1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559
|
<html>
<body>
<pre>
------------------------------------------------------------------------
INPUT FILE DESCRIPTION
Program: pw.x / PWscf / Quantum Espresso (version: 6.6)
------------------------------------------------------------------------
Input data format: { } = optional, [ ] = it depends, | = or
All quantities whose dimensions are not explicitly specified are in
RYDBERG ATOMIC UNITS. Charge is "number" charge (i.e. not multiplied
by e); potentials are in energy units (i.e. they are multiplied by e).
BEWARE: TABS, DOS <CR><LF> CHARACTERS ARE POTENTIAL SOURCES OF TROUBLE
Namelists must appear in the order given below.
Comment lines in namelists can be introduced by a "!", exactly as in
fortran code. Comments lines in cards can be introduced by
either a "!" or a "#" character in the first position of a line.
Do not start any line in cards with a "/" character.
Leave a space between card names and card options, e.g.
ATOMIC_POSITIONS (bohr), not ATOMIC_POSITIONS(bohr)
Do not start any line in cards with a "/" character.
Structure of the input data:
===============================================================================
&CONTROL
...
/
&SYSTEM
...
/
&ELECTRONS
...
/
[ &IONS
...
/ ]
[ &CELL
...
/ ]
ATOMIC_SPECIES
X Mass_X PseudoPot_X
Y Mass_Y PseudoPot_Y
Z Mass_Z PseudoPot_Z
ATOMIC_POSITIONS { alat | bohr | crystal | angstrom | crystal_sg }
X 0.0 0.0 0.0 {if_pos(1) if_pos(2) if_pos(3)}
Y 0.5 0.0 0.0
Z O.0 0.2 0.2
K_POINTS { tpiba | automatic | crystal | gamma | tpiba_b | crystal_b | tpiba_c | crystal_c }
if (gamma)
nothing to read
if (automatic)
nk1, nk2, nk3, k1, k2, k3
if (not automatic)
nks
xk_x, xk_y, xk_z, wk
if (tpipa_b or crystal_b in a 'bands' calculation) see Doc/brillouin_zones.pdf
[ CELL_PARAMETERS { alat | bohr | angstrom }
v1(1) v1(2) v1(3)
v2(1) v2(2) v2(3)
v3(1) v3(2) v3(3) ]
[ OCCUPATIONS
f_inp1(1) f_inp1(2) f_inp1(3) ... f_inp1(10)
f_inp1(11) f_inp1(12) ... f_inp1(nbnd)
[ f_inp2(1) f_inp2(2) f_inp2(3) ... f_inp2(10)
f_inp2(11) f_inp2(12) ... f_inp2(nbnd) ] ]
[ CONSTRAINTS
nconstr { constr_tol }
constr_type(.) constr(1,.) constr(2,.) [ constr(3,.) constr(4,.) ] { constr_target(.) } ]
[ ATOMIC_FORCES
label_1 Fx(1) Fy(1) Fz(1)
.....
label_n Fx(n) Fy(n) Fz(n) ]
[ ADDITIONAL_K_POINTS
see: K_POINTS ]
========================================================================
NAMELIST: &CONTROL
+--------------------------------------------------------------------
Variable: calculation
Type: CHARACTER
Default: 'scf'
Description:
A string describing the task to be performed. Options are:
'scf'
'nscf'
'bands'
'relax'
'md'
'vc-relax'
'vc-md'
(vc = variable-cell).
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: title
Type: CHARACTER
Default: ' '
Description: reprinted on output.
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: verbosity
Type: CHARACTER
Default: 'low'
Description:
Currently two verbosity levels are implemented:
'high'
'low'
'debug' and 'medium' have the same effect as 'high';
'default' and 'minimal' as 'low'
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: restart_mode
Type: CHARACTER
Default: 'from_scratch'
Description:
Available options are:
'from_scratch' :
From scratch. This is the normal way to perform a PWscf calculation
'restart' :
From previous interrupted run. Use this switch only if you want to
continue, using the same number of processors and parallelization,
an interrupted calculation. Do not use to start a new one, or to
perform a non-scf calculations. Works only if the calculation was
cleanly stopped using variable "max_seconds", or by user request
with an "exit file" (i.e.: create a file "prefix".EXIT, in directory
"outdir"; see variables "prefix", "outdir"). The default for
"startingwfc" and "startingpot" is set to 'file'.
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: wf_collect
Type: LOGICAL
Default: .TRUE.
Description: This flag controls the way wavefunctions are stored to disk :
.TRUE. collect wavefunctions from all processors, store them
into the output data directory "outdir"/"prefix".save
The resulting format is portable to a different number
of processors, or different kind of parallelization
.FALSE. OBSOLETE - NO LONGER IMPLEMENTED
do not collect wavefunctions, leave them in temporary
local files (one per processor). The resulting format
is readable only on the same number of processors and
with the same kind of parallelization used to write it.
Note that this flag has no effect on reading, only on writing.
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: nstep
Type: INTEGER
Description: number of molecular-dynamics or structural optimization steps
performed in this run. If set to 0, the code performs a quick
"dry run", stopping just after initialization. This is useful
to check for input correctness and to have the summary printed.
Default: 1 if "calculation" == 'scf', 'nscf', 'bands';
50 for the other cases
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: iprint
Type: INTEGER
Default: write only at convergence
Description: band energies are written every iprint iterations
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: tstress
Type: LOGICAL
Default: .false.
Description: calculate stress. It is set to .TRUE. automatically if
"calculation" == 'vc-md' or 'vc-relax'
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: tprnfor
Type: LOGICAL
Description: calculate forces. It is set to .TRUE. automatically if
"calculation" == 'relax','md','vc-md'
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: dt
Type: REAL
Default: 20.D0
Description: time step for molecular dynamics, in Rydberg atomic units
(1 a.u.=4.8378 * 10^-17 s : beware, the CP code uses
Hartree atomic units, half that much!!!)
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: outdir
Type: CHARACTER
Default: value of the ESPRESSO_TMPDIR environment variable if set;
current directory ('./') otherwise
Description: input, temporary, output files are found in this directory,
see also "wfcdir"
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: wfcdir
Type: CHARACTER
Default: same as "outdir"
Description: This directory specifies where to store files generated by
each processor (*.wfc{N}, *.igk{N}, etc.). Useful for
machines without a parallel file system: set "wfcdir" to
a local file system, while "outdir" should be a parallel
or network file system, visible to all processors. Beware:
in order to restart from interrupted runs, or to perform
further calculations using the produced data files, you
may need to copy files to "outdir". Works only for pw.x.
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: prefix
Type: CHARACTER
Default: 'pwscf'
Description: prepended to input/output filenames:
prefix.wfc, prefix.rho, etc.
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: lkpoint_dir
Type: LOGICAL
Default: .true.
Description: If .false. a subdirectory for each k_point is not opened
in the "prefix".save directory; Kohn-Sham eigenvalues are
stored instead in a single file for all k-points. Currently
doesn't work together with "wf_collect"
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: max_seconds
Type: REAL
Default: 1.D+7, or 150 days, i.e. no time limit
Description: Jobs stops after "max_seconds" CPU time. Use this option
in conjunction with option "restart_mode" if you need to
split a job too long to complete into shorter jobs that
fit into your batch queues.
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: etot_conv_thr
Type: REAL
Default: 1.0D-4
Description: Convergence threshold on total energy (a.u) for ionic
minimization: the convergence criterion is satisfied
when the total energy changes less than "etot_conv_thr"
between two consecutive scf steps. Note that "etot_conv_thr"
is extensive, like the total energy.
See also "forc_conv_thr" - both criteria must be satisfied
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: forc_conv_thr
Type: REAL
Default: 1.0D-3
Description: Convergence threshold on forces (a.u) for ionic minimization:
the convergence criterion is satisfied when all components of
all forces are smaller than "forc_conv_thr".
See also "etot_conv_thr" - both criteria must be satisfied
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: disk_io
Type: CHARACTER
Default: see below
Description:
Specifies the amount of disk I/O activity:
(only for binary files and xml data file in data directory;
other files printed at each molecular dynamics / structural
optimization step are not controlled by this option )
'high' :
save charge to disk at each SCF step,
keep wavefunctions on disk (in "distributed" format),
save mixing data as well.
Do not use this option unless you have a good reason!
It is no longer needed to specify 'high' in order to be able
to restart from an interrupted calculation (see "restart_mode")
'medium' :
save charge to disk at each SCF step,
keep wavefunctions on disk only if more than one k-point,
per process is present, otherwise keep them in memory;
save them to disk only at the end (in "portable" format)
'low' :
save charge to disk at each SCF step,
keep wavefunctions in memory (for all k-points),
save them to disk only at the end (in "portable" format).
Reduces I/O but increases memory wrt the previous cases
'nowf' :
save to disk only the xml data file,
never save wavefunctions and charge density
'none' :
do not save anything to disk
Default is 'low' for the scf case, 'medium' otherwise.
Note that the needed RAM increases as disk I/O decreases
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: pseudo_dir
Type: CHARACTER
Default: value of the $ESPRESSO_PSEUDO environment variable if set;
'$HOME/espresso/pseudo/' otherwise
Description: directory containing pseudopotential files
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: tefield
Type: LOGICAL
Default: .FALSE.
Description: If .TRUE. a saw-like potential simulating an electric field
is added to the bare ionic potential. See variables "edir",
"eamp", "emaxpos", "eopreg" for the form and size of
the added potential.
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: dipfield
Type: LOGICAL
Default: .FALSE.
Description: If .TRUE. and "tefield"==.TRUE. a dipole correction is also
added to the bare ionic potential - implements the recipe
of L. Bengtsson, PRB 59, 12301 (1999). See variables "edir",
"emaxpos", "eopreg" for the form of the correction. Must
be used ONLY in a slab geometry, for surface calculations,
with the discontinuity FALLING IN THE EMPTY SPACE.
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: lelfield
Type: LOGICAL
Default: .FALSE.
Description: If .TRUE. a homogeneous finite electric field described
through the modern theory of the polarization is applied.
This is different from "tefield" == .true. !
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: nberrycyc
Type: INTEGER
Default: 1
Description: In the case of a finite electric field ( "lelfield" == .TRUE. )
it defines the number of iterations for converging the
wavefunctions in the electric field Hamiltonian, for each
external iteration on the charge density
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: lorbm
Type: LOGICAL
Default: .FALSE.
Description: If .TRUE. perform orbital magnetization calculation.
If finite electric field is applied ("lelfield"==.true.) only Kubo terms are computed
[for details see New J. Phys. 12, 053032 (2010), doi:10.1088/1367-2630/12/5/053032].
The type of calculation is 'nscf' and should be performed on an automatically
generated uniform grid of k points.
Works ONLY with norm-conserving pseudopotentials.
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: lberry
Type: LOGICAL
Default: .FALSE.
Description: If .TRUE. perform a Berry phase calculation.
See the header of PW/src/bp_c_phase.f90 for documentation.
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: gdir
Type: INTEGER
Description: For Berry phase calculation: direction of the k-point
strings in reciprocal space. Allowed values: 1, 2, 3
1=first, 2=second, 3=third reciprocal lattice vector
For calculations with finite electric fields
("lelfield"==.true.) "gdir" is the direction of the field.
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: nppstr
Type: INTEGER
Description: For Berry phase calculation: number of k-points to be
calculated along each symmetry-reduced string.
The same for calculation with finite electric fields
("lelfield"==.true.).
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: lfcpopt
Type: LOGICAL
See: fcp_mu
Default: .FALSE.
Description: If .TRUE. perform a constant bias potential (constant-mu) calculation
for a static system with ESM method. See the header of PW/src/fcp.f90
for documentation.
NB:
- The total energy displayed in 'prefix.out' includes the potentiostat
contribution (-mu*N).
- "calculation" must be 'relax'.
- "assume_isolated" = 'esm' and "esm_bc" = 'bc2' or 'bc3' must be set
in "SYSTEM" namelist.
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: gate
Type: LOGICAL
Default: .FALSE.
See: zgate, relaxz, block, block_1, block_2, block_height
Description: In the case of charged cells ("tot_charge" .ne. 0) setting gate = .TRUE.
represents the counter charge (i.e. -tot_charge) not by a homogeneous
background charge but with a charged plate, which is placed at "zgate"
(see below). Details of the gate potential can be found in
T. Brumme, M. Calandra, F. Mauri; PRB 89, 245406 (2014).
Note, that in systems which are not symmetric with respect to the plate,
one needs to enable the dipole correction! ("dipfield"=.true.).
Currently, symmetry can be used with gate=.true. but carefully check
that no symmetry is included which maps z to -z even if in principle one
could still use them for symmetric systems (i.e. no dipole correction).
For "nosym"=.false. verbosity is set to 'high'.
Note: this option was called "monopole" in v6.0 and 6.1 of pw.x
+--------------------------------------------------------------------
===END OF NAMELIST======================================================
========================================================================
NAMELIST: &SYSTEM
+--------------------------------------------------------------------
Variable: ibrav
Type: INTEGER
Status: REQUIRED
Description: Bravais-lattice index. Optional only if space_group is set.
If ibrav /= 0, specify EITHER [ "celldm"(1)-"celldm"(6) ]
OR [ "A", "B", "C", "cosAB", "cosAC", "cosBC" ]
but NOT both. The lattice parameter "alat" is set to
alat = celldm(1) (in a.u.) or alat = A (in Angstrom);
see below for the other parameters.
For ibrav=0 specify the lattice vectors in "CELL_PARAMETERS",
optionally the lattice parameter alat = celldm(1) (in a.u.)
or = A (in Angstrom). If not specified, the lattice parameter is
taken from "CELL_PARAMETERS"
IMPORTANT NOTICE 1:
with ibrav=0 lattice vectors must be given with a sufficiently large
number of digits and with the correct symmetry, or else symmetry
detection may fail and strange problems may arise in symmetrization.
IMPORTANT NOTICE 2:
do not use celldm(1) or A as a.u. to Ang conversion factor,
use the true lattice parameters or nothing,
specify units in "CELL_PARAMETERS" and "ATOMIC_POSITIONS"
ibrav structure celldm(2)-celldm(6)
or: b,c,cosbc,cosac,cosab
0 free
crystal axis provided in input: see card "CELL_PARAMETERS"
1 cubic P (sc)
v1 = a(1,0,0), v2 = a(0,1,0), v3 = a(0,0,1)
2 cubic F (fcc)
v1 = (a/2)(-1,0,1), v2 = (a/2)(0,1,1), v3 = (a/2)(-1,1,0)
3 cubic I (bcc)
v1 = (a/2)(1,1,1), v2 = (a/2)(-1,1,1), v3 = (a/2)(-1,-1,1)
-3 cubic I (bcc), more symmetric axis:
v1 = (a/2)(-1,1,1), v2 = (a/2)(1,-1,1), v3 = (a/2)(1,1,-1)
4 Hexagonal and Trigonal P celldm(3)=c/a
v1 = a(1,0,0), v2 = a(-1/2,sqrt(3)/2,0), v3 = a(0,0,c/a)
5 Trigonal R, 3fold axis c celldm(4)=cos(gamma)
The crystallographic vectors form a three-fold star around
the z-axis, the primitive cell is a simple rhombohedron:
v1 = a(tx,-ty,tz), v2 = a(0,2ty,tz), v3 = a(-tx,-ty,tz)
where c=cos(gamma) is the cosine of the angle gamma between
any pair of crystallographic vectors, tx, ty, tz are:
tx=sqrt((1-c)/2), ty=sqrt((1-c)/6), tz=sqrt((1+2c)/3)
-5 Trigonal R, 3fold axis <111> celldm(4)=cos(gamma)
The crystallographic vectors form a three-fold star around
<111>. Defining a' = a/sqrt(3) :
v1 = a' (u,v,v), v2 = a' (v,u,v), v3 = a' (v,v,u)
where u and v are defined as
u = tz - 2*sqrt(2)*ty, v = tz + sqrt(2)*ty
and tx, ty, tz as for case ibrav=5
Note: if you prefer x,y,z as axis in the cubic limit,
set u = tz + 2*sqrt(2)*ty, v = tz - sqrt(2)*ty
See also the note in Modules/latgen.f90
6 Tetragonal P (st) celldm(3)=c/a
v1 = a(1,0,0), v2 = a(0,1,0), v3 = a(0,0,c/a)
7 Tetragonal I (bct) celldm(3)=c/a
v1=(a/2)(1,-1,c/a), v2=(a/2)(1,1,c/a), v3=(a/2)(-1,-1,c/a)
8 Orthorhombic P celldm(2)=b/a
celldm(3)=c/a
v1 = (a,0,0), v2 = (0,b,0), v3 = (0,0,c)
9 Orthorhombic base-centered(bco) celldm(2)=b/a
celldm(3)=c/a
v1 = (a/2, b/2,0), v2 = (-a/2,b/2,0), v3 = (0,0,c)
-9 as 9, alternate description
v1 = (a/2,-b/2,0), v2 = (a/2, b/2,0), v3 = (0,0,c)
91 Orthorhombic one-face base-centered A-type
celldm(2)=b/a
celldm(3)=c/a
v1 = (a, 0, 0), v2 = (0,b/2,-c/2), v3 = (0,b/2,c/2)
10 Orthorhombic face-centered celldm(2)=b/a
celldm(3)=c/a
v1 = (a/2,0,c/2), v2 = (a/2,b/2,0), v3 = (0,b/2,c/2)
11 Orthorhombic body-centered celldm(2)=b/a
celldm(3)=c/a
v1=(a/2,b/2,c/2), v2=(-a/2,b/2,c/2), v3=(-a/2,-b/2,c/2)
12 Monoclinic P, unique axis c celldm(2)=b/a
celldm(3)=c/a,
celldm(4)=cos(ab)
v1=(a,0,0), v2=(b*cos(gamma),b*sin(gamma),0), v3 = (0,0,c)
where gamma is the angle between axis a and b.
-12 Monoclinic P, unique axis b celldm(2)=b/a
celldm(3)=c/a,
celldm(5)=cos(ac)
v1 = (a,0,0), v2 = (0,b,0), v3 = (c*cos(beta),0,c*sin(beta))
where beta is the angle between axis a and c
13 Monoclinic base-centered celldm(2)=b/a
(unique axis c) celldm(3)=c/a,
celldm(4)=cos(gamma)
v1 = ( a/2, 0, -c/2),
v2 = (b*cos(gamma), b*sin(gamma), 0 ),
v3 = ( a/2, 0, c/2),
where gamma=angle between axis a and b projected on xy plane
-13 Monoclinic base-centered celldm(2)=b/a
(unique axis b) celldm(3)=c/a,
celldm(5)=cos(beta)
v1 = ( a/2, b/2, 0),
v2 = ( -a/2, b/2, 0),
v3 = (c*cos(beta), 0, c*sin(beta)),
where beta=angle between axis a and c projected on xz plane
IMPORTANT NOTICE: until QE v.6.4.1, axis for ibrav=-13 had a
different definition: v1(old) =-v2(now), v2(old) = v1(now)
14 Triclinic celldm(2)= b/a,
celldm(3)= c/a,
celldm(4)= cos(bc),
celldm(5)= cos(ac),
celldm(6)= cos(ab)
v1 = (a, 0, 0),
v2 = (b*cos(gamma), b*sin(gamma), 0)
v3 = (c*cos(beta), c*(cos(alpha)-cos(beta)cos(gamma))/sin(gamma),
c*sqrt( 1 + 2*cos(alpha)cos(beta)cos(gamma)
- cos(alpha)^2-cos(beta)^2-cos(gamma)^2 )/sin(gamma) )
where alpha is the angle between axis b and c
beta is the angle between axis a and c
gamma is the angle between axis a and b
+--------------------------------------------------------------------
///---
EITHER:
+--------------------------------------------------------------------
Variable: celldm(i), i=1,6
Type: REAL
See: ibrav
Description: Crystallographic constants - see the "ibrav" variable.
Specify either these OR "A","B","C","cosAB","cosBC","cosAC" NOT both.
Only needed values (depending on "ibrav") must be specified
alat = "celldm"(1) is the lattice parameter "a" (in BOHR)
If "ibrav"==0, only "celldm"(1) is used if present;
cell vectors are read from card "CELL_PARAMETERS"
+--------------------------------------------------------------------
OR:
+--------------------------------------------------------------------
Variables: A, B, C, cosAB, cosAC, cosBC
Type: REAL
See: ibrav
Description: Traditional crystallographic constants:
a,b,c in ANGSTROM
cosAB = cosine of the angle between axis a and b (gamma)
cosAC = cosine of the angle between axis a and c (beta)
cosBC = cosine of the angle between axis b and c (alpha)
The axis are chosen according to the value of @ref ibrav.
Specify either these OR @ref celldm but NOT both.
Only needed values (depending on @ref ibrav) must be specified.
The lattice parameter alat = A (in ANGSTROM ).
If @ref ibrav == 0, only A is used if present, and
cell vectors are read from card @ref CELL_PARAMETERS.
+--------------------------------------------------------------------
\\\---
+--------------------------------------------------------------------
Variable: nat
Type: INTEGER
Status: REQUIRED
Description: number of atoms in the unit cell (ALL atoms, except if
space_group is set, in which case, INEQUIVALENT atoms)
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: ntyp
Type: INTEGER
Status: REQUIRED
Description: number of types of atoms in the unit cell
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: nbnd
Type: INTEGER
Default: for an insulator, "nbnd" = number of valence bands
("nbnd" = # of electrons /2);
for a metal, 20% more (minimum 4 more)
Description: Number of electronic states (bands) to be calculated.
Note that in spin-polarized calculations the number of
k-point, not the number of bands per k-point, is doubled
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: tot_charge
Type: REAL
Default: 0.0
Description: Total charge of the system. Useful for simulations with charged cells.
By default the unit cell is assumed to be neutral (tot_charge=0).
tot_charge=+1 means one electron missing from the system,
tot_charge=-1 means one additional electron, and so on.
In a periodic calculation a compensating jellium background is
inserted to remove divergences if the cell is not neutral.
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: starting_charge(i), i=1,ntyp
Type: REAL
Default: 0.0
Description: starting charge on atomic type 'i',
to create starting potential with "startingpot" = 'atomic'.
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: tot_magnetization
Type: REAL
Default: -1 [unspecified]
Description: Total majority spin charge - minority spin charge.
Used to impose a specific total electronic magnetization.
If unspecified then tot_magnetization variable is ignored and
the amount of electronic magnetization is determined during
the self-consistent cycle.
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: starting_magnetization(i), i=1,ntyp
Type: REAL
Default: 0
Description: Starting spin polarization on atomic type 'i' in a spin
polarized (LSDA or noncollinear/spin-orbit) calculation.
Allowed values range between -1 (all spins down for the
valence electrons of atom type 'i') to 1 (all spins up).
If you expect a nonzero magnetization in your ground state,
you MUST either specify a nonzero value for at least one
atomic type, or constrain the magnetization using variable
"tot_magnetization" for LSDA, "constrained_magnetization"
for noncollinear/spin-orbit calculations. If you don't,
you will get a nonmagnetic (zero magnetization) state.
In order to perform LSDA calculations for an antiferromagnetic
state, define two different atomic species corresponding to
sublattices of the same atomic type.
NOTE 1: "starting_magnetization" is ignored in most BUT NOT ALL
cases in non-scf calculations: it is safe to keep the same
values for the scf and subsequent non-scf calculation.
NOTE 2: If you fix the magnetization with
"tot_magnetization", do not specify "starting_magnetization".
NOTE 3: In the noncollinear/spin-orbit case, starting with zero
starting_magnetization on all atoms imposes time reversal
symmetry. The magnetization is never calculated and is
set to zero (the internal variable domag is set to .FALSE.).
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: ecutwfc
Type: REAL
Status: REQUIRED
Description: kinetic energy cutoff (Ry) for wavefunctions
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: ecutrho
Type: REAL
Default: 4 * "ecutwfc"
Description: Kinetic energy cutoff (Ry) for charge density and potential
For norm-conserving pseudopotential you should stick to the
default value, you can reduce it by a little but it will
introduce noise especially on forces and stress.
If there are ultrasoft PP, a larger value than the default is
often desirable (ecutrho = 8 to 12 times "ecutwfc", typically).
PAW datasets can often be used at 4*"ecutwfc", but it depends
on the shape of augmentation charge: testing is mandatory.
The use of gradient-corrected functional, especially in cells
with vacuum, or for pseudopotential without non-linear core
correction, usually requires an higher values of ecutrho
to be accurately converged.
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: ecutfock
Type: REAL
Default: ecutrho
Description: Kinetic energy cutoff (Ry) for the exact exchange operator in
EXX type calculations. By default this is the same as "ecutrho"
but in some EXX calculations, a significant speed-up can be obtained
by reducing ecutfock, at the expense of some loss in accuracy.
Must be .gt. "ecutwfc". Not implemented for stress calculation
and for US-PP and PAW pseudopotentials.
Use with care, especially in metals where it may give raise
to instabilities.
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variables: nr1, nr2, nr3
Type: INTEGER
Description: Three-dimensional FFT mesh (hard grid) for charge
density (and scf potential). If not specified
the grid is calculated based on the cutoff for
charge density (see also @ref ecutrho)
Note: you must specify all three dimensions for this setting to
be used.
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variables: nr1s, nr2s, nr3s
Type: INTEGER
Description: Three-dimensional mesh for wavefunction FFT and for the smooth
part of charge density ( smooth grid ).
Coincides with @ref nr1, @ref nr2, @ref nr3 if @ref ecutrho = 4 * ecutwfc ( default )
Note: you must specify all three dimensions for this setting to
be used.
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: nosym
Type: LOGICAL
Default: .FALSE.
Description: if (.TRUE.) symmetry is not used. Consequences:
- if a list of k points is provided in input, it is used
"as is": symmetry-inequivalent k-points are not generated,
and the charge density is not symmetrized;
- if a uniform (Monkhorst-Pack) k-point grid is provided in
input, it is expanded to cover the entire Brillouin Zone,
irrespective of the crystal symmetry.
Time reversal symmetry is assumed so k and -k are considered
as equivalent unless "noinv"=.true. is specified.
Do not use this option unless you know exactly what you want
and what you get. May be useful in the following cases:
- in low-symmetry large cells, if you cannot afford a k-point
grid with the correct symmetry
- in MD simulations
- in calculations for isolated atoms
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: nosym_evc
Type: LOGICAL
Default: .FALSE.
Description: if (.TRUE.) symmetry is not used, and k points are
forced to have the symmetry of the Bravais lattice;
an automatically generated Monkhorst-Pack grid will contain
all points of the grid over the entire Brillouin Zone,
plus the points rotated by the symmetries of the Bravais
lattice which were not in the original grid. The same
applies if a k-point list is provided in input instead
of a Monkhorst-Pack grid. Time reversal symmetry is assumed
so k and -k are equivalent unless "noinv"=.true. is specified.
This option differs from "nosym" because it forces k-points
in all cases to have the full symmetry of the Bravais lattice
(not all uniform grids have such property!)
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: noinv
Type: LOGICAL
Default: .FALSE.
Description: if (.TRUE.) disable the usage of k => -k symmetry
(time reversal) in k-point generation
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: no_t_rev
Type: LOGICAL
Default: .FALSE.
Description: if (.TRUE.) disable the usage of magnetic symmetry operations
that consist in a rotation + time reversal.
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: force_symmorphic
Type: LOGICAL
Default: .FALSE.
Description: if (.TRUE.) force the symmetry group to be symmorphic by disabling
symmetry operations having an associated fractionary translation
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: use_all_frac
Type: LOGICAL
Default: .FALSE.
Description: if (.FALSE.) force real-space FFT grids to be commensurate with
fractionary translations of non-symmorphic symmetry operations,
if present (e.g.: if a fractional translation (0,0,c/4) exists,
the FFT dimension along the c axis must be multiple of 4).
if (.TRUE.) do not impose any constraints to FFT grids, even in
the presence of non-symmorphic symmetry operations.
BEWARE: use_all_frac=.TRUE. may lead to wrong results for
hybrid functionals and phonon calculations. Both cases use
symmetrization in real space that works for non-symmorphic
operations only if the real-space FFT grids are commensurate.
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: occupations
Type: CHARACTER
Description:
Available options are:
'smearing' :
gaussian smearing for metals;
see variables "smearing" and "degauss"
'tetrahedra' :
Tetrahedron method, Bloechl's version:
P.E. Bloechl, PRB 49, 16223 (1994)
Requires uniform grid of k-points, to be
automatically generated (see card "K_POINTS").
Well suited for calculation of DOS,
less so (because not variational) for
force/optimization/dynamics calculations.
'tetrahedra_lin' :
Original linear tetrahedron method.
To be used only as a reference;
the optimized tetrahedron method is more efficient.
'tetrahedra_opt' :
Optimized tetrahedron method:
see M. Kawamura, PRB 89, 094515 (2014).
Can be used for phonon calculations as well.
'fixed' :
for insulators with a gap
'from_input' :
The occupation are read from input file,
card "OCCUPATIONS". Option valid only for a
single k-point, requires "nbnd" to be set
in input. Occupations should be consistent
with the value of "tot_charge".
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: one_atom_occupations
Type: LOGICAL
Default: .FALSE.
Description: This flag is used for isolated atoms ("nat"=1) together with
"occupations"='from_input'. If it is .TRUE., the wavefunctions
are ordered as the atomic starting wavefunctions, independently
from their eigenvalue. The occupations indicate which atomic
states are filled.
The order of the states is written inside the UPF pseudopotential file.
In the scalar relativistic case:
S -> l=0, m=0
P -> l=1, z, x, y
D -> l=2, r^2-3z^2, xz, yz, xy, x^2-y^2
In the noncollinear magnetic case (with or without spin-orbit),
each group of states is doubled. For instance:
P -> l=1, z, x, y for spin up, l=1, z, x, y for spin down.
Up and down is relative to the direction of the starting
magnetization.
In the case with spin-orbit and time-reversal
("starting_magnetization"=0.0) the atomic wavefunctions are
radial functions multiplied by spin-angle functions.
For instance:
P -> l=1, j=1/2, m_j=-1/2,1/2. l=1, j=3/2,
m_j=-3/2, -1/2, 1/2, 3/2.
In the magnetic case with spin-orbit the atomic wavefunctions
can be forced to be spin-angle functions by setting
"starting_spin_angle" to .TRUE..
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: starting_spin_angle
Type: LOGICAL
Default: .FALSE.
Description: In the spin-orbit case when "domag"=.TRUE., by default,
the starting wavefunctions are initialized as in scalar
relativistic noncollinear case without spin-orbit.
By setting "starting_spin_angle"=.TRUE. this behaviour can
be changed and the initial wavefunctions are radial
functions multiplied by spin-angle functions.
When "domag"=.FALSE. the initial wavefunctions are always
radial functions multiplied by spin-angle functions
independently from this flag.
When "lspinorb" is .FALSE. this flag is not used.
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: degauss
Type: REAL
Default: 0.D0 Ry
Description: value of the gaussian spreading (Ry) for brillouin-zone
integration in metals.
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: smearing
Type: CHARACTER
Default: 'gaussian'
Description:
Available options are:
'gaussian', 'gauss' :
ordinary Gaussian spreading (Default)
'methfessel-paxton', 'm-p', 'mp' :
Methfessel-Paxton first-order spreading
(see PRB 40, 3616 (1989)).
'marzari-vanderbilt', 'cold', 'm-v', 'mv' :
Marzari-Vanderbilt-DeVita-Payne cold smearing
(see PRL 82, 3296 (1999))
'fermi-dirac', 'f-d', 'fd' :
smearing with Fermi-Dirac function
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: nspin
Type: INTEGER
Default: 1
Description: nspin = 1 : non-polarized calculation (default)
nspin = 2 : spin-polarized calculation, LSDA
(magnetization along z axis)
nspin = 4 : spin-polarized calculation, noncollinear
(magnetization in generic direction)
DO NOT specify "nspin" in this case;
specify "noncolin"=.TRUE. instead
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: noncolin
Type: LOGICAL
Default: .false.
Description: if .true. the program will perform a noncollinear calculation.
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: ecfixed
Type: REAL
Default: 0.0
See: q2sigma
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: qcutz
Type: REAL
Default: 0.0
See: q2sigma
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: q2sigma
Type: REAL
Default: 0.1
Description: ecfixed, qcutz, q2sigma: parameters for modified functional to be
used in variable-cell molecular dynamics (or in stress calculation).
"ecfixed" is the value (in Rydberg) of the constant-cutoff;
"qcutz" and "q2sigma" are the height and the width (in Rydberg)
of the energy step for reciprocal vectors whose square modulus
is greater than "ecfixed". In the kinetic energy, G^2 is
replaced by G^2 + qcutz * (1 + erf ( (G^2 - ecfixed)/q2sigma) )
See: M. Bernasconi et al, J. Phys. Chem. Solids 56, 501 (1995),
doi:10.1016/0022-3697(94)00228-2
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: input_dft
Type: CHARACTER
Default: read from pseudopotential files
Description: Exchange-correlation functional: eg 'PBE', 'BLYP' etc
See Modules/funct.f90 for allowed values.
Overrides the value read from pseudopotential files.
Use with care and if you know what you are doing!
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: ace
Type: LOGICAL
Default: true
Description: Use Adaptively Compressed Exchange operator as in
Lin Lin, J. Chem. Theory Comput. 2016, 12, 2242--2249, doi:10.1021/acs.jctc.6b00092
Set to false to use standard Exchange (much slower)
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: exx_fraction
Type: REAL
Default: it depends on the specified functional
Description: Fraction of EXX for hybrid functional calculations. In the case of
"input_dft"='PBE0', the default value is 0.25, while for "input_dft"='B3LYP'
the "exx_fraction" default value is 0.20.
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: screening_parameter
Type: REAL
Default: 0.106
Description: screening_parameter for HSE like hybrid functionals.
For more information, see:
J. Chem. Phys. 118, 8207 (2003), doi:10.1063/1.1564060
J. Chem. Phys. 124, 219906 (2006), doi:10.1063/1.2204597
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: exxdiv_treatment
Type: CHARACTER
Default: 'gygi-baldereschi'
Description:
Specific for EXX. It selects the kind of approach to be used
for treating the Coulomb potential divergencies at small q vectors.
'gygi-baldereschi' :
appropriate for cubic and quasi-cubic supercells
'vcut_spherical' :
appropriate for cubic and quasi-cubic supercells
'vcut_ws' :
appropriate for strongly anisotropic supercells, see also "ecutvcut".
'none' :
sets Coulomb potential at G,q=0 to 0.0 (required for GAU-PBE)
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: x_gamma_extrapolation
Type: LOGICAL
Default: .true.
Description: Specific for EXX. If .true., extrapolate the G=0 term of the
potential (see README in examples/EXX_example for more)
Set this to .false. for GAU-PBE.
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: ecutvcut
Type: REAL
Default: 0.0 Ry
See: exxdiv_treatment
Description: Reciprocal space cutoff for correcting Coulomb potential
divergencies at small q vectors.
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variables: nqx1, nqx2, nqx3
Type: INTEGER
Description: Three-dimensional mesh for q (k1-k2) sampling of
the Fock operator (EXX). Can be smaller than
the number of k-points.
Currently this defaults to the size of the k-point mesh used.
In QE =< 5.0.2 it defaulted to nqx1=nqx2=nqx3=1.
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: localization_thr
Type: REAL
Default: 0.0
Description: Overlap threshold over which the exchange integral over a pair of localized orbitals
is included in the evaluation of EXX operator. Any value greater than 0.0 triggers
the SCDM localization and the evaluation on EXX using the localized orbitals.
Very small value of the threshold should yield the same result as the default EXX
evaluation
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: lda_plus_u
Type: LOGICAL
Default: .FALSE.
Status: DFT+U (formerly known as LDA+U) currently works only for
a few selected elements. Modify Modules/set_hubbard_l.f90 and
PW/src/tabd.f90 if you plan to use DFT+U with an element that
is not configured there.
Description: Specify "lda_plus_u" = .TRUE. to enable DFT+U, DFT+U+V, or DFT+U+J calculations.
See: Anisimov, Zaanen, and Andersen, PRB 44, 943 (1991);
Anisimov et al., PRB 48, 16929 (1993);
Liechtenstein, Anisimov, and Zaanen, PRB 52, R5467 (1994).
You must specify, for each Hubbard atom, the value of
U and (optionally) V, J, alpha of the Hubbard model (all in eV):
see "lda_plus_u_kind", "Hubbard_U", "Hubbard_V",
"Hubbard_J", "Hubbard_alpha"
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: lda_plus_u_kind
Type: INTEGER
Default: 0
Description:
Specifies the type of calculation:
lda_plus_u_kind = 0 :
DFT+U simplified version of Cococcioni and de Gironcoli,
PRB 71, 035105 (2005), using "Hubbard_U"
lda_plus_u_kind = 1 :
DFT+U rotationally invariant scheme of Liechtenstein et al.,
using "Hubbard_U" and "Hubbard_J"
lda_plus_u_kind = 2 :
DFT+U+V simplified version of Campo Jr and Cococcioni,
J. Phys.: Condens. Matter 22, 055602 (2010), doi:10.1088/0953-8984/22/5/055602,
using "Hubbard_V"
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: Hubbard_U(i), i=1,ntyp
Type: REAL
Default: 0.D0 for all species
Description: Hubbard_U(i): U parameter (eV) for species i, DFT+U calculation
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: Hubbard_J0(i), i=1,ntype
Type: REAL
Default: 0.D0 for all species
Description: Hubbard_J0(i): J0 parameter (eV) for species i, DFT+U+J calculation,
see PRB 84, 115108 (2011) for details.
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: Hubbard_V(na,nb,k), (na,nb,k)=(1,1,1) ... (natx,27*natx,4)
Type: REAL
Default: 0.D0 for all elements
Description: Hubbard_V(na,nb,k): V parameters (eV) between atoms na and nb,
used in DFT+U+V calculations (only for "lda_plus_u_kind"=2).
The atomic indices na and nb correspond to the atomic positions
in the "ATOMIC_POSITIONS" card (this is not the same as Hubbard_U
which is specified for "ATOMIC_SPECIES").
When na=nb, then "Hubbard_V"(na,na,k) is the on-site "Hubbard_U"
for the atom na.
natx=50 (if needed it can be changed in /Modules/parameters.f90)
The index k controls the "interaction type" (k=1 is used for the
simplest DFT+U+V calculation):
k=1 - interaction between standard orbitals (both on na and nb);
k=2 - interaction between standard (on na) and background (on nb) orbitals;
k=3 - interaction between background orbitals (both on na and nb);
k=4 - interaction between background (on na) and standard (on nb) orbitals.
Standard orbitals correspond to the main Hubbard channel (e.g. d electrons
in transition metals) and background orbitals correspond to the secondary
Hubbard channel (e.g. p electrons in transition metals).
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: Hubbard_alpha(i), i=1,ntyp
Type: REAL
Default: 0.D0 for all species
Description: Hubbard_alpha(i) is the perturbation (on atom i, in eV)
used to compute U (and V) with the linear-response method of
Cococcioni and de Gironcoli, PRB 71, 035105 (2005)
(only for "lda_plus_u_kind"=0 and 2).
Note: Hubbard U and V can be computed using the HP code
which is based on density-functional perturbation theory,
and it gives exactly the same result as the method of
Cococcioni and de Gironcoli.
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: Hubbard_beta(i), i=1,ntyp
Type: REAL
Default: 0.D0 for all species
Description: Hubbard_beta(i) is the perturbation (on atom i, in eV)
used to compute J0 with the linear-response method of
Cococcioni and de Gironcoli, PRB 71, 035105 (2005)
(only for "lda_plus_u_kind"=0 and 2). See also
PRB 84, 115108 (2011).
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: Hubbard_J(i,ityp), (i,ityp)=(1,1) ... (3,ntyp)
Type: REAL
Default: 0.D0 for all species
Description: Hubbard_J(i,ityp): J parameters (eV) for species ityp,
used in DFT+U calculations (only for "lda_plus_u_kind"=1)
For p orbitals: J = Hubbard_J(1,ityp);
For d orbitals: J = Hubbard_J(1,ityp), B = Hubbard_J(2,ityp);
For f orbitals: J = Hubbard_J(1,ityp), E2 = Hubbard_J(2,ityp),
E3= Hubbard_J(3,ityp).
If B or E2 or E3 are not specified or set to 0 they will be
calculated from J using atomic ratios.
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: starting_ns_eigenvalue(m,ispin,ityp), (m,ispin,ityp)=(1,1,1) ... (2*lmax+1,nspin or npol,ntyp)
Type: REAL
Default: -1.d0 that means NOT SET
Description: In the first iteration of an DFT+U run it overwrites
the m-th eigenvalue of the ns occupation matrix for the
ispin component of atomic species ityp.
For the noncollinear case, the ispin index runs up to npol=2
The value lmax is given by the maximum angular momentum
number to which the Hubbard U is applied.
Leave unchanged eigenvalues that are not set.
This is useful to suggest the desired orbital occupations
when the default choice takes another path.
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: U_projection_type
Type: CHARACTER
Default: 'atomic'
Description:
Only active when "lda_plus_U" is .true., specifies the type
of projector on localized orbital to be used in the DFT+U
scheme.
Currently available choices:
'atomic' :
use atomic wfc's (as they are) to build the projector
'ortho-atomic' :
use Lowdin orthogonalized atomic wfc's
'norm-atomic' :
Lowdin normalization of atomic wfc. Keep in mind:
atomic wfc are not orthogonalized in this case.
This is a "quick and dirty" trick to be used when
atomic wfc from the pseudopotential are not
normalized (and thus produce occupation whose
value exceeds unity). If orthogonalized wfc are
not needed always try 'atomic' first.
'file' :
use the information from file "prefix".atwfc that must
have been generated previously, for instance by pmw.x
(see PP/src/poormanwannier.f90 for details).
'pseudo' :
use the pseudopotential projectors. The charge density
outside the atomic core radii is excluded.
N.B.: for atoms with +U, a pseudopotential with the
all-electron atomic wavefunctions is required (i.e.,
as generated by ld1.x with lsave_wfc flag).
NB: forces and stress currently implemented only for the
'atomic' and 'pseudo' choice.
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: Hubbard_parameters
Type: CHARACTER
Default: 'input'
Description:
Available choices:
'input' :
read the "Hubbard_U" (or "Hubbard_V") parameters from
the PW input file
'file' :
read the "Hubbard_V" parameters from the file "parameters.in"
which can be generated after the linear-response calculation
(using the HP code). This option has a higher priority over
the "Hubbard_V" if they are specified in the input. This option
can be used only when "lda_plus_u_kind" = 2.
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: ensemble_energies
Type: LOGICAL
Default: .false.
Description: If "ensemble_energies" = .true., an ensemble of xc energies
is calculated non-selfconsistently for perturbed
exchange-enhancement factors and LDA vs. PBE correlation
ratios after each converged electronic ground state
calculation.
Ensemble energies can be analyzed with the 'bee' utility
included with libbeef.
Requires linking against libbeef.
"input_dft" must be set to a BEEF-type functional
(e.g. input_dft = 'BEEF-vdW')
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: edir
Type: INTEGER
Description: The direction of the electric field or dipole correction is
parallel to the bg(:,edir) reciprocal lattice vector, so the
potential is constant in planes defined by FFT grid points;
"edir" = 1, 2 or 3. Used only if "tefield" is .TRUE.
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: emaxpos
Type: REAL
Default: 0.5D0
Description: Position of the maximum of the saw-like potential along crystal
axis "edir", within the unit cell (see below), 0 < emaxpos < 1
Used only if "tefield" is .TRUE.
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: eopreg
Type: REAL
Default: 0.1D0
Description: Zone in the unit cell where the saw-like potential decreases.
( see below, 0 < eopreg < 1 ). Used only if "tefield" is .TRUE.
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: eamp
Type: REAL
Default: 0.001 a.u.
Description: Amplitude of the electric field, in ***Hartree*** a.u.;
1 a.u. = 51.4220632*10^10 V/m. Used only if "tefield"==.TRUE.
The saw-like potential increases with slope "eamp" in the
region from ("emaxpos"+"eopreg"-1) to ("emaxpos"), then decreases
to 0 until ("emaxpos"+"eopreg"), in units of the crystal
vector "edir". Important: the change of slope of this
potential must be located in the empty region, or else
unphysical forces will result.
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: angle1(i), i=1,ntyp
Type: REAL
Description: The angle expressed in degrees between the initial
magnetization and the z-axis. For noncollinear calculations
only; index i runs over the atom types.
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: angle2(i), i=1,ntyp
Type: REAL
Description: The angle expressed in degrees between the projection
of the initial magnetization on x-y plane and the x-axis.
For noncollinear calculations only.
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: lforcet
Type: LOGICAL
Description: When starting a non collinear calculation using an existing density
file from a collinear lsda calculation assumes previous density points in
z direction and rotates it in the direction described by "angle1" and
"angle2" variables for atomic type 1
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: constrained_magnetization
Type: CHARACTER
See: lambda, fixed_magnetization
Default: 'none'
Description:
Used to perform constrained calculations in magnetic systems.
Currently available choices:
'none' :
no constraint
'total' :
total magnetization is constrained by
adding a penalty functional to the total energy:
LAMBDA * SUM_{i} ( magnetization(i) - fixed_magnetization(i) )**2
where the sum over i runs over the three components of
the magnetization. Lambda is a real number (see below).
Noncolinear case only. Use "tot_magnetization" for LSDA
'atomic' :
atomic magnetization are constrained to the defined
starting magnetization adding a penalty:
LAMBDA * SUM_{i,itype} ( magnetic_moment(i,itype) - mcons(i,itype) )**2
where i runs over the cartesian components (or just z
in the collinear case) and itype over the types (1-ntype).
mcons(:,:) array is defined from starting_magnetization,
(also from angle1, angle2 in the noncollinear case).
lambda is a real number
'total direction' :
the angle theta of the total magnetization
with the z axis (theta = fixed_magnetization(3))
is constrained:
LAMBDA * ( arccos(magnetization(3)/mag_tot) - theta )**2
where mag_tot is the modulus of the total magnetization.
'atomic direction' :
not all the components of the atomic
magnetic moment are constrained but only the cosine
of angle1, and the penalty functional is:
LAMBDA * SUM_{itype} ( mag_mom(3,itype)/mag_mom_tot - cos(angle1(ityp)) )**2
N.B.: symmetrization may prevent to reach the desired orientation
of the magnetization. Try not to start with very highly symmetric
configurations or use the nosym flag (only as a last remedy)
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: fixed_magnetization(i), i=1,3
Type: REAL
See: constrained_magnetization
Default: 0.d0
Description: total magnetization vector (x,y,z components) to be kept
fixed when "constrained_magnetization"=='total'
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: lambda
Type: REAL
See: constrained_magnetization
Default: 1.d0
Description: parameter used for constrained_magnetization calculations
N.B.: if the scf calculation does not converge, try to reduce lambda
to obtain convergence, then restart the run with a larger lambda
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: report
Type: INTEGER
Default: -1
Description: determines when atomic magnetic moments are printed on output:
report = 0 never
report =-1 at the beginning of the scf and at convergence
report = N as -1, plus every N scf iterations
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: lspinorb
Type: LOGICAL
Description: if .TRUE. the noncollinear code can use a pseudopotential with
spin-orbit.
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: assume_isolated
Type: CHARACTER
Default: 'none'
Description:
Used to perform calculation assuming the system to be
isolated (a molecule or a cluster in a 3D supercell).
Currently available choices:
'none' :
(default): regular periodic calculation w/o any correction.
'makov-payne', 'm-p', 'mp' :
the Makov-Payne correction to the
total energy is computed. An estimate of the vacuum
level is also calculated so that eigenvalues can be
properly aligned. ONLY FOR CUBIC SYSTEMS ("ibrav"=1,2,3).
Theory: G.Makov, and M.C.Payne,
"Periodic boundary conditions in ab initio
calculations" , PRB 51, 4014 (1995).
'martyna-tuckerman', 'm-t', 'mt' :
Martyna-Tuckerman correction
to both total energy and scf potential. Adapted from:
G.J. Martyna, and M.E. Tuckerman,
"A reciprocal space based method for treating long
range interactions in ab-initio and force-field-based
calculation in clusters", J. Chem. Phys. 110, 2810 (1999),
doi:10.1063/1.477923.
'esm' :
Effective Screening Medium Method.
For polarized or charged slab calculation, embeds
the simulation cell within an effective semi-
infinite medium in the perpendicular direction
(along z). Embedding regions can be vacuum or
semi-infinite metal electrodes (use "esm_bc" to
choose boundary conditions). If between two
electrodes, an optional electric field
('esm_efield') may be applied. Method described in
M. Otani and O. Sugino, "First-principles calculations
of charged surfaces and interfaces: A plane-wave
nonrepeated slab approach", PRB 73, 115407 (2006).
NB:
- Two dimensional (xy plane) average charge density
and electrostatic potentials are printed out to
'prefix.esm1'.
- Requires cell with a_3 lattice vector along z,
normal to the xy plane, with the slab centered
around z=0. Also requires symmetry checking to be
disabled along z, either by setting "nosym" = .TRUE.
or by very slight displacement (i.e., 5e-4 a.u.)
of the slab along z.
- Components of the total stress; sigma_xy, sigma_yz,
sigma_zz, sigma_zy, and sigma_zx are meaningless
because ESM stress routines calculate only
components of stress; sigma_xx, sigma_xy, sigma_yx,
and sigma_yy.
- In case of calculation='vc-relax', use
cell_dofree='2Dxy' or other parameters so that
c-vector along z-axis should not be moved.
See "esm_bc", "esm_efield", "esm_w", "esm_nfit".
'2D' :
Truncation of the Coulomb interaction in the z direction
for structures periodic in the x-y plane. Total energy,
forces and stresses are computed in a two-dimensional framework.
Linear-response calculations () done on top of a self-consistent
calculation with this flag will automatically be performed in
the 2D framework as well. Please refer to:
Sohier, T., Calandra, M., & Mauri, F. (2017), Density functional
perturbation theory for gated two-dimensional heterostructures:
Theoretical developments and application to flexural phonons in graphene.
Physical Review B, 96(7), 75448. https://doi.org/10.1103/PhysRevB.96.075448
NB:
- The length of the unit-cell along the z direction should
be larger than twice the thickness of the 2D material
(including electrons). A reasonable estimate for a
layer's thickness could be the interlayer distance in the
corresponding layered bulk material. Otherwise,
the atomic thickness + 10 bohr should be a safe estimate.
There is also a lower limit of 20 bohr imposed by the cutoff
radius used to read pseudopotentials (see read_pseudo.f90 in Modules).
- As for ESM above, only in-plane stresses make sense and one
should use cell_dofree='2Dxy' in a vc-relax calculation.
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: esm_bc
Type: CHARACTER
See: assume_isolated
Default: 'pbc'
Description:
If "assume_isolated" = 'esm', determines the boundary
conditions used for either side of the slab.
Currently available choices:
'pbc' :
(default): regular periodic calculation (no ESM).
'bc1' :
Vacuum-slab-vacuum (open boundary conditions).
'bc2' :
Metal-slab-metal (dual electrode configuration).
See also "esm_efield".
'bc3' :
Vacuum-slab-metal
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: esm_w
Type: REAL
See: assume_isolated
Default: 0.d0
Description: If "assume_isolated" = 'esm', determines the position offset
[in a.u.] of the start of the effective screening region,
measured relative to the cell edge. (ESM region begins at
z = +/- [L_z/2 + esm_w] ).
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: esm_efield
Type: REAL
See: assume_isolated
Default: 0.d0
Description: If "assume_isolated" = 'esm' and "esm_bc" = 'bc2', gives the
magnitude of the electric field [Ry/a.u.] to be applied
between semi-infinite ESM electrodes.
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: esm_nfit
Type: INTEGER
See: assume_isolated
Default: 4
Description: If "assume_isolated" = 'esm', gives the number of z-grid points
for the polynomial fit along the cell edge.
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: fcp_mu
Type: REAL
See: lfcpopt
Default: 0.d0
Description: If "lfcpopt" = .TRUE., gives the target Fermi energy [Ry]. One can start
with appropriate total charge of the system by giving 'tot_charge'.
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: vdw_corr
Type: CHARACTER
Default: 'none'
See: london_s6, london_rcut, london_c6, london_rvdw,
dftd3_version, dftd3_threebody, ts_vdw_econv_thr, ts_vdw_isolated, xdm_a1, xdm_a2
Description:
Type of Van der Waals correction. Allowed values:
'grimme-d2', 'Grimme-D2', 'DFT-D', 'dft-d' :
Semiempirical Grimme's DFT-D2. Optional variables:
"london_s6", "london_rcut", "london_c6", "london_rvdw"
S. Grimme, J. Comp. Chem. 27, 1787 (2006), doi:10.1002/jcc.20495
V. Barone et al., J. Comp. Chem. 30, 934 (2009), doi:10.1002/jcc.21112
'grimme-d3', 'Grimme-D3', 'DFT-D3', 'dft-d3' :
Semiempirical Grimme's DFT-D3. Optional variables:
"dftd3_version", "dftd3_threebody"
S. Grimme et al, J. Chem. Phys 132, 154104 (2010), doi:10.1002/jcc.20495
'TS', 'ts', 'ts-vdw', 'ts-vdW', 'tkatchenko-scheffler' :
Tkatchenko-Scheffler dispersion corrections with first-principle derived
C6 coefficients.
Optional variables: "ts_vdw_econv_thr", "ts_vdw_isolated"
See A. Tkatchenko and M. Scheffler, PRL 102, 073005 (2009).
'XDM', 'xdm' :
Exchange-hole dipole-moment model. Optional variables: "xdm_a1", "xdm_a2"
A. D. Becke et al., J. Chem. Phys. 127, 154108 (2007), doi:10.1063/1.2795701
A. Otero de la Roza et al., J. Chem. Phys. 136, 174109 (2012),
doi:10.1063/1.4705760
Note that non-local functionals (eg vdw-DF) are NOT specified here but in "input_dft"
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: london
Type: LOGICAL
Default: .FALSE.
Status: OBSOLESCENT, same as "vdw_corr"='DFT-D'
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: london_s6
Type: REAL
Default: 0.75
Description: global scaling parameter for DFT-D. Default is good for PBE.
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: london_c6(i), i=1,ntyp
Type: REAL
Default: standard Grimme-D2 values
Description: atomic C6 coefficient of each atom type
( if not specified default values from S. Grimme, J. Comp. Chem. 27, 1787 (2006),
doi:10.1002/jcc.20495 are used; see file Modules/mm_dispersion.f90 )
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: london_rvdw(i), i=1,ntyp
Type: REAL
Default: standard Grimme-D2 values
Description: atomic vdw radii of each atom type
( if not specified default values from S. Grimme, J. Comp. Chem. 27, 1787 (2006),
doi:10.1002/jcc.20495 are used; see file Modules/mm_dispersion.f90 )
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: london_rcut
Type: REAL
Default: 200
Description: cutoff radius (a.u.) for dispersion interactions
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: dftd3_version
Type: integer
Default: 3
Description:
Version of Grimme implementation of Grimme-D3:
dftd3_version = 2 :
Original Grimme-D2 parametrization
dftd3_version = 3 :
Grimme-D3 (zero damping)
dftd3_version = 4 :
Grimme-D3 (BJ damping)
dftd3_version = 5 :
Grimme-D3M (zero damping)
dftd3_version = 6 :
Grimme-D3M (BJ damping)
NOTE: not all functionals are parametrized.
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: dftd3_threebody
Type: LOGICAL
Default: TRUE
Description: Turn three-body terms in Grimme-D3 on. If .false. two-body contributions
only are computed, using two-body parameters of Grimme-D3.
If dftd3_version=2, three-body contribution is always disabled.
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: ts_vdw_econv_thr
Type: REAL
Default: 1.D-6
Description: Optional: controls the convergence of the vdW energy (and forces). The default value
is a safe choice, likely too safe, but you do not gain much in increasing it
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: ts_vdw_isolated
Type: LOGICAL
Default: .FALSE.
Description: Optional: set it to .TRUE. when computing the Tkatchenko-Scheffler vdW energy
for an isolated (non-periodic) system.
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: xdm
Type: LOGICAL
Default: .FALSE.
Status: OBSOLESCENT, same as "vdw_corr"='xdm'
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: xdm_a1
Type: REAL
Default: 0.6836
Description: Damping function parameter a1 (adimensional). It is NOT necessary to give
a value if the functional is one of B86bPBE, PW86PBE, PBE, BLYP. For functionals
in this list, the coefficients are given in:
http://schooner.chem.dal.ca/wiki/XDM
A. Otero de la Roza, E. R. Johnson, J. Chem. Phys. 138, 204109 (2013),
doi:10.1063/1.4705760
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: xdm_a2
Type: REAL
Default: 1.5045
Description: Damping function parameter a2 (angstrom). It is NOT necessary to give
a value if the functional is one of B86bPBE, PW86PBE, PBE, BLYP. For functionals
in this list, the coefficients are given in:
http://schooner.chem.dal.ca/wiki/XDM
A. Otero de la Roza, E. R. Johnson, J. Chem. Phys. 138, 204109 (2013),
doi:10.1063/1.4705760
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: space_group
Type: INTEGER
Default: 0
Description: The number of the space group of the crystal, as given
in the International Tables of Crystallography A (ITA).
This allows to give in input only the inequivalent atomic
positions. The positions of all the symmetry equivalent atoms
are calculated by the code. Used only when the atomic positions
are of type crystal_sg. See also "uniqueb",
"origin_choice", "rhombohedral"
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: uniqueb
Type: LOGICAL
Default: .FALSE.
Description: Used only for monoclinic lattices. If .TRUE. the b
unique "ibrav" (-12 or -13) are used, and symmetry
equivalent positions are chosen assuming that the
twofold axis or the mirror normal is parallel to the
b axis. If .FALSE. it is parallel to the c axis.
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: origin_choice
Type: INTEGER
Default: 1
Description: Used only for space groups that in the ITA allow
the use of two different origins. "origin_choice"=1,
means the first origin, while "origin_choice"=2 is the
second origin.
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: rhombohedral
Type: LOGICAL
Default: .TRUE.
Description: Used only for rhombohedral space groups.
When .TRUE. the coordinates of the inequivalent atoms are
given with respect to the rhombohedral axes, when .FALSE.
the coordinates of the inequivalent atoms are given with
respect to the hexagonal axes. They are converted internally
to the rhombohedral axes and "ibrav"=5 is used in both cases.
+--------------------------------------------------------------------
///---
VARIABLES USED ONLY IF "GATE" = .TRUE.
+--------------------------------------------------------------------
Variable: zgate
Type: REAL
Default: 0.5
Description: used only if "gate" = .TRUE.
Specifies the position of the charged plate which represents
the counter charge in doped systems ("tot_charge" .ne. 0).
In units of the unit cell length in z direction, "zgate" in ]0,1[
Details of the gate potential can be found in
T. Brumme, M. Calandra, F. Mauri; PRB 89, 245406 (2014).
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: relaxz
Type: LOGICAL
Default: .FALSE.
Description: used only if "gate" = .TRUE.
Allows the relaxation of the system towards the charged plate.
Use carefully and utilize either a layer of fixed atoms or a
potential barrier ("block"=.TRUE.) to avoid the atoms moving to
the position of the plate or the dipole of the dipole
correction ("dipfield"=.TRUE.).
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: block
Type: LOGICAL
Default: .FALSE.
Description: used only if "gate" = .TRUE.
Adds a potential barrier to the total potential seen by the
electrons to mimic a dielectric in field effect configuration
and/or to avoid electrons spilling into the vacuum region for
electron doping. Potential barrier is from "block_1" to "block_2" and
has a height of block_height.
If "dipfield" = .TRUE. then "eopreg" is used for a smooth increase and
decrease of the potential barrier.
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: block_1
Type: REAL
Default: 0.45
Description: used only if "gate" = .TRUE. and "block" = .TRUE.
lower beginning of the potential barrier, in units of the
unit cell size along z, "block_1" in ]0,1[
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: block_2
Type: REAL
Default: 0.55
Description: used only if "gate" = .TRUE. and "block" = .TRUE.
upper beginning of the potential barrier, in units of the
unit cell size along z, "block_2" in ]0,1[
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: block_height
Type: REAL
Default: 0.1
Description: used only if "gate" = .TRUE. and "block" = .TRUE.
Height of the potential barrier in Rydberg.
+--------------------------------------------------------------------
\\\---
===END OF NAMELIST======================================================
========================================================================
NAMELIST: &ELECTRONS
+--------------------------------------------------------------------
Variable: electron_maxstep
Type: INTEGER
Default: 100
Description: maximum number of iterations in a scf step
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: scf_must_converge
Type: LOGICAL
Default: .TRUE.
Description: If .false. do not stop molecular dynamics or ionic relaxation
when electron_maxstep is reached. Use with care.
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: conv_thr
Type: REAL
Default: 1.D-6
Description: Convergence threshold for selfconsistency:
estimated energy error < conv_thr
(note that conv_thr is extensive, like the total energy).
For non-self-consistent calculations, conv_thr is used
to set the default value of the threshold (ethr) for
iterative diagonalizazion: see "diago_thr_init"
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: adaptive_thr
Type: LOGICAL
Default: .FALSE
Description: If .TRUE. this turns on the use of an adaptive "conv_thr" for
the inner scf loops when using EXX.
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: conv_thr_init
Type: REAL
Default: 1.D-3
Description: When "adaptive_thr" = .TRUE. this is the convergence threshold
used for the first scf cycle.
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: conv_thr_multi
Type: REAL
Default: 1.D-1
Description: When "adaptive_thr" = .TRUE. the convergence threshold for
each scf cycle is given by:
max( "conv_thr", "conv_thr_multi" * dexx )
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: mixing_mode
Type: CHARACTER
Default: 'plain'
Description:
Available options are:
'plain' :
charge density Broyden mixing
'TF' :
as above, with simple Thomas-Fermi screening
(for highly homogeneous systems)
'local-TF' :
as above, with local-density-dependent TF screening
(for highly inhomogeneous systems)
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: mixing_beta
Type: REAL
Default: 0.7D0
Description: mixing factor for self-consistency
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: mixing_ndim
Type: INTEGER
Default: 8
Description: number of iterations used in mixing scheme.
If you are tight with memory, you may reduce it to 4 or so.
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: mixing_fixed_ns
Type: INTEGER
Default: 0
Description: For DFT+U : number of iterations with fixed ns ( ns is the
atomic density appearing in the Hubbard term ).
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: diagonalization
Type: CHARACTER
Default: 'david'
Description:
Available options are:
'david' :
Davidson iterative diagonalization with overlap matrix
(default). Fast, may in some rare cases fail.
'cg' :
Conjugate-gradient-like band-by-band diagonalization.
MUCH slower than 'david' but uses less memory and is
(a little bit) more robust.
'ppcg' :
PPCG iterative diagonalization
'paro', 'ParO' :
ParO iterative diagonalization
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: diago_thr_init
Type: REAL
Description: Convergence threshold (ethr) for iterative diagonalization
(the check is on eigenvalue convergence).
For scf calculations: default is 1.D-2 if starting from a
superposition of atomic orbitals; 1.D-5 if starting from a
charge density. During self consistency the threshold
is automatically reduced (but never below 1.D-13) when
approaching convergence.
For non-scf calculations: default is ("conv_thr"/N elec)/10.
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: diago_cg_maxiter
Type: INTEGER
Description: For conjugate gradient diagonalization: max number of iterations
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: diago_david_ndim
Type: INTEGER
Default: 2
Description: For Davidson diagonalization: dimension of workspace
(number of wavefunction packets, at least 2 needed).
A larger value may yield a smaller number of iterations in
the algorithm but uses more memory and more CPU time in
subspace diagonalization (cdiaghg/rdiaghg). You may try
"diago_david_ndim"=4 if you are not tight on memory
and if the time spent in subspace diagonalization is small
compared to the time spent in h_psi
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: diago_full_acc
Type: LOGICAL
Default: .FALSE.
Description: If .TRUE. all the empty states are diagonalized at the same level
of accuracy of the occupied ones. Otherwise the empty states are
diagonalized using a larger threshold (this should not affect
total energy, forces, and other ground-state properties).
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: efield
Type: REAL
Default: 0.D0
Description: Amplitude of the finite electric field (in Ry a.u.;
1 a.u. = 36.3609*10^10 V/m). Used only if "lelfield"==.TRUE.
and if k-points ("K_POINTS" card) are not automatic.
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: efield_cart(i), i=1,3
Type: REAL
Default: (0.D0, 0.D0, 0.D0)
Description: Finite electric field (in Ry a.u.=36.3609*10^10 V/m) in
cartesian axis. Used only if "lelfield"==.TRUE. and if
k-points ("K_POINTS" card) are automatic.
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: efield_phase
Type: CHARACTER
Default: 'none'
Description:
Available options are:
'read' :
set the zero of the electronic polarization (with "lelfield"==.true..)
to the result of a previous calculation
'write' :
write on disk data on electronic polarization to be read in another
calculation
'none' :
none of the above points
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: startingpot
Type: CHARACTER
Description:
Available options are:
'atomic' :
starting potential from atomic charge superposition
(default for scf, *relax, *md)
'file' :
start from existing "charge-density.xml" file in the
directory specified by variables "prefix" and "outdir"
For nscf and bands calculation this is the default
and the only sensible possibility.
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: startingwfc
Type: CHARACTER
Default: 'atomic+random'
Description:
Available options are:
'atomic' :
Start from superposition of atomic orbitals.
If not enough atomic orbitals are available,
fill with random numbers the remaining wfcs
The scf typically starts better with this option,
but in some high-symmetry cases one can "loose"
valence states, ending up in the wrong ground state.
'atomic+random' :
As above, plus a superimposed "randomization"
of atomic orbitals. Prevents the "loss" of states
mentioned above.
'random' :
Start from random wfcs. Slower start of scf but safe.
It may also reduce memory usage in conjunction with
"diagonalization"='cg'.
'file' :
Start from an existing wavefunction file in the
directory specified by variables "prefix" and "outdir".
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: tqr
Type: LOGICAL
Default: .FALSE.
Description: If .true., use a real-space algorithm for augmentation
charges of ultrasoft pseudopotentials and PAWsets.
Faster but numerically less accurate than the default
G-space algorithm. Use with care and after testing!
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: real_space
Type: LOGICAL
Default: .FALSE.
Description: If .true., exploit real-space localization to compute
matrix elements for nonlocal projectors. Faster and in
principle better scaling than the default G-space algorithm,
but numerically less accurate, may lead to some loss of
translational invariance. Use with care and after testing!
+--------------------------------------------------------------------
===END OF NAMELIST======================================================
========================================================================
NAMELIST: &IONS
REQUIRED IF "CALCULATION" == 'RELAX', 'MD', 'VC-RELAX', OR 'VC-MD'
OPTIONAL FOR "CALCULATION" == 'SCF' (ONLY "ION_POSITIONS" IS USED)
+--------------------------------------------------------------------
Variable: ion_positions
Type: CHARACTER
Default: 'default'
Description:
Available options are:
'default' :
if restarting, use atomic positions read from the
restart file; in all other cases, use atomic
positions from standard input.
'from_input' :
read atomic positions from standard input, even if restarting.
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: ion_velocities
Type: CHARACTER
Default: 'default'
Description:
Initial ionic velocities. Available options are:
'default' :
start a new simulation from random thermalized
distribution of velocities if "tempw" is set,
with zero velocities otherwise; restart from
atomic velocities read from the restart file
'from_input' :
start or continue the simulation with atomic
velocities read from standard input - see card
"ATOMIC_VELOCITIES"
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: ion_dynamics
Type: CHARACTER
Description:
Specify the type of ionic dynamics.
For different type of calculation different possibilities are
allowed and different default values apply:
CASE ( "calculation" == 'relax' )
'bfgs' :
(default) use BFGS quasi-newton algorithm,
based on the trust radius procedure,
for structural relaxation
'damp' :
use damped (quick-min Verlet)
dynamics for structural relaxation
Can be used for constrained
optimisation: see "CONSTRAINTS" card
CASE ( "calculation" == 'md' )
'verlet' :
(default) use Verlet algorithm to integrate
Newton's equation. For constrained
dynamics, see "CONSTRAINTS" card
'langevin' :
ion dynamics is over-damped Langevin
'langevin-smc' :
over-damped Langevin with Smart Monte Carlo:
see R.J. Rossky, JCP, 69, 4628 (1978), doi:10.1063/1.436415
CASE ( "calculation" == 'vc-relax' )
'bfgs' :
(default) use BFGS quasi-newton algorithm;
cell_dynamics must be 'bfgs' too
'damp' :
use damped (Beeman) dynamics for
structural relaxation
CASE ( "calculation" == 'vc-md' )
'beeman' :
(default) use Beeman algorithm to integrate
Newton's equation
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: pot_extrapolation
Type: CHARACTER
Default: 'atomic'
Description:
Used to extrapolate the potential from preceding ionic steps.
'none' :
no extrapolation
'atomic' :
extrapolate the potential as if it was a sum of
atomic-like orbitals
'first_order' :
extrapolate the potential with first-order
formula
'second_order' :
as above, with second order formula
Note: 'first_order' and 'second-order' extrapolation make sense
only for molecular dynamics calculations
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: wfc_extrapolation
Type: CHARACTER
Default: 'none'
Description:
Used to extrapolate the wavefunctions from preceding ionic steps.
'none' :
no extrapolation
'first_order' :
extrapolate the wave-functions with first-order formula.
'second_order' :
as above, with second order formula.
Note: 'first_order' and 'second-order' extrapolation make sense
only for molecular dynamics calculations
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: remove_rigid_rot
Type: LOGICAL
Default: .FALSE.
Description: This keyword is useful when simulating the dynamics and/or the
thermodynamics of an isolated system. If set to true the total
torque of the internal forces is set to zero by adding new forces
that compensate the spurious interaction with the periodic
images. This allows for the use of smaller supercells.
BEWARE: since the potential energy is no longer consistent with
the forces (it still contains the spurious interaction with the
repeated images), the total energy is not conserved anymore.
However the dynamical and thermodynamical properties should be
in closer agreement with those of an isolated system.
Also the final energy of a structural relaxation will be higher,
but the relaxation itself should be faster.
+--------------------------------------------------------------------
///---
VARIABLES USED FOR MOLECULAR DYNAMICS
+--------------------------------------------------------------------
Variable: ion_temperature
Type: CHARACTER
Default: 'not_controlled'
Description:
Available options are:
'rescaling' :
control ionic temperature via velocity rescaling
(first method) see parameters "tempw", "tolp", and
"nraise" (for VC-MD only). This rescaling method
is the only one currently implemented in VC-MD
'rescale-v' :
control ionic temperature via velocity rescaling
(second method) see parameters "tempw" and "nraise"
'rescale-T' :
scale temperature of the thermostat every "nraise" steps
by "delta_t", starting from "tempw".
The temperature is controlled via velocitiy rescaling.
'reduce-T' :
reduce temperature of the thermostat every "nraise" steps
by the (negative) value "delta_t", starting from "tempw".
If "delta_t" is positive, the target temperature is augmented.
The temperature is controlled via velocitiy rescaling.
'berendsen' :
control ionic temperature using "soft" velocity
rescaling - see parameters "tempw" and "nraise"
'andersen' :
control ionic temperature using Andersen thermostat
see parameters "tempw" and "nraise"
'svr' :
control ionic temperature using stochastic-velocity rescaling
(Donadio, Bussi, Parrinello, J. Chem. Phys. 126, 014101, 2007),
with parameters "tempw" and "nraise".
'initial' :
initialize ion velocities to temperature "tempw"
and leave uncontrolled further on
'not_controlled' :
(default) ionic temperature is not controlled
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: tempw
Type: REAL
Default: 300.D0
Description: Starting temperature (Kelvin) in MD runs
target temperature for most thermostats.
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: tolp
Type: REAL
Default: 100.D0
Description: Tolerance for velocity rescaling. Velocities are rescaled if
the run-averaged and target temperature differ more than tolp.
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: delta_t
Type: REAL
Default: 1.D0
Description: if "ion_temperature" == 'rescale-T' :
at each step the instantaneous temperature is multiplied
by delta_t; this is done rescaling all the velocities.
if "ion_temperature" == 'reduce-T' :
every 'nraise' steps the instantaneous temperature is
reduced by -"delta_t" (i.e. "delta_t" < 0 is added to T)
The instantaneous temperature is calculated at the end of
every ionic move and BEFORE rescaling. This is the temperature
reported in the main output.
For "delta_t" < 0, the actual average rate of heating or cooling
should be roughly C*delta_t/(nraise*dt) (C=1 for an
ideal gas, C=0.5 for a harmonic solid, theorem of energy
equipartition between all quadratic degrees of freedom).
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: nraise
Type: INTEGER
Default: 1
Description: if "ion_temperature" == 'reduce-T' :
every "nraise" steps the instantaneous temperature is
reduced by -"delta_t" (i.e. "delta_t" is added to the temperature)
if "ion_temperature" == 'rescale-v' :
every "nraise" steps the average temperature, computed from
the last "nraise" steps, is rescaled to "tempw"
if "ion_temperature" == 'rescaling' and "calculation" == 'vc-md' :
every "nraise" steps the instantaneous temperature
is rescaled to "tempw"
if "ion_temperature" == 'berendsen' :
the "rise time" parameter is given in units of the time step:
tau = nraise*dt, so dt/tau = 1/nraise
if "ion_temperature" == 'andersen' :
the "collision frequency" parameter is given as nu=1/tau
defined above, so nu*dt = 1/nraise
if "ion_temperature" == 'svr' :
the "characteristic time" of the thermostat is set to
tau = nraise*dt
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: refold_pos
Type: LOGICAL
Default: .FALSE.
Description: This keyword applies only in the case of molecular dynamics or
damped dynamics. If true the ions are refolded at each step into
the supercell.
+--------------------------------------------------------------------
\\\---
///---
KEYWORDS USED ONLY IN BFGS CALCULATIONS
+--------------------------------------------------------------------
Variable: upscale
Type: REAL
Default: 100.D0
Description: Max reduction factor for "conv_thr" during structural optimization
"conv_thr" is automatically reduced when the relaxation
approaches convergence so that forces are still accurate,
but "conv_thr" will not be reduced to less that "conv_thr" / "upscale".
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: bfgs_ndim
Type: INTEGER
Default: 1
Description: Number of old forces and displacements vectors used in the
PULAY mixing of the residual vectors obtained on the basis
of the inverse hessian matrix given by the BFGS algorithm.
When "bfgs_ndim" = 1, the standard quasi-Newton BFGS method is
used.
(bfgs only)
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: trust_radius_max
Type: REAL
Default: 0.8D0
Description: Maximum ionic displacement in the structural relaxation.
(bfgs only)
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: trust_radius_min
Type: REAL
Default: 1.D-3
Description: Minimum ionic displacement in the structural relaxation
BFGS is reset when "trust_radius" < "trust_radius_min".
(bfgs only)
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: trust_radius_ini
Type: REAL
Default: 0.5D0
Description: Initial ionic displacement in the structural relaxation.
(bfgs only)
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: w_1
Type: REAL
Default: 0.01D0
See: w_2
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: w_2
Type: REAL
Default: 0.5D0
Description: Parameters used in line search based on the Wolfe conditions.
(bfgs only)
+--------------------------------------------------------------------
\\\---
===END OF NAMELIST======================================================
========================================================================
NAMELIST: &CELL
INPUT THIS NAMELIST ONLY IF "CALCULATION" == 'VC-RELAX' OR 'VC-MD'
+--------------------------------------------------------------------
Variable: cell_dynamics
Type: CHARACTER
Description:
Specify the type of dynamics for the cell.
For different type of calculation different possibilities
are allowed and different default values apply:
CASE ( "calculation" == 'vc-relax' )
'none' :
no dynamics
'sd' :
steepest descent ( not implemented )
'damp-pr' :
damped (Beeman) dynamics of the Parrinello-Rahman extended lagrangian
'damp-w' :
damped (Beeman) dynamics of the new Wentzcovitch extended lagrangian
'bfgs' :
BFGS quasi-newton algorithm (default)
"ion_dynamics" must be 'bfgs' too
CASE ( "calculation" == 'vc-md' )
'none' :
no dynamics
'pr' :
(Beeman) molecular dynamics of the Parrinello-Rahman extended lagrangian
'w' :
(Beeman) molecular dynamics of the new Wentzcovitch extended lagrangian
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: press
Type: REAL
Default: 0.D0
Description: Target pressure [KBar] in a variable-cell md or relaxation run.
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: wmass
Type: REAL
Default: 0.75*Tot_Mass/pi**2 for Parrinello-Rahman MD;
0.75*Tot_Mass/pi**2/Omega**(2/3) for Wentzcovitch MD
Description: Fictitious cell mass [amu] for variable-cell simulations
(both 'vc-md' and 'vc-relax')
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: cell_factor
Type: REAL
Default: 2.0 for variable-cell calculations, 1.0 otherwise
Description: Used in the construction of the pseudopotential tables.
It should exceed the maximum linear contraction of the
cell during a simulation.
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: press_conv_thr
Type: REAL
Default: 0.5D0 Kbar
Description: Convergence threshold on the pressure for variable cell
relaxation ('vc-relax' : note that the other convergence
thresholds for ionic relaxation apply as well).
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: cell_dofree
Type: CHARACTER
Default: 'all'
Description:
Select which of the cell parameters should be moved:
'all' :
all axis and angles are moved
'ibrav' :
all axis and angles are moved, but the lattice remains consistent with the initial ibrav choice
'x' :
only the x component of axis 1 (v1_x) is moved
'y' :
only the y component of axis 2 (v2_y) is moved
'z' :
only the z component of axis 3 (v3_z) is moved
'xy' :
only v1_x and v2_y are moved
'xz' :
only v1_x and v3_z are moved
'yz' :
only v2_y and v3_z are moved
'xyz' :
only v1_x, v2_y, v3_z are moved
'shape' :
all axis and angles, keeping the volume fixed
'volume' :
the volume changes, keeping all angles fixed (i.e. only celldm(1) changes)
'2Dxy' :
only x and y components are allowed to change
'2Dshape' :
as above, keeping the area in xy plane fixed
'epitaxial_ab' :
fix axis 1 and 2 while allowing axis 3 to move
'epitaxial_ac' :
fix axis 1 and 3 while allowing axis 2 to move
'epitaxial_bc' :
fix axis 2 and 3 while allowing axis 1 to move
BEWARE: if axis are not orthogonal, some of these options do not
work (symmetry is broken). If you are not happy with them,
edit subroutine init_dofree in file Modules/cell_base.f90
+--------------------------------------------------------------------
===END OF NAMELIST======================================================
========================================================================
CARD: ATOMIC_SPECIES
/////////////////////////////////////////
// Syntax: //
/////////////////////////////////////////
ATOMIC_SPECIES
X(1) Mass_X(1) PseudoPot_X(1)
X(2) Mass_X(2) PseudoPot_X(2)
. . .
X(ntyp) Mass_X(ntyp) PseudoPot_X(ntyp)
/////////////////////////////////////////
DESCRIPTION OF ITEMS:
+--------------------------------------------------------------------
Variable: X
Type: CHARACTER
Description: label of the atom. Acceptable syntax:
chemical symbol X (1 or 2 characters, case-insensitive)
or chemical symbol plus a number or a letter, as in
"Xn" (e.g. Fe1) or "X_*" or "X-*" (e.g. C1, C_h;
max total length cannot exceed 3 characters)
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: Mass_X
Type: REAL
Description: mass of the atomic species [amu: mass of C = 12]
Used only when performing Molecular Dynamics run
or structural optimization runs using Damped MD.
Not actually used in all other cases (but stored
in data files, so phonon calculations will use
these values unless other values are provided)
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: PseudoPot_X
Type: CHARACTER
Description: File containing PP for this species.
The pseudopotential file is assumed to be in the new UPF format.
If it doesn't work, the pseudopotential format is determined by
the file name:
*.vdb or *.van Vanderbilt US pseudopotential code
*.RRKJ3 Andrea Dal Corso's code (old format)
none of the above old PWscf norm-conserving format
+--------------------------------------------------------------------
===END OF CARD==========================================================
========================================================================
CARD: ATOMIC_POSITIONS { alat | bohr | angstrom | crystal | crystal_sg }
________________________________________________________________________
* IF calculation == 'bands' OR calculation == 'nscf' :
Specified atomic positions will be IGNORED and those from the
previous scf calculation will be used instead !!!
* ELSE :
/////////////////////////////////////////
// Syntax: //
/////////////////////////////////////////
ATOMIC_POSITIONS { alat | bohr | angstrom | crystal | crystal_sg }
X(1) x(1) y(1) z(1) { if_pos(1)(1) if_pos(2)(1) if_pos(3)(1) }
X(2) x(2) y(2) z(2) { if_pos(1)(2) if_pos(2)(2) if_pos(3)(2) }
. . .
X(nat) x(nat) y(nat) z(nat) { if_pos(1)(nat) if_pos(2)(nat) if_pos(3)(nat) }
/////////////////////////////////////////
ENDIF
________________________________________________________________________
DESCRIPTION OF ITEMS:
+--------------------------------------------------------------------
Card's flags: { alat | bohr | angstrom | crystal | crystal_sg }
Default: (DEPRECATED) alat
Description:
Units for ATOMIC_POSITIONS:
alat :
atomic positions are in cartesian coordinates, in
units of the lattice parameter (either celldm(1)
or A). If no option is specified, 'alat' is assumed;
not specifying units is DEPRECATED and will no
longer be allowed in the future
bohr :
atomic positions are in cartesian coordinate,
in atomic units (i.e. Bohr radii)
angstrom :
atomic positions are in cartesian coordinates, in Angstrom
crystal :
atomic positions are in crystal coordinates, i.e.
in relative coordinates of the primitive lattice
vectors as defined either in card "CELL_PARAMETERS"
or via the ibrav + celldm / a,b,c... variables
crystal_sg :
atomic positions are in crystal coordinates, i.e.
in relative coordinates of the primitive lattice.
This option differs from the previous one because
in this case only the symmetry inequivalent atoms
are given. The variable "space_group" must indicate
the space group number used to find the symmetry
equivalent atoms. The other variables that control
this option are uniqueb, origin_choice, and
rhombohedral.
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: X
Type: CHARACTER
Description: label of the atom as specified in "ATOMIC_SPECIES"
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variables: x, y, z
Type: REAL
Description: atomic positions
NOTE: each atomic coordinate can also be specified as a simple algebraic expression.
To be interpreted correctly expression must NOT contain any blank
space and must NOT start with a "+" sign. The available expressions are:
+ (plus), - (minus), / (division), * (multiplication), ^ (power)
All numerical constants included are considered as double-precision numbers;
i.e. 1/2 is 0.5, not zero. Other functions, such as sin, sqrt or exp are
not available, although sqrt can be replaced with ^(1/2).
Example:
C 1/3 1/2*3^(-1/2) 0
is equivalent to
C 0.333333 0.288675 0.000000
Please note that this feature is NOT supported by XCrysDen (which will
display a wrong structure, or nothing at all).
When atomic positions are of type crystal_sg coordinates can be given
in the following four forms (Wyckoff positions):
C 1a
C 8g x
C 24m x y
C 48n x y z
The first form must be used when the Wyckoff letter determines uniquely
all three coordinates, forms 2,3,4 when the Wyckoff letter and 1,2,3
coordinates respectively are needed.
The forms:
C 8g x x x
C 24m x x y
are not allowed, but
C x x x
C x x y
C x y z
are correct.
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variables: if_pos(1), if_pos(2), if_pos(3)
Type: INTEGER
Default: 1
Description: component i of the force for this atom is multiplied by if_pos(i),
which must be either 0 or 1. Used to keep selected atoms and/or
selected components fixed in MD dynamics or
structural optimization run.
With crystal_sg atomic coordinates the constraints are copied in all equivalent
atoms.
+--------------------------------------------------------------------
===END OF CARD==========================================================
========================================================================
CARD: K_POINTS { tpiba | automatic | crystal | gamma | tpiba_b | crystal_b | tpiba_c | crystal_c }
________________________________________________________________________
* IF tpiba OR crystal OR tpiba_b OR crystal_b OR tpiba_c OR crystal_c :
/////////////////////////////////////////
// Syntax: //
/////////////////////////////////////////
K_POINTS tpiba | crystal | tpiba_b | crystal_b | tpiba_c | crystal_c
nks
xk_x(1) xk_y(1) xk_z(1) wk(1)
xk_x(2) xk_y(2) xk_z(2) wk(2)
. . .
xk_x(nks) xk_y(nks) xk_z(nks) wk(nks)
/////////////////////////////////////////
* ELSE IF automatic :
/////////////////////////////////////////
// Syntax: //
/////////////////////////////////////////
K_POINTS automatic
nk1 nk2 nk3 sk1 sk2 sk3
/////////////////////////////////////////
* ELSE IF gamma :
/////////////////////////////////////////
// Syntax: //
/////////////////////////////////////////
K_POINTS gamma
/////////////////////////////////////////
ENDIF
________________________________________________________________________
DESCRIPTION OF ITEMS:
+--------------------------------------------------------------------
Card's flags: { tpiba | automatic | crystal | gamma | tpiba_b | crystal_b | tpiba_c | crystal_c }
Default: tbipa
Description:
K_POINTS options are:
tpiba :
read k-points in cartesian coordinates,
in units of 2 pi/a (default)
automatic :
automatically generated uniform grid of k-points, i.e,
generates ( nk1, nk2, nk3 ) grid with ( sk1, sk2, sk3 ) offset.
nk1, nk2, nk3 as in Monkhorst-Pack grids
k1, k2, k3 must be 0 ( no offset ) or 1 ( grid displaced
by half a grid step in the corresponding direction )
BEWARE: only grids having the full symmetry of the crystal
work with tetrahedra. Some grids with offset may not work.
crystal :
read k-points in crystal coordinates, i.e. in relative
coordinates of the reciprocal lattice vectors
gamma :
use k = 0 (no need to list k-point specifications after card)
In this case wavefunctions can be chosen as real,
and specialized subroutines optimized for calculations
at the gamma point are used (memory and cpu requirements
are reduced by approximately one half).
tpiba_b :
Used for band-structure plots.
See Doc/brillouin_zones.pdf for usage of BZ labels;
otherwise, k-points are in units of 2 pi/a.
nks points specify nks-1 lines in reciprocal space.
Every couple of points identifies the initial and
final point of a line. pw.x generates N intermediate
points of the line where N is the weight of the first point.
crystal_b :
As tpiba_b, but k-points are in crystal coordinates.
See Doc/brillouin_zones.pdf for usage of BZ labels.
tpiba_c :
Used for band-structure contour plots.
k-points are in units of 2 pi/a. nks must be 3.
3 k-points k_0, k_1, and k_2 specify a rectangle
in reciprocal space of vertices k_0, k_1, k_2,
k_1 + k_2 - k_0: k_0 + \alpha (k_1-k_0)+
\beta (k_2-k_0) with 0 <\alpha,\beta < 1.
The code produces a uniform mesh n1 x n2
k points in this rectangle. n1 and n2 are
the weights of k_1 and k_2. The weight of k_0
is not used.
crystal_c :
As tpiba_c, but k-points are in crystal coordinates.
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: nks
Type: INTEGER
Description: Number of supplied special k-points.
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variables: xk_x, xk_y, xk_z, wk
Type: REAL
Description: Special k-points (xk_x/y/z) in the irreducible Brillouin Zone
(IBZ) of the lattice (with all symmetries) and weights (wk)
See the literature for lists of special points and
the corresponding weights.
If the symmetry is lower than the full symmetry
of the lattice, additional points with appropriate
weights are generated. Notice that such procedure
assumes that ONLY k-points in the IBZ are provided in input
In a non-scf calculation, weights do not affect the results.
If you just need eigenvalues and eigenvectors (for instance,
for a band-structure plot), weights can be set to any value
(for instance all equal to 1).
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variables: nk1, nk2, nk3
Type: INTEGER
Description: These parameters specify the k-point grid
(nk1 x nk2 x nk3) as in Monkhorst-Pack grids.
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variables: sk1, sk2, sk3
Type: INTEGER
Description: The grid offsets; sk1, sk2, sk3 must be
0 ( no offset ) or 1 ( grid displaced by
half a grid step in the corresponding direction ).
+--------------------------------------------------------------------
===END OF CARD==========================================================
========================================================================
CARD: ADDITIONAL_K_POINTS
OPTIONAL CARD. ADDS A LIST OF K-POINTS WITH ZERO WEIGHT, AFTER THOSE USED FOR THE SCF CALCULATION.
WHEN DOING AN EXX CALCULATION AND NQ1X, NQ2X OR NQ3X ARE DIFFERENT FROM ONE, ALSO INCLUDE THE
REQUIRED K+Q POINTS. THE MAIN USE OF THIS CARD IS DO BAND PLOTS WITH EXX.
/////////////////////////////////////////
// Syntax: //
/////////////////////////////////////////
ADDITIONAL_K_POINTS
Same as K_POINTS, but does not accept 'automatic'.
/////////////////////////////////////////
===END OF CARD==========================================================
========================================================================
CARD: CELL_PARAMETERS { alat | bohr | angstrom }
OPTIONAL CARD, NEEDED ONLY IF "IBRAV" == 0 IS SPECIFIED, IGNORED OTHERWISE !
/////////////////////////////////////////
// Syntax: //
/////////////////////////////////////////
CELL_PARAMETERS { alat | bohr | angstrom }
v1(1) v1(2) v1(3)
v2(1) v2(2) v2(3)
v3(1) v3(2) v3(3)
/////////////////////////////////////////
DESCRIPTION OF ITEMS:
+--------------------------------------------------------------------
Card's flags: { alat | bohr | angstrom }
Description: Unit for lattice vectors; options are:
'bohr' / 'angstrom':
lattice vectors in bohr-radii / angstrom.
In this case the lattice parameter alat = sqrt(v1*v1).
'alat' / nothing specified:
lattice vectors in units of the lattice parameter (either
"celldm"(1) or "A"). Not specifying units is DEPRECATED
and will not be allowed in the future.
If neither unit nor lattice parameter are specified,
'bohr' is assumed - DEPRECATED, will no longer be allowed
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variables: v1, v2, v3
Type: REAL
Description: Crystal lattice vectors (in cartesian axis):
v1(1) v1(2) v1(3) ... 1st lattice vector
v2(1) v2(2) v2(3) ... 2nd lattice vector
v3(1) v3(2) v3(3) ... 3rd lattice vector
+--------------------------------------------------------------------
===END OF CARD==========================================================
========================================================================
CARD: CONSTRAINTS
OPTIONAL CARD, USED FOR CONSTRAINED DYNAMICS OR CONSTRAINED OPTIMISATIONS
(ONLY IF "ION_DYNAMICS"=='DAMP' OR 'VERLET', VARIABLE-CELL EXCEPTED)
When this card is present the SHAKE algorithm is automatically used.
/////////////////////////////////////////
// Syntax: //
/////////////////////////////////////////
CONSTRAINTS
nconstr { constr_tol }
constr_type(1) constr(1)(1) constr(2)(1) [ constr(3)(1) constr(4)(1) ] { constr_target(1) }
constr_type(2) constr(1)(2) constr(2)(2) [ constr(3)(2) constr(4)(2) ] { constr_target(2) }
. . .
constr_type(nconstr) constr(1)(nconstr) constr(2)(nconstr) [ constr(3)(nconstr) constr(4)(nconstr) ] { constr_target(nconstr) }
/////////////////////////////////////////
DESCRIPTION OF ITEMS:
+--------------------------------------------------------------------
Variable: nconstr
Type: INTEGER
Description: Number of constraints.
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: constr_tol
Type: REAL
Description: Tolerance for keeping the constraints satisfied.
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: constr_type
Type: CHARACTER
Description:
Type of constraint :
'type_coord' :
constraint on global coordination-number, i.e. the
average number of atoms of type B surrounding the
atoms of type A. The coordination is defined by
using a Fermi-Dirac.
(four indexes must be specified).
'atom_coord' :
constraint on local coordination-number, i.e. the
average number of atoms of type A surrounding a
specific atom. The coordination is defined by
using a Fermi-Dirac.
(four indexes must be specified).
'distance' :
constraint on interatomic distance
(two atom indexes must be specified).
'planar_angle' :
constraint on planar angle
(three atom indexes must be specified).
'torsional_angle' :
constraint on torsional angle
(four atom indexes must be specified).
'bennett_proj' :
constraint on the projection onto a given direction
of the vector defined by the position of one atom
minus the center of mass of the others.
G. Roma, J.P. Crocombette: J. Nucl. Mater. 403, 32 (2010),
doi:10.1016/j.jnucmat.2010.06.001
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variables: constr(1), constr(2), constr(3), constr(4)
Description: These variables have different meanings for different constraint types:
@b 'type_coord' :
@i constr(1) is the first index of the atomic type involved
@i constr(2) is the second index of the atomic type involved
@i constr(3) is the cut-off radius for estimating the coordination
@i constr(4) is a smoothing parameter
@b 'atom_coord' :
@i constr(1) is the atom index of the atom with constrained coordination
@i constr(2) is the index of the atomic type involved in the coordination
@i constr(3) is the cut-off radius for estimating the coordination
@i constr(4) is a smoothing parameter
@b 'distance' :
atoms indices object of the constraint, as they appear in
the @ref ATOMIC_POSITIONS card
@b 'planar_angle', @b 'torsional_angle' :
atoms indices object of the constraint, as they appear in the
@ref ATOMIC_POSITIONS card (beware the order)
@b 'bennett_proj' :
@i constr(1) is the index of the atom whose position is constrained.
@i constr(2:4) are the three coordinates of the vector that specifies
the constraint direction.
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: constr_target
Type: REAL
Description: Target for the constrain ( angles are specified in degrees ).
This variable is optional.
+--------------------------------------------------------------------
===END OF CARD==========================================================
========================================================================
CARD: OCCUPATIONS
OPTIONAL CARD, USED ONLY IF "OCCUPATIONS" == 'FROM_INPUT', IGNORED OTHERWISE !
/////////////////////////////////////////
// Syntax: //
/////////////////////////////////////////
OCCUPATIONS
f_inp1(1) f_inp1(2) . . . f_inp1(nbnd)
[ f_inp2(1) f_inp2(2) . . . f_inp2(nbnd) ]
/////////////////////////////////////////
DESCRIPTION OF ITEMS:
+--------------------------------------------------------------------
Variable: f_inp1
Type: REAL
Description: Occupations of individual states (MAX 10 PER ROW).
For spin-polarized calculations, these are majority spin states.
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: f_inp2
Type: REAL
Description: Occupations of minority spin states (MAX 10 PER ROW)
To be specified only for spin-polarized calculations.
+--------------------------------------------------------------------
===END OF CARD==========================================================
========================================================================
CARD: ATOMIC_VELOCITIES { a.u }
OPTIONAL CARD, READS VELOCITIES FROM STANDARD INPUT
/////////////////////////////////////////
// Syntax: //
/////////////////////////////////////////
ATOMIC_VELOCITIES { a.u }
V(1) vx(1) vy(1) vz(1)
V(2) vx(2) vy(2) vz(2)
. . .
V(nat) vx(nat) vy(nat) vz(nat)
/////////////////////////////////////////
DESCRIPTION OF ITEMS:
+--------------------------------------------------------------------
Card's flags: { a.u }
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variable: V
Type: CHARACTER
Description: label of the atom as specified in ATOMIC_SPECIES
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variables: vx, vy, vz
Type: REAL
Description: atomic velocities along x y and z direction
+--------------------------------------------------------------------
===END OF CARD==========================================================
========================================================================
CARD: ATOMIC_FORCES
OPTIONAL CARD USED TO SPECIFY EXTERNAL FORCES ACTING ON ATOMS.
BEWARE: if the sum of external forces is not zero, the center of mass of
the system will move
/////////////////////////////////////////
// Syntax: //
/////////////////////////////////////////
ATOMIC_FORCES
X(1) fx(1) fy(1) fz(1)
X(2) fx(2) fy(2) fz(2)
. . .
X(nat) fx(nat) fy(nat) fz(nat)
/////////////////////////////////////////
DESCRIPTION OF ITEMS:
+--------------------------------------------------------------------
Variable: X
Type: CHARACTER
Description: label of the atom as specified in "ATOMIC_SPECIES"
+--------------------------------------------------------------------
+--------------------------------------------------------------------
Variables: fx, fy, fz
Type: REAL
Description: external force on atom X (cartesian components, Ry/a.u. units)
+--------------------------------------------------------------------
===END OF CARD==========================================================
This file has been created by helpdoc utility on Wed Dec 02 08:04:48 CET 2020
</pre>
</body>
</html>
|