File: dirsol.f90

package info (click to toggle)
espresso 5.1%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 146,004 kB
  • ctags: 17,245
  • sloc: f90: 253,041; sh: 51,271; ansic: 27,494; tcl: 15,570; xml: 14,508; makefile: 2,958; perl: 2,035; fortran: 1,924; python: 337; cpp: 200; awk: 57
file content (389 lines) | stat: -rw-r--r-- 11,866 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
!
! Copyright (C) 2002 Vanderbilt group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
! This routine has been modified in order to be compatible with the
! ld1 code. The numerical algorithm is unchanged.
! ADC Nov 2003
!
!-------------------------------------------------------------------------
!
subroutine dirsol(idim1,mesh,ncur,lcur,jcur,it,e0,thresh,grid,snl,ruae,nstop)
!
!     subroutine to compute solutions to the full dirac equation
!
!     the dirac equation in rydberg units reads:
!
!     df(r)     k                     alpha
!     ----- = + - f(r) - ( e - v(r) ) ----- g(r)
!      dr       r                       2
!
!     dg(r)     k                          4      alpha
!     ----- = - - g(r) + ( e - v(r) +  -------- ) ----- f(r)
!      dr       r                      alpha**2     2
!
!     where 
!            alpha is the fine structure constant
!            f(r) is r*minor component
!            g(r) is r*major component
!            k is quantum number 
!               k = - (l+1)    if  j = l+0.5
!               k = + l        if  j = l-0.5
!     IMPORTANT: on output, snl(:,1) contains the MAJOR component
!                           snl(:,2) contains the MINOR component
!
!----------------------------------------------------------------------------
!
use io_global, only : stdout
use kinds, only : DP
use radial_grids, only: radial_grid_type
use ld1inc, only : cau_fact, zed
implicit none
integer :: idim1 
type(radial_grid_type),intent(in)::grid
real(DP) :: ruae(idim1),  &   ! the all electron potential
            snl(idim1,2)       ! the wavefunction

real(DP) :: e0,       &     ! the starting energy eigenvalue
                 jcur,     &     ! the j of the state
                 thresh
                  
integer ::  mesh,  &          ! the dimension of the mesh 
            it,    &          ! the iteration
            ncur,  &          ! the n of the state
            lcur              ! the l of the state

real(DP) :: tbya, abyt,        &  
                 emin, emax,        &
                 zz(idim1,2,2),     &
                 tolinf,alpha2,alpha,  &
                 yy(idim1,2),       &
                 vzero,             &
                 f0,f1,f2,g0,g1,g2, &
                 gout, gpout,       &
                 gin, gpin,         &
                 factor,gamma0,     &
                 ecur,              &
                 decur, decurp          
real(DP) :: f(idim1), int_0_inf_dr

integer :: itmax, &     ! maximum number of iterations
           iter,  &     ! current iteration
           ir,    &     ! counter
           ig,    &     ! auxiliary
           kcur,  &     ! current k
           nctp,  &     ! index of the classical turning point
           nodes, &     ! the number of nodes
           ninf,  &     ! practical infinite
           nstop        ! 0 if all ok, 1 otherwise
!
!               r o u t i n e  i n i t i a l i s a t i o n
if (mesh.ne.grid%mesh) call errore('dirsol','mesh dimension is not as expected',1)
nstop=0
!
!     set the maximum number of iterations for improving wavefunctions
!
itmax = 100
!
!     set ( 2 / fine structure constant )
!tbya = 2.0_DP * 137.04_DP
tbya = 2.0_DP * cau_fact

!     set ( fine structure constant / 2 )
abyt = 1.0_DP / tbya

if (jcur.eq.lcur+0.5_DP) then
    kcur = - ( lcur + 1 )
else
    kcur = lcur
endif
!
!       set initial upper and lower bounds for the eigen value
emin = - 1.0e10_DP
emax = 1.0_DP
ecur=e0
!
do iter = 1,itmax
   yy = 0.0_DP
!
!         define the zz array
!         ===================
!
  if ( iter .eq. 1 ) then
    do ir = 1,mesh
       zz(ir,1,1) = grid%rab(ir) * DBLE(kcur) / grid%r(ir)
       zz(ir,2,2) = - zz(ir,1,1)
    enddo
  endif
  do ir = 1,mesh
     zz(ir,1,2) = - grid%rab(ir) * ( ecur - ruae(ir) ) * abyt
     zz(ir,2,1) = - zz(ir,1,2) + grid%rab(ir) * tbya
  enddo
!
!   ==============================================
!   classical turning point and practical infinity
!   ==============================================
!
  do nctp = mesh,10,-1
     if ( zz(nctp,1,2) .lt. 0.0_DP ) goto 240
  enddo
  call errore('dirsol', 'no classical turning point found', 1)
!
!         jump point out of classical turning point loop
240   continue

  if ( nctp .gt. mesh - 10 ) then 
!     write(stdout,*) 'State nlk=', ncur, lcur, kcur, nctp, mesh
!     write(stdout,*) 'ecur, ecurmax=', ecur, ruae(mesh-10)
     write(stdout,*) 'classical turning point too close to mesh',ncur,lcur,kcur
     snl=0.0_DP
     e0=e0-0.2_DP
     nstop=1
     goto 700
  endif
!
  tolinf = log(thresh) ** 2
  do ninf = nctp+10,mesh
     alpha2 = (ruae(ninf)-ecur) * (grid%r(ninf) - grid%r(nctp))**2
     if ( alpha2 .gt. tolinf ) goto 260
  enddo
!
!         jump point out of practical infinity loop
260     continue
!
  if (ninf.gt.mesh) ninf=mesh
!
!         ===========================================================
!         analytic start up of minor and major components from origin
!         ===========================================================
!
!         with finite nucleus so potential constant at origin we have
!
!         f(r) = sum_n f_n r ** ( ig + n )
!         g(r) = sum_n g_n r ** ( ig + n )
!
!         with
!
!         f_n+1 = - (ecur-v(0)) * abyt * g_n / ( ig - kcur + n + 1 )
!         g_n+1 = (ecur-v(0)+tbya**2 ) * abyt * f_n / ( ig + kcur + n + 1)
!
!         if kcur > 0  ig = + kcur , f_0 = 1 , g_0 = 0
!         if kcur < 0  ig = - kcur , f_0 = 0 , g_1 = 1
!
!    Uncomment the following instruction if you need this boundary conditions
!
!  vzero = ruae(1) 
!
!         set f0 and g0
!  if ( kcur .lt. 0 ) then
!     ig = - kcur
!     f0 = 0
!     g0 = 1
!  else
!     ig = kcur
!     f0 = 1
!     g0 = 0
!  endif
! 
!  f1 = - (ecur-vzero) * abyt * g0 / DBLE( ig - kcur + 1 )
!  g1 = (ecur-vzero+tbya**2) * abyt * f0 / DBLE( ig + kcur + 1 )
!  f2 = - (ecur-vzero) * abyt * g1 / DBLE( ig - kcur + 2 )
!  g2 = (ecur-vzero+tbya**2) * abyt * f1 / DBLE( ig + kcur + 2 )
!
!
!  do ir = 1,5
!     yy(ir,1) = grid%r(ir)**ig * ( f0 + grid%r(ir) * ( f1 + grid%r(ir) * f2 ) )
!     yy(ir,2) = grid%r(ir)**ig * ( g0 + grid%r(ir) * ( g1 + grid%r(ir) * g2 ) )
!  enddo

!
!  The following boundary conditions are for the Coulomb nuclear potential
!  ADC 05/10/2007
!
   vzero = ruae(1)+zed*2.0_DP/grid%r(1) 
!
  gamma0=sqrt(kcur**2-4.0_DP*(abyt*zed)**2)
  if ( kcur .lt. 0 ) then
     ig = - kcur
     f0 = (kcur+gamma0)/(2.0_DP*abyt*zed)
     g0 = 1.0_DP
  else
     ig = kcur
     f0 = 1.0_DP
     g0 = (kcur-gamma0)/(2.0_DP*abyt*zed)
  endif
! 
  f1 = - (ecur-vzero) * abyt * g0 / ( gamma0 - kcur + 1.0_DP )
  g1 = (ecur-vzero+tbya**2) * abyt * f0 / ( gamma0 + kcur + 1.0_DP )
  f2 = - (ecur-vzero) * abyt * g1 / ( gamma0 - kcur + 2.0_DP )
  g2 = (ecur-vzero+tbya**2) * abyt * f1 / ( gamma0 + kcur + 2.0_DP )
!
!
  do ir = 1,5
     yy(ir,1) = grid%r(ir)**gamma0*(f0+grid%r(ir)*(f1+grid%r(ir)*f2))
     yy(ir,2) = grid%r(ir)**gamma0*(g0+grid%r(ir)*(g1+grid%r(ir)*g2))
  enddo

!         ===========================
!         outward integration to nctp
!         ===========================
!
!         fifth order predictor corrector integration routine
  call cfdsol(zz,yy,6,nctp,idim1)
!
!         save major component and its gradient at nctp
  gout = yy(nctp,2)
  gpout = zz(nctp,2,1)*yy(nctp,1) + zz(nctp,2,2)*yy(nctp,2)
  gpout = gpout / grid%rab(nctp)
!
!   ==============================================
!   start up of wavefunction at practical infinity
!   ==============================================
!
  do ir = ninf,ninf-4,-1
     alpha = sqrt( ruae(ir) - ecur )
     yy(ir,2) = exp ( - alpha * ( grid%r(ir) - grid%r(nctp) ) )
     yy(ir,1) = ( DBLE(kcur)/grid%r(ir) - alpha ) * yy(ir,2)*tbya / &
  &               ( ecur - ruae(ir) + tbya ** 2 )
  enddo
!
!         ==========================
!         inward integration to nctp
!         ==========================
!
!         fifth order predictor corrector integration routine
  call cfdsol(zz,yy,ninf-5,nctp,idim1)
!
!         save major component and its gradient at nctp
  gin = yy(nctp,2)
  gpin = zz(nctp,2,1)*yy(nctp,1) + zz(nctp,2,2)*yy(nctp,2)
  gpin = gpin / grid%rab(nctp)
!
!
!         ===============================================
!         rescale tail to make major component continuous
!         ===============================================
!
  factor = gout / gin
  do ir = nctp,ninf
     yy(ir,1) = factor * yy(ir,1)
     yy(ir,2) = factor * yy(ir,2)
  enddo
!
  gpin = gpin * factor
!
!         =================================
!         check that the number of nodes ok
!         =================================
!
!         count the number of nodes in major component
  call nodeno(yy(1,2),1,ninf,nodes,idim1)
 
  if ( nodes .lt. ncur - lcur - 1 ) then
!           energy is too low
     emin = ecur
!         write(stdout,*) 'energy too low'
!         write(stdout,'(i5,3f12.5,2i5)') &
!    &         iter,emin,ecur,emax,nodes,ncur-lcur-1
     if ( ecur * 0.9_DP .gt. emax ) then
         ecur = 0.5_DP * ecur + 0.5_DP * emax 
     else
         ecur = 0.9_DP * ecur
     endif
     goto 370
  endif
!
  if ( nodes .gt. ncur - lcur - 1 ) then
!           energy is too high
     emax = ecur
!         
!         write(stdout,*) 'energy too high'
!         write(stdout,'(i5,3f12.5,2i5)') &
!    &         iter,emin,ecur,emax,nodes,ncur-lcur-1
     if ( ecur * 1.1_DP .lt. emin ) then
        ecur = 0.5_DP * ecur + 0.5_DP * emin
     else
        ecur = 1.1_DP * ecur
     endif
     goto 370
  endif
!
!
!         =======================================================
!         find normalisation of wavefunction 
!         =======================================================
!
   do ir = 1,ninf
      f(ir) = (yy(ir,1)**2 + yy(ir,2)**2)
   enddo
   factor=int_0_inf_dr(f,grid,ninf,2*ig)
!
!
!         =========================================
!         variational improvement of the eigenvalue
!         =========================================
!
   decur = gout * ( gpout - gpin ) / factor
!
!         to prevent convergence problems:
!         do not allow decur to exceed 20% of | ecur |
!         do not allow decur to exceed 70% of distance to emin or emax
   if (decur.gt.0.0_DP) then
      emin=ecur
      decurp=min(decur,-0.2_DP*ecur,0.7_DP*(emax-ecur))
   else
      emax=ecur
      decurp=-min(-decur,-0.2_DP*ecur,0.7_DP*(ecur-emin))
   endif
!
!         write(stdout,'(i5,3f12.5,1p2e12.4)') &
!    &         iter,emin,ecur,emax,decur,decurp
!
!         test to see whether eigenvalue converged
   if ( abs(decur) .lt. thresh ) goto 400
 
   ecur = ecur + decurp
!
!         jump point from node check
370  continue
!
!         =======================================================
!         check that the iterative loop is not about to terminate
!         =======================================================
!
   if ( iter .eq. itmax ) then
!           eigenfunction has not converged in allowed number of iterations
            
!      write(stdout,999) it,ncur,lcur,jcur,e0,ecur
!999   format('iter',i4,' state',i4,i4,f4.1,' could not be converged.',/,   &
!    &      ' starting energy for calculation was',f10.5, &
!    &      ' and end value =',f10.5)
       write(stdout,*) 'state nlj',ncur,lcur,jcur, ' not converged'
       snl=0.0_DP
       nstop=1
       goto 700
   endif
!
!       close iterative loop
enddo
!
!       jump point on successful convergence of eigenvalue
400   continue
!
!   normalize the wavefunction and exit. Note also that in this routine
!   yy(.,1) is the small component
!   yy(.,2) is the large component
!   
!      
snl=0.0_DP
do ir=1,mesh
   snl(ir,1)=yy(ir,2)/sqrt(factor)
   snl(ir,2)=yy(ir,1)/sqrt(factor)
enddo
e0=ecur
700 continue
return
end subroutine dirsol