(ws_type), INTENT(IN) :: ws
      REAL(DP), INTENT(OUT) :: r_ws(3)
      REAL(DP) :: x(3), y(3), c, ctest
      INTEGER :: lb(3), ub(3), i1, i2, i3, m(3)

      CALL ws_test(ws)

      x = MATMUL(ws%b,r)
      x(:) = x(:) - NINT(x(:))
      c  = SUM(x*MATMUL(ws%aa,x))
      m = 0

      lb(:) =  NINT ( x(:) - DSQRT (c) * ws%norm_b(:) )
            ! CEILING should be enough for lb but NINT might be safer
      ub(:) =  NINT ( x(:) + DSQRT (c) * ws%norm_b(:) )
            ! FLOOR should be enough for ub but NINT might be safer

      DO i1 = lb(1), ub(1)
         DO i2 = lb(2), ub(2)
            DO i3 = lb(3), ub(3)
               y = x - (/i1,i2,i3/)
               ctest = SUM(y*MATMUL(ws%aa,y))
               IF (ctest < c) THEN
                  c = ctest
                  m = (/i1,i2,i3/)
               END IF
            END DO
         END DO
      END DO

      y = x-m
      r_ws =  MATMUL(ws%a,y)

      RETURN
    END SUBROUTINE ws_vect
!
!---------------------------------------------------------------
    FUNCTION ws_dist_stupid(r,ws)
!---------------------------------------------------------------
      REAL(DP), INTENT(IN) :: r(3)
      TYPE(ws_type), INTENT(IN) :: ws
      REAL(DP) :: ws_dist_stupid
      REAL(DP) :: r_ws(3)
 
      integer :: i1,i2,i3
      real(DP) :: rr, rmin, rtest(3)

      CALL ws_test(ws)

      rmin = 1.d+9
      
      do i1=-3,3
      do i2=-3,3
      do i3=-3,3
         rtest(:) = r(:) + ws%a(:,1)*i1 + ws%a(:,2)*i2 + ws%a(:,3)*i3
         rr = sum(rtest(:)**2)
         if (rr < rmin) rmin = rr
      end do
      end do
      end do

      ws_dist_stupid = DSQRT(rmin)

      RETURN
    END FUNCTION ws_dist_stupid
!
!---------------------------------------------------------------
    FUNCTION ws_dist(r,ws)
!---------------------------------------------------------------
      REAL(DP), INTENT(IN) :: r(3)
      TYPE(ws_type), INTENT(IN) :: ws
      REAL(DP) :: ws_dist
      REAL(DP) :: r_ws(3)

      CALL ws_test(ws)

      CALL ws_vect(r,ws,r_ws)

      ws_dist = DSQRT(SUM(r_ws**2))

      RETURN
    END FUNCTION ws_dist
!
!---------------------------------------------------------------
    FUNCTION ws_weight(r,ws)
!---------------------------------------------------------------
      REAL(DP), INTENT(IN) :: r(3)
      TYPE(ws_type), INTENT(IN) :: ws
      REAL(DP) :: ws_weight

      REAL(DP) :: x(3), y(3), c, ctest
      INTEGER :: lb(3), ub(3), i1, i2, i3, m(3)

      REAL(DP), PARAMETER  :: eps6  = 1.0E-6_DP

      ws_weight = 0.0_DP

      CALL ws_test(ws)

      x = MATMUL(ws%b,r)
      c  = SUM(x*MATMUL(ws%aa,x))

      lb(:) =  NINT ( x(:) - DSQRT (c) * ws%norm_b(:) )
            ! CEILING should be enough for lb but NINT might be safer
      ub(:) =  NINT ( x(:) + DSQRT (c) * ws%norm_b(:) )
            ! FLOOR should be enough for ub but NINT might be safer

      DO i1 = lb(1), ub(1)
         DO i2 = lb(2), ub(2)
            DO i3 = lb(3), ub(3)
               y = x - (/i1,i2,i3/)
               ctest = SUM(y*MATMUL(ws%aa,y))
               IF (ctest < c - eps6 ) THEN
                  ws_weight = 0.0_DP
                  RETURN
               END IF
               IF (ctest < c + eps6 ) THEN
                  ws_weight = ws_weight + 1.0_DP
               END IF
            END DO
         END DO
      END DO

      IF (ws_weight == 0.0_DP) CALL errore ('ws_weight','unexpected error',1)

      ws_weight = 1.0_dp / ws_weight

      RETURN
    END FUNCTION ws_weight
!
END MODULE ws_base