1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042
|
! Copyright (C) 2001-2009 Quantum ESPRESSO group
! Copyright (C) 2015 Brian Kolb, Timo Thonhauser
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
! ----------------------------------------------------------------------
MODULE vdW_DF
! This module calculates the non-local correlation contribution to the
! energy and potential according to
!
! M. Dion, H. Rydberg, E. Schroeder, D. C. Langreth, and
! B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004).
!
! henceforth referred to as DION. Further information about the
! functional and its corresponding potential can be found in:
!
! T. Thonhauser, V.R. Cooper, S. Li, A. Puzder, P. Hyldgaard,
! and D.C. Langreth, Phys. Rev. B 76, 125112 (2007).
!
! The proper spin extension of vdW-DF, i.e. svdW-DF, is derived in
!
! T. Thonhauser, S. Zuluaga, C.A. Arter, K. Berland, E. Schroder,
! and P. Hyldgaard, Phys. Rev. Lett. 115, 136402 (2015).
!
! henceforth referred to as THONHAUSER.
!
!
! Two review article show many of the vdW-DF applications:
!
! D. C. Langreth et al., J. Phys.: Condens. Matter 21, 084203 (2009).
!
! K. Berland et al, Rep. Prog. Phys. 78, 066501 (2015).
!
!
! The method implemented is based on the method of G. Roman-Perez and
! J. M. Soler described in:
!
! G. Roman-Perez and J. M. Soler, PRL 103, 096102 (2009).
!
! henceforth referred to as SOLER.
!
!
! There are a number of subroutines in this file. All are used only by
! other subroutines here except for the xc_vdW_DF subroutine, which is
! the driver routine for the vdW-DF calculations and is called from
! v_of_rho. This routine handles setting up the parallel run (if any)
! and carries out the calls necessary to calculate the non-local
! correlation contributions to the energy and potential.
USE kinds, ONLY : dp
USE constants, ONLY : pi, e2
USE kernel_table, ONLY : q_mesh, Nr_points, Nqs, r_max, q_cut, q_min, kernel, d2phi_dk2, dk
USE mp, ONLY : mp_bcast, mp_sum, mp_barrier
USE mp_bands, ONLY : intra_bgrp_comm
USE io_global, ONLY : stdout, ionode
USE fft_base, ONLY : dfftp
USE fft_interfaces, ONLY : fwfft, invfft
USE control_flags, ONLY : iverbosity, gamma_only
implicit none
REAL(DP), PARAMETER :: epsr =1.d-12 ! a small number to cut off densities
integer :: vdw_type = 1
private
public :: xc_vdW_DF, xc_vdW_DF_spin, stress_vdW_DF, interpolate_kernel, &
vdw_type, initialize_spline_interpolation
CONTAINS
! ####################################################################
! | |
! | functions |
! |_____________|
!
! Functions to be used in get_q0_on_grid and get_q0_on_grid_spin().
function Fs(s)
implicit none
real(dp) :: s, Fs, Z_ab
real(dp) :: fa=0.1234D0, fb=17.33D0, fc=0.163D0 ! Reparameterized values
! from JCTC 5, 2745 (2009).
if(vdw_type == 4) then
Fs = ( 1 + 15.0D0*fa*s**2 + fb*s**4 + fc*s**6 )**(1.0D0/15.0D0)
else
! ------------------------------------------------------------
! Original functional choice for Fs, as definded in DION
if (vdw_type == 1) Z_ab = -0.8491D0
if (vdw_type == 2) Z_ab = -1.887D0
Fs = 1.0D0 - Z_ab * s**2 / 9.0D0
end if
end function Fs
function dFs_ds(s)
implicit none
real(dp) :: s, dFs_ds, Z_ab
real(dp) :: fa=0.1234D0, fb=17.33D0, fc=0.163D0 ! Reparameterized values
! from JCTC 5, 2745 (2009).
if(vdw_type == 4) then
dFs_ds = ( 30.0D0*fa*s + 4.0D0*fb*s**3 + 6.0D0*fc*s**5 ) &
/ ( 15.0D0*( 1.0D0 + 15.0D0*fa*s**2 + fb*s**4 + fc*s**6 )**(14.0D0/15.0D0) )
else
! ------------------------------------------------------------
! Original functional choice for Fs, as definded in DION
if (vdw_type == 1) Z_ab = -0.8491D0
if (vdw_type == 2) Z_ab = -1.887D0
dFs_ds = -2.0D0 * s * Z_ab / 9.0D0
end if
end function dFs_ds
function kF(rho)
implicit none
real(dp) :: rho, kF
kF = ( 3.0D0 * pi**2 * rho )**(1.0D0/3.0D0)
end function kF
function dkF_drho(rho)
implicit none
real(dp) :: rho, dkF_drho
dkF_drho = (1.0D0/3.0D0) * kF(rho) / rho
end function dkF_drho
function ds_drho(rho, s)
implicit none
real(dp) :: rho, s, ds_drho
ds_drho = -s * ( dkF_drho(rho) / kF(rho) + 1.0D0 / rho )
end function ds_drho
function ds_dgradrho(rho)
implicit none
real(dp) :: rho, ds_dgradrho
ds_dgradrho = 1.0D0 / (2.0D0 * kF(rho) * rho)
end function ds_dgradrho
function dqx_drho(rho, s)
implicit none
real(dp) :: rho, s, dqx_drho
dqx_drho = dkF_drho(rho) * Fs(s) + kF(rho) * dFs_ds(s) * ds_drho(rho, s)
end function dqx_drho
! ####################################################################
! | |
! | XC_VDW_DF |
! |_____________|
SUBROUTINE xc_vdW_DF (rho_valence, rho_core, etxc, vtxc, v)
USE gvect, ONLY : ngm, g
USE cell_base, ONLY : omega, tpiba
implicit none
! --------------------------------------------------------------------
! Local variables
! _
real(dp), intent(IN) :: rho_valence(:,:) !
real(dp), intent(IN) :: rho_core(:) ! PWSCF input variables
real(dp), intent(inout) :: etxc, vtxc, v(:,:) !_
integer :: i_grid, theta_i, i_proc ! Indexing variables over grid points,
! theta functions, and processors.
real(dp) :: grid_cell_volume ! The volume of the unit cell per G-grid point.
real(dp), allocatable :: q0(:) ! The saturated value of q (equations 11 and 12
! of DION). This saturation is that of
! equation 5 in SOLER.
real(dp), allocatable :: grad_rho(:,:) ! The gradient of the charge density. The
! format is as follows:
! grad_rho(cartesian_component,grid_point).
real(dp), allocatable :: potential(:) ! The vdW contribution to the potential
real(dp), allocatable :: dq0_drho(:) ! The derivative of the saturated q0
! (equation 5 of SOLER) with respect
! to the charge density (see
! get_q0_on_grid subroutine for details).
real(dp), allocatable :: dq0_dgradrho(:) ! The derivative of the saturated q0
! (equation 5 of SOLER) with respect
! to the gradient of the charge density
! (again, see get_q0_on_grid subroutine).
complex(dp), allocatable :: thetas(:,:) ! These are the functions of equation 8 of
! SOLER. They will be forward Fourier transformed
! in place to get theta(k) and worked on in
! place to get the u_alpha(r) of equation 11
! in SOLER. They are formatted as follows:
! thetas(grid_point, theta_i).
real(dp) :: Ec_nl ! The non-local vdW contribution to the energy.
real(dp), allocatable :: total_rho(:) ! This is the sum of the valence and core
! charge. This just holds the piece assigned
! to this processor.
logical, save :: first_iteration = .TRUE. ! Whether this is the first time this
! routine has been called.
! --------------------------------------------------------------------
! Check that the requested non-local functional is implemented.
if ( vdW_type /= 1 .AND. vdW_type /= 2) call errore('xc_vdW_DF','E^nl_c not implemented',1)
! --------------------------------------------------------------------
! Write out the vdW-DF imformation.
if ( ionode .AND. first_iteration ) call vdW_info
first_iteration = .FALSE.
! --------------------------------------------------------------------
! Allocate arrays. nnr is a PWSCF variable that holds the number of
! points assigned to a given processor.
allocate( q0(dfftp%nnr), dq0_drho(dfftp%nnr), dq0_dgradrho(dfftp%nnr), &
grad_rho(3,dfftp%nnr) )
allocate( total_rho(dfftp%nnr), potential(dfftp%nnr), thetas(dfftp%nnr, Nqs) )
! --------------------------------------------------------------------
! Add together the valence and core charge densities to get the total
! charge density. Note that rho_core is not the true core density and
! it is only non-zero for pseudopotentials with non-local core
! corrections.
total_rho = rho_valence(:,1) + rho_core(:)
! --------------------------------------------------------------------
! Here we calculate the gradient in reciprocal space using FFT.
call fft_gradient_r2r (dfftp, total_rho, g, grad_rho)
! --------------------------------------------------------------------
! Find the value of q0 for all assigned grid points. q is defined in
! equations 11 and 12 of DION and q0 is the saturated version of q
! defined in equation 5 of SOLER. This routine also returns the
! derivatives of the q0s with respect to the charge-density and the
! gradient of the charge-density. These are needed for the potential
! calculated below. This routine also calculates the thetas.
CALL get_q0_on_grid (total_rho, grad_rho, q0, dq0_drho, dq0_dgradrho, thetas)
! --------------------------------------------------------------------
! Carry out the integration in equation 8 of SOLER. This also turns
! the thetas array into the precursor to the u_i(k) array which is
! inverse fourier transformed to get the u_i(r) functions of SOLER
! equation 11. Add the energy we find to the output variable etxc.
call vdW_energy (thetas, Ec_nl)
etxc = etxc + Ec_nl
if (iverbosity > 0) then
call mp_sum(Ec_nl, intra_bgrp_comm)
if (ionode) then
write(stdout,'(/ / A)') " -----------------------------------------------"
write(stdout,'(A, F15.8, A)') " Non-local corr. energy = ", Ec_nl, " Ry"
write(stdout,'(A /)') " -----------------------------------------------"
end if
end if
! --------------------------------------------------------------------
! Here we calculate the potential. This is calculated via equation 10
! of SOLER, using the u_i(r) calculated from quations 11 and 12 of
! SOLER. Each processor allocates the array to be the size of the full
! grid because, as can be seen in SOLER equation 10, processors need
! to access grid points outside their allocated regions. Begin by
! FFTing the u_i(k) to get the u_i(r) of SOLER equation 11.
do theta_i = 1, Nqs
CALL invfft('Rho', thetas(:,theta_i), dfftp)
end do
call get_potential (q0, dq0_drho, dq0_dgradrho, grad_rho, thetas, potential)
v(:,1) = v(:,1) + e2 * potential(:)
! --------------------------------------------------------------------
! The integral of rho(r)*potential(r) for the vtxc output variable.
grid_cell_volume = omega/(dfftp%nr1*dfftp%nr2*dfftp%nr3)
do i_grid = 1, dfftp%nnr
vtxc = vtxc + e2 * grid_cell_volume * rho_valence(i_grid,1) * potential(i_grid)
end do
deallocate ( potential, q0, grad_rho, dq0_drho, dq0_dgradrho, total_rho, thetas )
END SUBROUTINE xc_vdW_DF
! ####################################################################
! | |
! | XC_VDW_DF_spin |
! |__________________|
!
! This subroutine is as similar to xc_vdW_DF() as possible, but
! handles the collinear nspin=2 case.
SUBROUTINE xc_vdW_DF_spin (rho_valence, rho_core, etxc, vtxc, v)
USE gvect, ONLY : ngm, g
USE cell_base, ONLY : omega, tpiba
implicit none
! --------------------------------------------------------------------
! Local variables
! _
real(dp), intent(IN) :: rho_valence(:,:) !
real(dp), intent(IN) :: rho_core(:) ! PWSCF input variables
real(dp), intent(inout) :: etxc, vtxc, v(:,:) !_
integer :: i_grid, theta_i, i_proc ! Indexing variables over grid points,
! theta functions, and processors, and a
! generic index.
real(dp) :: grid_cell_volume ! The volume of the unit cell per G-grid point.
real(dp), allocatable :: q0(:) ! The saturated value of q (equations 11 and 12
! of DION). This saturation is that of
! equation 5 in SOLER.
real(dp), allocatable :: grad_rho(:,:) ! The gradient of the charge density. The
! format is as follows:
! grad_rho(cartesian_component,grid_point)
real(dp), allocatable :: grad_rho_up(:,:) ! The gradient of the up charge density.
! Same format as grad_rho
real(dp), allocatable :: grad_rho_down(:,:) ! The gradient of the down charge density.
! Same format as grad_rho
real(dp), allocatable :: potential_up(:) ! The vdW contribution to the potential.
real(dp), allocatable :: potential_down(:) ! The vdW contribution to the potential.
real(dp), allocatable :: dq0_drho_up(:) ! The derivative of the saturated q0
real(dp), allocatable :: dq0_drho_down(:) ! (equation 5 of SOLER) with respect
! to the charge density (see
! get_q0_on_grid subroutine for details).
real(dp), allocatable :: dq0_dgradrho_up(:) ! The derivative of the saturated q0
real(dp), allocatable :: dq0_dgradrho_down(:) ! (equation 5 of SOLER) with respect
! to the gradient of the charge density
! (again, see get_q0_on_grid subroutine).
complex(dp), allocatable :: thetas(:,:) ! These are the functions of equation 8 of
! SOLER. They will be forward Fourier transformed
! in place to get theta(k) and worked on in
! place to get the u_alpha(r) of equation 11
! in SOLER. They are formatted as follows:
! thetas(grid_point, theta_i).
real(dp) :: Ec_nl ! The non-local vdW contribution to the energy.
real(dp), allocatable :: total_rho(:) ! This is the sum of the valence (up and down)
! and core charge. This just holds the piece
! assigned to this processor.
real(dp), allocatable :: rho_up(:) ! This is the just the up valence charge.
! This just holds the piece assigned
! to this processor.
real(dp), allocatable :: rho_down(:) ! This is the just the down valence charge.
! This just holds the piece assigned
! to this processor.
logical, save :: first_iteration = .TRUE. ! Whether this is the first time this
! routine has been called.
! --------------------------------------------------------------------
! Check that the requested non-local functional is implemented.
if ( vdW_type /= 1 .AND. vdW_type /= 2) call errore('xc_vdW_DF','E^nl_c not implemented',1)
! --------------------------------------------------------------------
! Write out the vdW-DF imformation.
if ( ionode .AND. first_iteration ) call vdW_info
first_iteration = .FALSE.
! --------------------------------------------------------------------
! Allocate arrays. nnr is a PWSCF variable that holds the number of
! points assigned to a given processor.
allocate( q0(dfftp%nnr), total_rho(dfftp%nnr), grad_rho(3,dfftp%nnr) )
allocate( rho_up(dfftp%nnr), rho_down(dfftp%nnr) )
allocate( dq0_drho_up (dfftp%nnr), dq0_dgradrho_up (dfftp%nnr) )
allocate( dq0_drho_down(dfftp%nnr), dq0_dgradrho_down(dfftp%nnr) )
allocate( grad_rho_up(3,dfftp%nnr), grad_rho_down(3,dfftp%nnr) )
allocate( potential_up(dfftp%nnr), potential_down(dfftp%nnr) )
allocate( thetas(dfftp%nnr, Nqs) )
! --------------------------------------------------------------------
! Add together the valence and core charge densities to get the total
! charge density. Note that rho_core is not the true core density and
! it is only non-zero for pseudopotentials with non-local core
! corrections.
rho_up = rho_valence(:,1) + 0.5D0*rho_core(:)
rho_down = rho_valence(:,2) + 0.5D0*rho_core(:)
total_rho = rho_up + rho_down
#if defined (__SPIN_BALANCED)
rho_up = total_rho*0.5D0
rho_down = rho_up
write(stdout,'(/,/," Performing spin-balanced Ecnl calculation!")')
#endif
! --------------------------------------------------------------------
! Here we calculate the gradient in reciprocal space using FFT.
call fft_gradient_r2r (dfftp, total_rho, g, grad_rho)
call fft_gradient_r2r (dfftp, rho_up, g, grad_rho_up)
call fft_gradient_r2r (dfftp, rho_down, g, grad_rho_down)
! --------------------------------------------------------------------
! Find the value of q0 for all assigned grid points. q is defined in
! equations 11 and 12 of DION and q0 is the saturated version of q
! defined in equation 5 of SOLER. In the spin case, q0 is defined by
! equation 8 (and text above that equation) of THONHAUSER. This
! routine also returns the derivatives of the q0s with respect to the
! charge-density and the gradient of the charge-density. These are
! needed for the potential calculated below.
CALL get_q0_on_grid_spin (total_rho, rho_up, rho_down, grad_rho, grad_rho_up, grad_rho_down, &
q0, dq0_drho_up, dq0_drho_down, dq0_dgradrho_up, dq0_dgradrho_down, thetas)
! --------------------------------------------------------------------
! Carry out the integration in equation 8 of SOLER. This also turns
! the thetas array into the precursor to the u_i(k) array which is
! inverse fourier transformed to get the u_i(r) functions of SOLER
! equation 11. Add the energy we find to the output variable etxc.
call vdW_energy(thetas, Ec_nl)
etxc = etxc + Ec_nl
if (iverbosity > 0) then
call mp_sum(Ec_nl, intra_bgrp_comm)
if (ionode) then
write(stdout,'(/ / A)') " -----------------------------------------------"
write(stdout,'(A, F15.8, A)') " Non-local corr. energy = ", Ec_nl, " Ry"
write(stdout,'(A /)') " -----------------------------------------------"
end if
end if
! --------------------------------------------------------------------
! Here we calculate the potential. This is calculated via equation 10
! of SOLER, using the u_i(r) calculated from quations 11 and 12 of
! SOLER. Each processor allocates the array to be the size of the full
! grid because, as can be seen in SOLER equation 10, processors need
! to access grid points outside their allocated regions. Begin by
! FFTing the u_i(k) to get the u_i(r) of SOLER equation 11.
do theta_i = 1, Nqs
CALL invfft('Rho', thetas(:,theta_i), dfftp)
end do
call get_potential (q0, dq0_drho_up , dq0_dgradrho_up , grad_rho_up , thetas, potential_up )
call get_potential (q0, dq0_drho_down, dq0_dgradrho_down, grad_rho_down, thetas, potential_down)
v(:,1) = v(:,1) + e2 * potential_up (:)
v(:,2) = v(:,2) + e2 * potential_down(:)
! --------------------------------------------------------------------
! The integral of rho(r)*potential(r) for the vtxc output variable
grid_cell_volume = omega/(dfftp%nr1*dfftp%nr2*dfftp%nr3)
do i_grid = 1, dfftp%nnr
vtxc = vtxc + e2 * grid_cell_volume * rho_valence(i_grid,1) * potential_up (i_grid) &
+ e2 * grid_cell_volume * rho_valence(i_grid,2) * potential_down(i_grid)
end do
deallocate( potential_up, potential_down, q0, grad_rho, grad_rho_up, &
grad_rho_down, dq0_drho_up, dq0_drho_down, thetas, &
dq0_dgradrho_up, dq0_dgradrho_down, total_rho, rho_up, rho_down )
END SUBROUTINE xc_vdW_DF_spin
! ####################################################################
! | |
! | GET_Q0_ON_GRID |
! |__________________|
!
! This routine first calculates the q value defined in (DION equations
! 11 and 12), then saturates it according to (SOLER equation 5). More
! specifically it calculates the following:
!
! q0(ir) = q0 as defined above
! dq0_drho(ir) = total_rho * d q0 /d rho
! dq0_dgradrho = total_rho / |grad_rho| * d q0 / d |grad_rho|
SUBROUTINE get_q0_on_grid (total_rho, grad_rho, q0, dq0_drho, dq0_dgradrho, thetas)
implicit none
real(dp), intent(IN) :: total_rho(:), grad_rho(:,:) ! Input variables needed
real(dp), intent(OUT) :: q0(:), dq0_drho(:), dq0_dgradrho(:) ! Output variables that have been allocated
! outside this routine but will be set here.
complex(dp), intent(inout):: thetas(:,:) ! The thetas from SOLER.
integer, parameter :: m_cut = 12 ! How many terms to include in the sum
! of SOLER equation 5.
real(dp) :: rho ! Local variable for the density.
real(dp) :: r_s ! Wigner–Seitz radius.
real(dp) :: s ! Reduced gradient.
real(dp) :: q, ec
real(dp) :: dq0_dq ! The derivative of the saturated
! q0 with respect to q.
integer :: i_grid, idx ! Indexing variables.
! --------------------------------------------------------------------
! Initialize q0-related arrays.
q0(:) = q_cut
dq0_drho(:) = 0.0D0
dq0_dgradrho(:) = 0.0D0
do i_grid = 1, dfftp%nnr
rho = total_rho(i_grid)
! -----------------------------------------------------------------
! This prevents numerical problems. If the charge density is
! negative (an unphysical situation), we simply treat it as very
! small. In that case, q0 will be very large and will be saturated.
! For a saturated q0 the derivative dq0_dq will be 0 so we set q0 =
! q_cut and dq0_drho = dq0_dgradrho = 0 and go on to the next
! point.
if ( rho < epsr ) cycle
! -----------------------------------------------------------------
! Calculate some intermediate values needed to find q.
r_s = ( 3.0D0 / (4.0D0*pi*rho) )**(1.0D0/3.0D0)
s = sqrt( grad_rho(1,i_grid)**2 + grad_rho(2,i_grid)**2 + grad_rho(3,i_grid)**2 ) &
/ (2.0D0 * kF(rho) * rho )
! -----------------------------------------------------------------
! This is the q value defined in equations 11 and 12 of DION.
! Use pw() from flib/functionals.f90 to get qc = kf/eps_x * eps_c.
call pw(r_s, 1, ec, dq0_drho(i_grid))
q = -4.0D0*pi/3.0D0 * ec + kF(rho) * Fs(s)
! -----------------------------------------------------------------
! Bring q into its proper bounds.
CALL saturate_q ( q, q_cut, q0(i_grid), dq0_dq )
if (q0(i_grid) < q_min) q0(i_grid) = q_min
! -----------------------------------------------------------------
! Here we find derivatives. These are actually the density times
! the derivative of q0 with respect to rho and grad_rho. The
! density factor comes in since we are really differentiating
! theta = (rho)*P(q0) with respect to density (or its gradient)
! which will be
!
! dtheta_drho = P(q0) + dP_dq0 * [rho * dq0_dq * dq_drho]
!
! and
!
! dtheta_dgrad_rho = dP_dq0 * [rho * dq0_dq * dq_dgrad_rho]
!
! The parts in square brackets are what is calculated here. The
! dP_dq0 term will be interpolated later.
dq0_drho(i_grid) = dq0_dq * rho * ( -4.0D0*pi/3.0D0 * &
(dq0_drho(i_grid) - ec)/rho + dqx_drho(rho, s) )
dq0_dgradrho(i_grid) = dq0_dq * rho * kF(rho) * dFs_ds(s) * ds_dgradrho(rho)
end do
! --------------------------------------------------------------------
! Here we calculate the theta functions of SOLER equation 8. These are
! defined as
!
! rho * P_i(q0(rho, grad_rho))
!
! where P_i is a polynomial that interpolates a Kroneker delta
! function at the point q_i (taken from the q_mesh) and q0 is the
! saturated version of q. q is defined in equations 11 and 12 of DION
! and the saturation proceedure is defined in equation 5 of SOLER.
! This is the biggest memory consumer in the method since the thetas
! array is (total # of FFT points)*Nqs complex numbers. In a parallel
! run, each processor will hold the values of all the theta functions
! on just the points assigned to it. thetas are stored in reciprocal
! space as theta_i(k) because this is the way they are used later for
! the convolution (equation 8 of SOLER). Start by interpolating the
! P_i polynomials defined in equation 3 in SOLER for the particular q0
! values we have.
CALL spline_interpolation (q_mesh, q0, thetas)
do i_grid = 1, dfftp%nnr
thetas(i_grid,:) = thetas(i_grid,:) * total_rho(i_grid)
end do
do idx = 1, Nqs
CALL fwfft ('Rho', thetas(:,idx), dfftp)
end do
END SUBROUTINE get_q0_on_grid
! ####################################################################
! | |
! | GET_Q0_ON_GRID_spin |
! |_______________________|
SUBROUTINE get_q0_on_grid_spin (total_rho, rho_up, rho_down, grad_rho, &
grad_rho_up, grad_rho_down, q0, dq0_drho_up, dq0_drho_down, &
dq0_dgradrho_up, dq0_dgradrho_down, thetas)
implicit none
real(dp), intent(IN) :: total_rho(:), grad_rho(:,:) ! Input variables.
real(dp), intent(IN) :: rho_up(:), grad_rho_up(:,:) ! Input variables.
real(dp), intent(IN) :: rho_down(:), grad_rho_down(:,:) ! Input variables.
real(dp), intent(OUT) :: q0(:), dq0_drho_up(:), dq0_drho_down(:) ! Output variables.
real(dp), intent(OUT) :: dq0_dgradrho_up(:), dq0_dgradrho_down(:) ! Output variables.
complex(dp), intent(inout) :: thetas(:,:) ! The thetas from SOLER.
real(dp) :: rho, up, down ! Local copy of densities.
real(dp) :: zeta ! Spin polarization.
real(dp) :: r_s ! Wigner-Seitz radius.
real(dp) :: q, qc, qx, qx_up, qx_down ! q for exchange and correlation.
real(dp) :: q0x_up, q0x_down ! Saturated q values.
real(dp) :: ec, fac
real(dp) :: dq0_dq, dq0x_up_dq, dq0x_down_dq ! Derivative of q0 w.r.t q.
real(dp) :: dqc_drho_up, dqc_drho_down ! Intermediate values.
real(dp) :: dqx_drho_up, dqx_drho_down ! Intermediate values.
real(dp) :: s_up, s_down ! Reduced gradients.
integer :: i_grid, idx ! Indexing variables
logical :: calc_qx_up, calc_qx_down
fac = 2.0D0**(-1.0D0/3.0D0)
! --------------------------------------------------------------------
! Initialize q0-related arrays.
q0(:) = q_cut
dq0_drho_up(:) = 0.0D0
dq0_drho_down(:) = 0.0D0
dq0_dgradrho_up(:) = 0.0D0
dq0_dgradrho_down(:) = 0.0D0
do i_grid = 1, dfftp%nnr
rho = total_rho(i_grid)
up = rho_up(i_grid)
down = rho_down(i_grid)
! -----------------------------------------------------------------
! This prevents numerical problems. If the charge density is
! negative (an unphysical situation), we simply treat it as very
! small. In that case, q0 will be very large and will be saturated.
! For a saturated q0 the derivative dq0_dq will be 0 so we set q0 =
! q_cut and dq0_drho = dq0_dgradrho = 0 and go on to the next
! point.
if ( rho < epsr ) cycle
calc_qx_up = .TRUE.
calc_qx_down = .TRUE.
if ( up < epsr/2.0D0 ) calc_qx_up = .FALSE.
if ( down < epsr/2.0D0 ) calc_qx_down = .FALSE.
! -----------------------------------------------------------------
! The spin case is numerically even more tricky and we have to
! saturate each spin channel separately. Note that we are
! saturating at a higher value here, so that very large q values
! get saturated to exactly q_cut in the second, overall saturation.
q0x_up = 0.0D0
q0x_down = 0.0D0
dqx_drho_up = 0.0D0
dqx_drho_down = 0.0D0
if (calc_qx_up) then
s_up = sqrt( grad_rho_up(1,i_grid)**2 + grad_rho_up(2,i_grid)**2 + &
grad_rho_up(3,i_grid)**2 ) / (2.0D0 * kF(up) * up)
qx_up = kF(2.0D0*up) * Fs(fac*s_up)
CALL saturate_q (qx_up, 4.0D0*q_cut, q0x_up, dq0x_up_dq)
end if
if (calc_qx_down) then
s_down = sqrt( grad_rho_down(1,i_grid)**2 + grad_rho_down(2,i_grid)**2 + &
grad_rho_down(3,i_grid)**2) / (2.0D0 * kF(down) * down)
qx_down = kF(2.0D0*down) * Fs(fac*s_down)
CALL saturate_q (qx_down, 4.0D0*q_cut, q0x_down, dq0x_down_dq)
end if
! -----------------------------------------------------------------
! This is the q value defined in equations 11 and 12 of DION and
! equation 8 of THONHAUSER (also see text above that equation).
r_s = ( 3.0D0 / (4.0D0*pi*rho) )**(1.0D0/3.0D0)
zeta = (up - down) / rho
IF ( ABS(zeta) > 1.0D0 ) zeta = SIGN(1.0D0, zeta)
call pw_spin(r_s, zeta, ec, dqc_drho_up, dqc_drho_down)
qx = ( up * q0x_up + down * q0x_down ) / rho
qc = -4.0D0*pi/3.0D0 * ec
q = qx + qc
! -----------------------------------------------------------------
! Bring q into its proper bounds.
CALL saturate_q (q, q_cut, q0(i_grid), dq0_dq)
if (q0(i_grid) < q_min) q0(i_grid) = q_min
! -----------------------------------------------------------------
! Here we find derivatives. These are actually the density times
! the derivative of q0 with respect to rho and grad_rho. The
! density factor comes in since we are really differentiating
! theta = (rho)*P(q0) with respect to density (or its gradient)
! which will be
!
! dtheta_drho = P(q0) + dP_dq0 * [rho * dq0_dq * dq_drho]
!
! and
!
! dtheta_dgrad_rho = dP_dq0 * [rho * dq0_dq * dq_dgrad_rho]
!
! The parts in square brackets are what is calculated here. The
! dP_dq0 term will be interpolated later.
if (calc_qx_up) then
dqx_drho_up = 2.0D0*dq0x_up_dq*up*dqx_drho(2.0D0*up, fac*s_up) + q0x_up*down/rho
dq0_dgradrho_up (i_grid) = 2.0D0 * dq0_dq * dq0x_up_dq * up * kF(2.0D0*up) * &
dFs_ds(fac*s_up) * ds_dgradrho(2.0D0*up)
end if
if (calc_qx_down) then
dqx_drho_down = 2.0D0*dq0x_down_dq*down*dqx_drho(2.0D0*down, fac*s_down) + q0x_down*up/rho
dq0_dgradrho_down(i_grid) = 2.0D0 * dq0_dq * dq0x_down_dq * down * kF(2.0D0*down) * &
dFs_ds(fac*s_down) * ds_dgradrho(2.0D0*down)
end if
if (calc_qx_down) dqx_drho_up = dqx_drho_up - q0x_down*down/rho
if (calc_qx_up) dqx_drho_down = dqx_drho_down - q0x_up *up /rho
dqc_drho_up = -4.0D0*pi/3.0D0 * (dqc_drho_up - ec)
dqc_drho_down = -4.0D0*pi/3.0D0 * (dqc_drho_down - ec)
dq0_drho_up (i_grid) = dq0_dq * (dqc_drho_up + dqx_drho_up )
dq0_drho_down(i_grid) = dq0_dq * (dqc_drho_down + dqx_drho_down)
end do
! --------------------------------------------------------------------
! Here we calculate the theta functions of SOLER equation 8. These are
! defined as
!
! rho * P_i(q0(rho, grad_rho))
!
! where P_i is a polynomial that interpolates a Kroneker delta
! function at the point q_i (taken from the q_mesh) and q0 is the
! saturated version of q. q is defined in equations 11 and 12 of DION
! and the saturation proceedure is defined in equation 5 of SOLER.
! This is the biggest memory consumer in the method since the thetas
! array is (total # of FFT points)*Nqs complex numbers. In a parallel
! run, each processor will hold the values of all the theta functions
! on just the points assigned to it. thetas are stored in reciprocal
! space as theta_i(k) because this is the way they are used later for
! the convolution (equation 8 of SOLER). Start by interpolating the
! P_i polynomials defined in equation 3 in SOLER for the particular q0
! values we have.
CALL spline_interpolation (q_mesh, q0, thetas)
do i_grid = 1, dfftp%nnr
thetas(i_grid,:) = thetas(i_grid,:) * total_rho(i_grid)
end do
do idx = 1, Nqs
CALL fwfft ('Rho', thetas(:,idx), dfftp)
end do
END SUBROUTINE get_q0_on_grid_spin
! ####################################################################
! | |
! | saturate_q |
! |______________|
SUBROUTINE saturate_q (q, q_cut, q0, dq0_dq)
implicit none
real(dp), intent(IN) :: q ! Input q.
real(dp), intent(IN) :: q_cut ! Cutoff q.
real(dp), intent(OUT) :: q0 ! Output saturated q.
real(dp), intent(OUT) :: dq0_dq ! Derivative of dq0/dq.
integer, parameter :: m_cut = 12 ! How many terms to include
! in the sum of SOLER equation 5.
real(dp) :: e ! Exponent.
integer :: idx ! Indexing variable.
! --------------------------------------------------------------------
! Here, we calculate q0 by saturating q according to equation 5 of
! SOLER. Also, we find the derivative dq0_dq needed for the
! derivatives dq0_drho and dq0_dgradrh0 discussed below.
e = 0.0D0
dq0_dq = 0.0D0
do idx = 1, m_cut
e = e + (q/q_cut)**idx/idx
dq0_dq = dq0_dq + (q/q_cut)**(idx-1)
end do
q0 = q_cut*(1.0D0 - exp(-e))
dq0_dq = dq0_dq * exp(-e)
END SUBROUTINE saturate_q
! ####################################################################
! | |
! | VDW_ENERGY |
! |_____________|
!
! This routine carries out the integration of equation 8 of SOLER. It
! returns the non-local exchange-correlation energy and the u_alpha(k)
! arrays used to find the u_alpha(r) arrays via equations 11 and 12 in
! SOLER.
SUBROUTINE vdW_energy (thetas, vdW_xc_energy)
USE gvect, ONLY : gg, ngm, igtongl, gl, ngl, gstart
USE cell_base, ONLY : tpiba, omega
implicit none
complex(dp), intent(inout) :: thetas(:,:) ! On input this variable holds the theta
! functions (equation 8, SOLER) in the format
! thetas(grid_point, theta_i). On output
! this array holds u_alpha(k) =
! Sum_j[theta_beta(k)phi_alpha_beta(k)]
real(dp), intent(out) :: vdW_xc_energy ! The non-local correlation energy.
real(dp), allocatable :: kernel_of_k(:,:) ! This array will hold the interpolated kernel
! values for each pair of q values in the q_mesh.
real(dp) :: g ! The magnitude of the current g vector.
integer :: last_g ! The shell number of the last g vector.
integer :: g_i, q1_i, q2_i, i_grid ! Index variables.
complex(dp) :: theta(Nqs), thetam(Nqs), theta_g(Nqs) ! Temporary storage arrays used since we
! are overwriting the thetas array here.
real(dp) :: G0_term, G_multiplier
complex(dp), allocatable :: u_vdw(:,:) ! Temporary array holding u_alpha(k).
vdW_xc_energy = 0.0D0
allocate (u_vdW(dfftp%nnr,Nqs), kernel_of_k(Nqs, Nqs))
u_vdW(:,:) = CMPLX(0.0_DP,0.0_DP,kind=dp)
! --------------------------------------------------------------------
! Loop over PWSCF's array of magnitude-sorted g-vector shells. For
! each shell, interpolate the kernel at this magnitude of g, then find
! all points on the shell and carry out the integration over those
! points. The PWSCF variables used here are ngm = number of g-vectors
! on this processor, nl = an array that gives the indices into the FFT
! grid for a particular g vector, igtongl = an array that gives the
! index of which shell a particular g vector is in, gl = an array that
! gives the magnitude of the g vectors for each shell. In essence, we
! are forming the reciprocal-space u(k) functions of SOLER equation
! 11. These are kept in thetas array. Here we should use gstart,ngm
! but all the cases are handled by conditionals inside the loop
G_multiplier = 1.0D0
if (gamma_only) G_multiplier = 2.0D0
last_g = -1
do g_i = 1, ngm
if ( igtongl(g_i) .ne. last_g) then
g = sqrt(gl(igtongl(g_i))) * tpiba
call interpolate_kernel(g, kernel_of_k)
last_g = igtongl(g_i)
end if
theta = thetas(dfftp%nl(g_i),:)
do q2_i = 1, Nqs
do q1_i = 1, Nqs
u_vdW(dfftp%nl(g_i),q2_i) = u_vdW(dfftp%nl(g_i),q2_i) + kernel_of_k(q2_i,q1_i)*theta(q1_i)
end do
vdW_xc_energy = vdW_xc_energy + G_multiplier * (u_vdW(dfftp%nl(g_i),q2_i)*conjg(theta(q2_i)))
end do
if (g_i < gstart ) vdW_xc_energy = vdW_xc_energy / G_multiplier
end do
if (gamma_only) u_vdW(dfftp%nlm(:),:) = CONJG(u_vdW(dfftp%nl(:),:))
! --------------------------------------------------------------------
! Apply scaling factors. The e2 comes from PWSCF's choice of units.
! This should be 0.5 * e2 * vdW_xc_energy * (2pi)^3/omega * (omega)^2,
! with the (2pi)^3/omega being the volume element for the integral
! (the volume of the reciprocal unit cell) and the 2 factors of omega
! being used to cancel the factor of 1/omega PWSCF puts on forward
! FFTs of the 2 theta factors. 1 omega cancels and the (2pi)^3
! cancels because there should be a factor of 1/(2pi)^3 on the radial
! Fourier transform of phi that was left out to cancel with this
! factor.
vdW_xc_energy = 0.5D0 * e2 * omega * vdW_xc_energy
thetas(:,:) = u_vdW(:,:)
deallocate (u_vdW, kernel_of_k)
END SUBROUTINE vdW_energy
! ####################################################################
! | |
! | GET_POTENTIAL |
! |_________________|
!
! This routine finds the non-local correlation contribution to the
! potential (i.e. the derivative of the non-local piece of the energy
! with respect to density) given in SOLER equation 10. The u_alpha(k)
! functions were found while calculating the energy. They are passed
! in as the matrix u_vdW. Most of the required derivatives were
! calculated in the "get_q0_on_grid" routine, but the derivative of
! the interpolation polynomials, P_alpha(q), (SOLER equation 3) with
! respect to q is interpolated here, along with the polynomials
! themselves.
SUBROUTINE get_potential (q0, dq0_drho, dq0_dgradrho, grad_rho, u_vdW, potential)
USE gvect, ONLY : g
USE cell_base, ONLY : alat, tpiba
implicit none
real(dp), intent(in) :: q0(:), grad_rho(:,:) ! Input arrays holding the value of q0 for
! all points assigned to this processor and
! the gradient of the charge density for
! points assigned to this processor.
real(dp), intent(in) :: dq0_drho(:), dq0_dgradrho(:)! The derivative of q0 with respect to the
! charge density and gradient of the charge
! density (almost). See comments in the
! get_q0_on_grid subroutine above.
complex(dp), intent(in) :: u_vdW(:,:) ! The functions u_alpha(r) obtained by
! inverse transforming the functions
! u_alph(k). See equations 11 and 12 in SOLER
real(dp), intent(inout) :: potential(:) ! The non-local correlation potential for
! points on the grid over the whole cell (not
! just those assigned to this processor).
real(dp), allocatable, save :: d2y_dx2(:,:) ! Second derivatives of P_alpha polynomials
! for interpolation.
integer :: i_grid, P_i,icar ! Index variables.
integer :: q_low, q_hi, q ! Variables to find the bin in the q_mesh that
! a particular q0 belongs to (for interpolation).
real(dp) :: dq, a, b, c, d, e, f ! Intermediate variables used in the
! interpolation of the polynomials.
real(dp) :: y(Nqs), dP_dq0, P ! The y values for a given polynomial (all 0
! exept for element i of P_i) The derivative
! of P at a given q0 and the value of P at a
! given q0. Both of these are interpolated
! below.
real(dp) :: gradient2 ! Squared gradient.
real(dp) , allocatable ::h_prefactor(:)
complex(dp), allocatable ::h(:)
allocate (h_prefactor(dfftp%nnr), h(dfftp%nnr))
potential = 0.0D0
h_prefactor = 0.0D0
! --------------------------------------------------------------------
! Get the second derivatives of the P_i functions for interpolation.
! We have already calculated this once but it is very fast and it's
! just as easy to calculate it again.
if (.not. allocated( d2y_dx2) ) then
allocate( d2y_dx2(Nqs, Nqs) )
call initialize_spline_interpolation (q_mesh, d2y_dx2(:,:))
end if
do i_grid = 1, dfftp%nnr
q_low = 1
q_hi = Nqs
! -----------------------------------------------------------------
! Figure out which bin our value of q0 is in in the q_mesh.
do while ( (q_hi - q_low) > 1)
q = int((q_hi + q_low)/2)
if (q_mesh(q) > q0(i_grid)) then
q_hi = q
else
q_low = q
end if
end do
if (q_hi == q_low) call errore('get_potential','qhi == qlow',1)
dq = q_mesh(q_hi) - q_mesh(q_low)
a = (q_mesh(q_hi) - q0(i_grid))/dq
b = (q0(i_grid) - q_mesh(q_low))/dq
c = (a**3 - a)*dq**2/6.0D0
d = (b**3 - b)*dq**2/6.0D0
e = (3.0D0*a**2 - 1.0D0)*dq/6.0D0
f = (3.0D0*b**2 - 1.0D0)*dq/6.0D0
do P_i = 1, Nqs
y = 0.0D0
y(P_i) = 1.0D0
P = a*y(q_low) + b*y(q_hi) + c*d2y_dx2(P_i,q_low) + d*d2y_dx2(P_i,q_hi)
dP_dq0 = (y(q_hi) - y(q_low))/dq - e*d2y_dx2(P_i,q_low) + f*d2y_dx2(P_i,q_hi)
! --------------------------------------------------------------
! The first term in equation 10 of SOLER.
potential(i_grid) = potential(i_grid) + u_vdW(i_grid,P_i)* (P + dP_dq0 * dq0_drho(i_grid))
if (q0(i_grid) .ne. q_mesh(Nqs)) then
h_prefactor(i_grid) = h_prefactor(i_grid) + u_vdW(i_grid,P_i)*dP_dq0*dq0_dgradrho(i_grid)
end if
end do
end do
do icar = 1,3
h(:) = CMPLX( h_prefactor(:) * grad_rho(icar,:), 0.0_DP, kind=dp )
do i_grid = 1, dfftp%nnr
gradient2 = grad_rho(1,i_grid)**2 + grad_rho(2,i_grid)**2 + grad_rho(3,i_grid)**2
if ( gradient2 > 0.0D0 ) h(i_grid) = h(i_grid) / SQRT( gradient2 )
end do
CALL fwfft ('Rho', h, dfftp)
h(dfftp%nl(:)) = CMPLX(0.0_DP,1.0_DP, kind=dp) * tpiba * g(icar,:) * h(dfftp%nl(:))
if (gamma_only) h(dfftp%nlm(:)) = CONJG(h(dfftp%nl(:)))
CALL invfft ('Rho', h, dfftp)
potential(:) = potential(:) - REAL(h(:))
end do
deallocate (h_prefactor, h)
END SUBROUTINE get_potential
! ####################################################################
! | |
! | SPLINE_INTERPOLATION |
! |________________________|
!
! This routine is modeled after an algorithm from "Numerical Recipes
! in C" by Cambridge University press, page 97. It was adapted for
! Fortran, of course and for the problem at hand, in that it finds the
! bin a particular x value is in and then loops over all the P_i
! functions so we only have to find the bin once.
SUBROUTINE spline_interpolation (x, evaluation_points, values)
implicit none
real(dp), intent(in) :: x(:), evaluation_points(:) ! Input variables. The x values used to
! form the interpolation (q_mesh in this
! case) and the values of q0 for which we
! are interpolating the function.
complex(dp), intent(inout) :: values(:,:) ! An output array (allocated outside this
! routine) that stores the interpolated
! values of the P_i (SOLER equation 3)
! polynomials. The format is
! values(grid_point, P_i).
integer :: Ngrid_points, Nx ! Total number of grid points to evaluate
! and input x points.
real(dp), allocatable, save :: d2y_dx2(:,:) ! The second derivatives required to do
! the interpolation.
integer :: i_grid, lower_bound, upper_bound, idx, P_i ! Some indexing variables.
real(dp), allocatable :: y(:) ! Temporary variables needed for the
real(dp) :: a, b, c, d, dx ! interpolation.
Nx = size(x)
Ngrid_points = size(evaluation_points)
! --------------------------------------------------------------------
! Allocate the temporary array.
allocate( y(Nx) )
! --------------------------------------------------------------------
! If this is the first time this routine has been called we need to
! get the second derivatives (d2y_dx2) required to perform the
! interpolations. So we allocate the array and call
! initialize_spline_interpolation to get d2y_dx2.
if (.not. allocated(d2y_dx2) ) then
allocate( d2y_dx2(Nx,Nx) )
call initialize_spline_interpolation(x, d2y_dx2)
end if
do i_grid=1, Ngrid_points
lower_bound = 1
upper_bound = Nx
do while ( (upper_bound - lower_bound) > 1 )
idx = (upper_bound+lower_bound) / 2
if ( evaluation_points(i_grid) > x(idx) ) then
lower_bound = idx
else
upper_bound = idx
end if
end do
dx = x(upper_bound)-x(lower_bound)
a = (x(upper_bound) - evaluation_points(i_grid))/dx
b = (evaluation_points(i_grid) - x(lower_bound))/dx
c = ((a**3-a)*dx**2)/6.0D0
d = ((b**3-b)*dx**2)/6.0D0
do P_i = 1, Nx
y = 0
y(P_i) = 1
values(i_grid, P_i) = a*y(lower_bound) + b*y(upper_bound) &
+ (c*d2y_dx2(P_i,lower_bound) + d*d2y_dx2(P_i, upper_bound))
end do
end do
deallocate( y )
END SUBROUTINE spline_interpolation
! ####################################################################
! | |
! | INITIALIZE_SPLINE_INTERPOLATION |
! |___________________________________|
!
! This routine is modeled after an algorithm from "Numerical Recipes
! in C" by Cambridge University Press, pages 96-97. It was adapted
! for Fortran and for the problem at hand.
SUBROUTINE initialize_spline_interpolation (x, d2y_dx2)
implicit none
real(dp), intent(in) :: x(:) ! The input abscissa values.
real(dp), intent(inout) :: d2y_dx2(:,:) ! The output array (allocated outside this routine)
! that holds the second derivatives required for
! interpolating the function.
integer :: Nx, P_i, idx ! The total number of x points and some indexing
! variables.
real(dp), allocatable :: temp_array(:), y(:) ! Some temporary arrays required. y is the array
! that holds the funcion values (all either 0 or
! 1 here).
real(dp) :: temp1, temp2 ! Some temporary variables required.
Nx = size(x)
allocate( temp_array(Nx), y(Nx) )
do P_i=1, Nx
! -----------------------------------------------------------------
! In the Soler method, the polynomicals that are interpolated are Kroneker
! delta funcions at a particular q point. So, we set all y values to 0
! except the one corresponding to the particular function P_i.
y = 0.0D0
y(P_i) = 1.0D0
d2y_dx2(P_i,1) = 0.0D0
temp_array(1) = 0.0D0
do idx = 2, Nx-1
temp1 = (x(idx)-x(idx-1))/(x(idx+1)-x(idx-1))
temp2 = temp1 * d2y_dx2(P_i,idx-1) + 2.0D0
d2y_dx2(P_i,idx) = (temp1-1.0D0)/temp2
temp_array(idx) = (y(idx+1)-y(idx))/(x(idx+1)-x(idx)) &
- (y(idx)-y(idx-1))/(x(idx)-x(idx-1))
temp_array(idx) = (6.0D0*temp_array(idx)/(x(idx+1)-x(idx-1)) &
- temp1*temp_array(idx-1))/temp2
end do
d2y_dx2(P_i,Nx) = 0.0D0
do idx=Nx-1, 1, -1
d2y_dx2(P_i,idx) = d2y_dx2(P_i,idx) * d2y_dx2(P_i,idx+1) + temp_array(idx)
end do
end do
deallocate( temp_array, y)
END SUBROUTINE initialize_spline_interpolation
! ####################################################################
! | |
! | INTERPOLATE_KERNEL |
! |____________________|
!
! This routine is modeled after an algorithm from "Numerical Recipes in C" by
! Cambridge University Press, page 97. Adapted for Fortran and the problem at
! hand. This function is used to find the Phi_alpha_beta needed for equations
! 8 and 11 of SOLER.
SUBROUTINE interpolate_kernel (k, kernel_of_k)
implicit none
real(dp), intent(in) :: k ! Input value, the magnitude of the g-vector
! for the current point.
real(dp), intent(inout) :: kernel_of_k(:,:) ! An output array (allocated outside this routine)
! that holds the interpolated value of the kernel
! for each pair of q points (i.e. the phi_alpha_beta
! of the Soler method.
integer :: q1_i, q2_i, k_i ! Indexing variables.
real(dp) :: A, B, C, D ! Intermediate values for the interpolation.
! --------------------------------------------------------------------
! Check to make sure that the kernel table we have is capable of
! dealing with this value of k. If k is larger than
! Nr_points*2*pi/r_max then we can't perform the interpolation. In
! that case, a kernel file should be generated with a larger number of
! radial points.
if ( k >= Nr_points*dk ) then
write(*,'(A,F10.5,A,F10.5)') "k = ", k, " k_max = ",Nr_points*dk
call errore('interpolate kernel', 'k value requested is out of range',1)
end if
kernel_of_k = 0.0D0
! --------------------------------------------------------------------
! This integer division figures out which bin k is in since the kernel
! is set on a uniform grid.
k_i = int(k/dk)
! --------------------------------------------------------------------
! Test to see if we are trying to interpolate a k that is one of the
! actual function points we have. The value is just the value of the
! function in that case.
if (mod(k,dk) == 0) then
do q1_i = 1, Nqs
do q2_i = 1, q1_i
kernel_of_k(q1_i, q2_i) = kernel(k_i,q1_i, q2_i)
kernel_of_k(q2_i, q1_i) = kernel(k_i,q2_i, q1_i)
end do
end do
return
end if
! --------------------------------------------------------------------
! If we are not on a function point then we carry out the
! interpolation.
A = (dk*(k_i+1.0D0) - k)/dk
B = (k - dk*k_i)/dk
C = (A**3-A)*dk**2/6.0D0
D = (B**3-B)*dk**2/6.0D0
do q1_i = 1, Nqs
do q2_i = 1, q1_i
kernel_of_k(q1_i, q2_i) = A*kernel(k_i, q1_i, q2_i) + B*kernel(k_i+1, q1_i, q2_i) &
+(C*d2phi_dk2(k_i, q1_i, q2_i) + D*d2phi_dk2(k_i+1, q1_i, q2_i))
kernel_of_k(q2_i, q1_i) = kernel_of_k(q1_i, q2_i)
end do
end do
END SUBROUTINE interpolate_kernel
! ####################################################################
! | |
! | STRESS_VDW_DF |
! |_________________|
SUBROUTINE stress_vdW_DF (rho_valence, rho_core, nspin, sigma)
use gvect, ONLY : ngm, g
USE cell_base, ONLY : tpiba
implicit none
real(dp), intent(IN) :: rho_valence(:,:) !
real(dp), intent(IN) :: rho_core(:) ! Input variables
integer, intent(IN) :: nspin !
real(dp), intent(inout) :: sigma(3,3) !
real(dp), allocatable :: grad_rho(:,:) !
real(dp), allocatable :: total_rho(:) ! Rho values
real(dp), allocatable :: q0(:) !
real(dp), allocatable :: dq0_drho(:) ! Q-values
real(dp), allocatable :: dq0_dgradrho(:) !
complex(dp), allocatable :: thetas(:,:) ! Thetas
integer :: i_proc, theta_i, l, m
real(dp) :: sigma_grad(3,3)
real(dp) :: sigma_ker(3,3)
! --------------------------------------------------------------------
! Tests
#if defined (__SPIN_BALANCED)
if ( nspin==2 ) then
write(stdout,'(/,/ " Performing spin-balanced Ecnl stress calculation!")')
else if ( nspin > 2 ) then
call errore ('stres_vdW_DF','noncollinear vdW stress not implemented',1)
end if
#else
if ( nspin>=2 ) then
call errore ('stres_vdW_DF', 'vdW stress not implemented for nspin > 1',1)
end if
#endif
sigma(:,:) = 0.0_DP
sigma_grad(:,:) = 0.0_DP
sigma_ker(:,:) = 0.0_DP
! --------------------------------------------------------------------
! Allocations
allocate( grad_rho(3,dfftp%nnr) )
allocate( total_rho(dfftp%nnr) )
allocate( q0(dfftp%nnr) )
allocate( dq0_drho(dfftp%nnr), dq0_dgradrho(dfftp%nnr) )
allocate( thetas(dfftp%nnr, Nqs) )
! --------------------------------------------------------------------
! Charge
total_rho = rho_valence(:,1) + rho_core(:)
#if defined (__SPIN_BALANCED)
if ( nspin == 2 ) then
total_rho = rho_valence(:,2) + total_rho(:)
end if
#endif
! --------------------------------------------------------------------
! Here we calculate the gradient in reciprocal space using FFT.
call fft_gradient_r2r (dfftp, total_rho, g, grad_rho)
! --------------------------------------------------------------------
! Get q0.
CALL get_q0_on_grid (total_rho, grad_rho, q0, dq0_drho, dq0_dgradrho, thetas)
! --------------------------------------------------------------------
! Stress
CALL stress_vdW_DF_gradient (total_rho, grad_rho, q0, dq0_drho, dq0_dgradrho, thetas, sigma_grad)
CALL stress_vdW_DF_kernel (total_rho, q0, thetas, sigma_ker)
sigma = - (sigma_grad + sigma_ker)
do l = 1, 3
do m = 1, l - 1
sigma (m, l) = sigma (l, m)
enddo
enddo
deallocate( grad_rho, total_rho, q0, dq0_drho, dq0_dgradrho, thetas )
END SUBROUTINE stress_vdW_DF
! ####################################################################
! | |
! | STRESS_VDW_DF_GRADIENT |
! |__________________________|
SUBROUTINE stress_vdW_DF_gradient (total_rho, grad_rho, q0, dq0_drho, &
dq0_dgradrho, thetas, sigma)
USE gvect, ONLY : ngm, g, gg, igtongl, &
gl, ngl, gstart
USE cell_base, ONLY : omega, tpiba, alat, at, tpiba2
implicit none
real(dp), intent(IN) :: total_rho(:) !
real(dp), intent(IN) :: grad_rho(:, :) ! Input variables.
real(dp), intent(inout) :: sigma(:,:) !
real(dp), intent(IN) :: q0(:) !
real(dp), intent(IN) :: dq0_drho(:) !
real(dp), intent(IN) :: dq0_dgradrho(:) !
complex(dp), intent(IN) :: thetas(:,:) !
complex(dp), allocatable :: u_vdW(:,:) !
real(dp), allocatable :: d2y_dx2(:,:) !
real(dp) :: y(Nqs), dP_dq0, P, a, b, c, d, e, f ! Interpolation.
real(dp) :: dq !
integer :: q_low, q_hi, q, q1_i, q2_i , g_i ! Loop and q-points.
integer :: l, m
real(dp) :: prefactor ! Final summation of sigma.
real(dp) :: grad2 ! Magnitude of density gradient.
integer :: i_proc, theta_i, i_grid, q_i, & !
ix, iy, iz ! Iterators.
character(LEN=1) :: intvar
allocate( d2y_dx2(Nqs, Nqs) )
allocate( u_vdW(dfftp%nnr, Nqs) )
sigma(:,:) = 0.0_DP
prefactor = 0.0_DP
! --------------------------------------------------------------------
! Get u in k-space.
call thetas_to_uk(thetas, u_vdW)
! --------------------------------------------------------------------
! Get u in real space.
do theta_i = 1, Nqs
CALL invfft('Rho', u_vdW(:,theta_i), dfftp)
end do
! --------------------------------------------------------------------
! Get the second derivatives for interpolating the P_i.
call initialize_spline_interpolation(q_mesh, d2y_dx2(:,:))
! --------------------------------------------------------------------
! Do the real space integration to obtain the stress component.
do i_grid = 1, dfftp%nnr
if ( total_rho(i_grid) < epsr ) cycle
q_low = 1
q_hi = Nqs
grad2 = sqrt( grad_rho(1,i_grid)**2 + grad_rho(2,i_grid)**2 + grad_rho(3,i_grid)**2 )
if ( grad2 == 0.0_dp ) cycle
! -----------------------------------------------------------------
! Figure out which bin our value of q0 is in the q_mesh.
do while ( (q_hi - q_low) > 1)
q = int((q_hi + q_low)/2)
if (q_mesh(q) > q0(i_grid)) then
q_hi = q
else
q_low = q
end if
end do
if (q_hi == q_low) call errore('stress_vdW_gradient','qhi == qlow',1)
dq = q_mesh(q_hi) - q_mesh(q_low)
a = (q_mesh(q_hi) - q0(i_grid))/dq
b = (q0(i_grid) - q_mesh(q_low))/dq
c = (a**3 - a)*dq**2/6.0D0
d = (b**3 - b)*dq**2/6.0D0
e = (3.0D0*a**2 - 1.0D0)*dq/6.0D0
f = (3.0D0*b**2 - 1.0D0)*dq/6.0D0
do q_i = 1, Nqs
y(:) = 0.0D0
y(q_i) = 1.0D0
dP_dq0 = (y(q_hi) - y(q_low))/dq - e*d2y_dx2(q_i,q_low) + f*d2y_dx2(q_i,q_hi)
prefactor = u_vdW(i_grid,q_i) * dP_dq0 * dq0_dgradrho(i_grid) / grad2
do l = 1, 3
do m = 1, l
sigma (l, m) = sigma (l, m) - e2 * prefactor * &
(grad_rho(l,i_grid) * grad_rho(m,i_grid))
end do
end do
end do
end do
call mp_sum( sigma, intra_bgrp_comm )
call dscal (9, 1.d0 / (dfftp%nr1 * dfftp%nr2 * dfftp%nr3), sigma, 1)
deallocate( d2y_dx2, u_vdW )
END SUBROUTINE stress_vdW_DF_gradient
! ####################################################################
! | |
! | STRESS_VDW_DF_KERNEL |
! |__________________________|
SUBROUTINE stress_vdW_DF_kernel (total_rho, q0, thetas, sigma)
USE gvect, ONLY : ngm, g, gg, igtongl, gl, ngl, gstart
USE cell_base, ONLY : omega, tpiba, tpiba2
implicit none
real(dp), intent(IN) :: q0(:)
real(dp), intent(IN) :: total_rho(:)
real(dp), intent(inout) :: sigma(3,3)
complex(dp), intent(IN) :: thetas(:,:)
real(dp), allocatable :: dkernel_of_dk(:,:)
integer :: l, m, q1_i, q2_i , g_i
real(dp) :: g2, ngmod2, g_kernel, G_multiplier
integer :: last_g, theta_i
allocate( dkernel_of_dk(Nqs, Nqs) )
sigma(:,:) = 0.0_DP
! --------------------------------------------------------------------
! Integration in g-space.
last_g = -1
G_multiplier = 1.0D0
if (gamma_only) G_multiplier = 2.0D0
do g_i = gstart, ngm
g2 = gg (g_i) * tpiba2
g_kernel = sqrt(g2)
if ( igtongl(g_i) .ne. last_g) then
call interpolate_Dkernel_Dk(g_kernel, dkernel_of_dk) ! Gets the derivatives.
last_g = igtongl(g_i)
end if
do q2_i = 1, Nqs
do q1_i = 1, Nqs
do l = 1, 3
do m = 1, l
sigma (l, m) = sigma (l, m) - G_multiplier * 0.5 * e2 * thetas(dfftp%nl(g_i),q1_i) * &
dkernel_of_dk(q1_i,q2_i)*conjg(thetas(dfftp%nl(g_i),q2_i))* &
(g (l, g_i) * g (m, g_i) * tpiba2) / g_kernel
end do
end do
enddo
end do
if (g_i < gstart ) sigma(:,:) = sigma(:,:) / G_multiplier
enddo
call mp_sum( sigma, intra_bgrp_comm )
deallocate( dkernel_of_dk )
END SUBROUTINE stress_vdW_DF_kernel
! ####################################################################
! | |
! | INTERPOLATE_DKERNEL_DK |
! |________________________|
SUBROUTINE interpolate_Dkernel_Dk (k, dkernel_of_dk)
implicit none
real(dp), intent(in) :: k ! Input value, the magnitude of the g-vector
! for the current point.
real(dp), intent(inout) :: dkernel_of_dk(Nqs,Nqs) ! An output array (allocated outside this
! routine) that holds the interpolated value of
! the kernel for each pair of q points (i.e. the
! phi_alpha_beta of the Soler method.
integer :: q1_i, q2_i, k_i ! Indexing variables.
real(dp) :: A, B, dAdk, dBdk, dCdk, dDdk ! Intermediate values for the interpolation.
if ( k >= Nr_points*dk ) then
write(*,'(A,F10.5,A,F10.5)') "k = ", k, " k_max = ",Nr_points*dk
call errore('interpolate kernel', 'k value requested is out of range',1)
end if
dkernel_of_dk = 0.0D0
k_i = int(k/dk)
A = (dk*(k_i+1.0D0) - k)/dk
B = (k - dk*k_i)/dk
dAdk = -1.0D0/dk
dBdk = 1.0D0/dk
dCdk = -((3*A**2 -1.0D0)/6.0D0)*dk
dDdk = ((3*B**2 -1.0D0)/6.0D0)*dk
do q1_i = 1, Nqs
do q2_i = 1, q1_i
dkernel_of_dk(q1_i, q2_i) = dAdk*kernel(k_i, q1_i, q2_i) + dBdk*kernel(k_i+1, q1_i, q2_i) &
+ dCdk*d2phi_dk2(k_i, q1_i, q2_i) + dDdk*d2phi_dk2(k_i+1, q1_i, q2_i)
dkernel_of_dk(q2_i, q1_i) = dkernel_of_dk(q1_i, q2_i)
end do
end do
END SUBROUTINE interpolate_Dkernel_Dk
! ####################################################################
! | |
! | thetas_to_uk |
! |______________|
SUBROUTINE thetas_to_uk (thetas, u_vdW)
USE gvect, ONLY : gg, ngm, igtongl, gl, ngl, gstart
USE cell_base, ONLY : tpiba, omega
implicit none
complex(dp), intent(in) :: thetas(:,:) ! On input this variable holds the theta functions
! (equation 8, SOLER) in the format
! thetas(grid_point, theta_i).
complex(dp), intent(out) :: u_vdW(:,:) ! On output this array holds u_alpha(k) =
! Sum_j[theta_beta(k)phi_alpha_beta(k)].
real(dp), allocatable :: kernel_of_k(:,:) ! This array will hold the interpolated kernel
! values for each pair of q values in the q_mesh.
real(dp) :: g
integer :: last_g, g_i, q1_i, q2_i, i_grid ! Index variables.
complex(dp) :: theta(Nqs) ! Temporary storage vector used since we are
! overwriting the thetas array here.
allocate( kernel_of_k(Nqs, Nqs) )
u_vdW(:,:) = CMPLX(0.0_DP,0.0_DP,kind=dp)
last_g = -1
do g_i = 1, ngm
if ( igtongl(g_i) .ne. last_g) then
g = sqrt(gl(igtongl(g_i))) * tpiba
call interpolate_kernel(g, kernel_of_k)
last_g = igtongl(g_i)
end if
theta = thetas(dfftp%nl(g_i),:)
do q2_i = 1, Nqs
do q1_i = 1, Nqs
u_vdW(dfftp%nl(g_i),q2_i) = u_vdW(dfftp%nl(g_i),q2_i) + kernel_of_k(q2_i,q1_i)*theta(q1_i)
end do
end do
end do
if (gamma_only) u_vdW(dfftp%nlm(:),:) = CONJG(u_vdW(dfftp%nl(:),:))
deallocate( kernel_of_k )
END SUBROUTINE thetas_to_uk
! ####################################################################
! | |
! | VDW_INFO |
! |____________|
SUBROUTINE vdW_info
implicit none
integer :: I
! --------------------------------------------------------------------
! Here we output some of the parameters being used in the run. This is
! important because these parameters are read from the
! vdW_kernel_table file. The user should ensure that these are the
! parameters they were intending to use on each run.
WRITE(stdout,'(/)')
WRITE(stdout,'(5x,"%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")')
WRITE(stdout,'(5x,"% %")')
WRITE(stdout,'(5x,"% You are using vdW-DF, which was implemented by the Thonhauser group. %")')
WRITE(stdout,'(5x,"% Please cite the following two papers that made this development %")')
WRITE(stdout,'(5x,"% possible and the two reviews that describe the various versions: %")')
WRITE(stdout,'(5x,"% %")')
WRITE(stdout,'(5x,"% T. Thonhauser et al., PRL 115, 136402 (2015). %")')
WRITE(stdout,'(5x,"% T. Thonhauser et al., PRB 76, 125112 (2007). %")')
WRITE(stdout,'(5x,"% K. Berland et al., Rep. Prog. Phys. 78, 066501 (2015). %")')
WRITE(stdout,'(5x,"% D.C. Langreth et al., J. Phys.: Condens. Matter 21, 084203 (2009). %")')
WRITE(stdout,'(5x,"% %")')
WRITE(stdout,'(5x,"% %")')
WRITE(stdout,'(5x,"% If you are calculating the stress with vdW-DF, please also cite: %")')
WRITE(stdout,'(5x,"% %")')
WRITE(stdout,'(5x,"% R. Sabatini et al., J. Phys.: Condens. Matter 24, 424209 (2012). %")')
WRITE(stdout,'(5x,"% %")')
WRITE(stdout,'(5x,"%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")')
WRITE(stdout,'(/)')
if (iverbosity > 0) then
WRITE(stdout,'(5x,"Carrying out vdW-DF run using the following parameters:")')
WRITE(stdout,'(5X,A,I3,A,I5,A,F8.3)' ) "Nqs = ",Nqs," Npoints = ",Nr_points," r_max = ",r_max
WRITE(stdout,'(5X,"q_mesh =",4F12.8)') (q_mesh(I), I=1, 4)
WRITE(stdout,'(13X,4F12.8)') (q_mesh(I), I=5, Nqs)
end if
END SUBROUTINE
END MODULE vdW_DF
|