File: INPUT_PW.html

package info (click to toggle)
espresso 6.7-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye
  • size: 311,040 kB
  • sloc: f90: 447,429; ansic: 52,566; sh: 40,631; xml: 37,561; tcl: 20,077; lisp: 5,923; makefile: 4,502; python: 4,379; perl: 1,219; cpp: 761; fortran: 618; java: 568; awk: 128
file content (3559 lines) | stat: -rw-r--r-- 166,863 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559

<html>
  <body>
    <pre>

------------------------------------------------------------------------
INPUT FILE DESCRIPTION

Program: pw.x / PWscf / Quantum Espresso (version: 6.6)
------------------------------------------------------------------------


Input data format: { } = optional, [ ] = it depends, | = or

All quantities whose dimensions are not explicitly specified are in
RYDBERG ATOMIC UNITS. Charge is "number" charge (i.e. not multiplied
by e); potentials are in energy units (i.e. they are multiplied by e).

BEWARE: TABS, DOS &lt;CR&gt;&lt;LF&gt; CHARACTERS ARE POTENTIAL SOURCES OF TROUBLE

Namelists must appear in the order given below.
Comment lines in namelists can be introduced by a "!", exactly as in
fortran code. Comments lines in cards can be introduced by
either a "!" or a "#" character in the first position of a line.
Do not start any line in cards with a "/" character.
Leave a space between card names and card options, e.g.
ATOMIC_POSITIONS (bohr), not ATOMIC_POSITIONS(bohr)
Do not start any line in cards with a "/" character.


Structure of the input data:
===============================================================================

&CONTROL
  ...
/

&SYSTEM
  ...
/

&ELECTRONS
  ...
/

[ &IONS
  ...
 / ]

[ &CELL
  ...
 / ]

ATOMIC_SPECIES
 X  Mass_X  PseudoPot_X
 Y  Mass_Y  PseudoPot_Y
 Z  Mass_Z  PseudoPot_Z

ATOMIC_POSITIONS { alat | bohr | crystal | angstrom | crystal_sg }
  X 0.0  0.0  0.0  {if_pos(1) if_pos(2) if_pos(3)}
  Y 0.5  0.0  0.0
  Z O.0  0.2  0.2

K_POINTS { tpiba | automatic | crystal | gamma | tpiba_b | crystal_b | tpiba_c | crystal_c }
if (gamma)
   nothing to read
if (automatic)
   nk1, nk2, nk3, k1, k2, k3
if (not automatic)
   nks
   xk_x, xk_y, xk_z,  wk
if (tpipa_b or crystal_b in a 'bands' calculation) see Doc/brillouin_zones.pdf

[ CELL_PARAMETERS { alat | bohr | angstrom }
   v1(1) v1(2) v1(3)
   v2(1) v2(2) v2(3)
   v3(1) v3(2) v3(3) ]

[ OCCUPATIONS
   f_inp1(1)  f_inp1(2)  f_inp1(3) ... f_inp1(10)
   f_inp1(11) f_inp1(12) ... f_inp1(nbnd)
 [ f_inp2(1)  f_inp2(2)  f_inp2(3) ... f_inp2(10)
   f_inp2(11) f_inp2(12) ... f_inp2(nbnd) ] ]

[ CONSTRAINTS
   nconstr  { constr_tol }
   constr_type(.)   constr(1,.)   constr(2,.) [ constr(3,.)   constr(4,.) ] { constr_target(.) } ]

[ ATOMIC_FORCES
   label_1 Fx(1) Fy(1) Fz(1)
   .....
   label_n Fx(n) Fy(n) Fz(n) ]

[ ADDITIONAL_K_POINTS
     see: K_POINTS ]



========================================================================
NAMELIST: &CONTROL

   +--------------------------------------------------------------------
   Variable:       calculation
   
   Type:           CHARACTER
   Default:        'scf'
   Description:   
                   A string describing the task to be performed. Options are:
                        'scf'
                        'nscf'
                        'bands'
                        'relax'
                        'md'
                        'vc-relax'
                        'vc-md'
    
                   (vc = variable-cell).
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       title
   
   Type:           CHARACTER
   Default:        ' '
   Description:    reprinted on output.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       verbosity
   
   Type:           CHARACTER
   Default:        'low'
   Description:   
                   Currently two verbosity levels are implemented:
                        'high'
                        'low'
    
                   'debug' and 'medium' have the same effect as 'high';
                   'default' and 'minimal' as 'low'
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       restart_mode
   
   Type:           CHARACTER
   Default:        'from_scratch'
   Description:   
                   Available options are:
    
                   'from_scratch' :
                        From scratch. This is the normal way to perform a PWscf calculation
    
                   'restart' :
                        From previous interrupted run. Use this switch only if you want to
                        continue, using the same number of processors and parallelization,
                        an interrupted calculation. Do not use to start a new one, or to
                        perform a non-scf calculations.  Works only if the calculation was
                        cleanly stopped using variable "max_seconds", or by user request
                        with an "exit file" (i.e.: create a file "prefix".EXIT, in directory
                        "outdir"; see variables "prefix", "outdir"). The default for
                        "startingwfc" and "startingpot" is set to 'file'.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       wf_collect
   
   Type:           LOGICAL
   Default:        .TRUE.
   Description:    This flag controls the way wavefunctions are stored to disk :
                   
                   .TRUE.  collect wavefunctions from all processors, store them
                           into the output data directory "outdir"/"prefix".save
                           The resulting format is portable to a different number
                           of processors, or different kind of parallelization
                   
                   .FALSE. OBSOLETE - NO LONGER IMPLEMENTED
                           do not collect wavefunctions, leave them in temporary
                           local files (one per processor). The resulting format
                           is readable only on the same number of processors and
                           with the same kind of parallelization used to write it.
                   
                   Note that this flag has no effect on reading, only on writing.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       nstep
   
   Type:           INTEGER
   Description:    number of molecular-dynamics or structural optimization steps
                   performed in this run. If set to 0, the code performs a quick
                   "dry run", stopping just after initialization. This is useful
                   to check for input correctness and to have the summary printed.
   Default:        1  if "calculation" == 'scf', 'nscf', 'bands';
                   50 for the other cases
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       iprint
   
   Type:           INTEGER
   Default:        write only at convergence
   Description:    band energies are written every iprint iterations
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       tstress
   
   Type:           LOGICAL
   Default:        .false.
   Description:    calculate stress. It is set to .TRUE. automatically if
                   "calculation" == 'vc-md' or 'vc-relax'
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       tprnfor
   
   Type:           LOGICAL
   Description:    calculate forces. It is set to .TRUE. automatically if
                   "calculation" == 'relax','md','vc-md'
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       dt
   
   Type:           REAL
   Default:        20.D0
   Description:    time step for molecular dynamics, in Rydberg atomic units
                   (1 a.u.=4.8378 * 10^-17 s : beware, the CP code uses
                    Hartree atomic units, half that much!!!)
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       outdir
   
   Type:           CHARACTER
   Default:        value of the ESPRESSO_TMPDIR environment variable if set;
                   current directory ('./') otherwise
   Description:    input, temporary, output files are found in this directory,
                   see also "wfcdir"
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       wfcdir
   
   Type:           CHARACTER
   Default:        same as "outdir"
   Description:    This directory specifies where to store files generated by
                   each processor (*.wfc{N}, *.igk{N}, etc.). Useful for
                   machines without a parallel file system: set "wfcdir" to
                   a local file system, while "outdir" should be a parallel
                   or network file system, visible to all processors. Beware:
                   in order to restart from interrupted runs, or to perform
                   further calculations using the produced data files, you
                   may need to copy files to "outdir". Works only for pw.x.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       prefix
   
   Type:           CHARACTER
   Default:        'pwscf'
   Description:    prepended to input/output filenames:
                   prefix.wfc, prefix.rho, etc.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       lkpoint_dir
   
   Type:           LOGICAL
   Default:        .true.
   Description:    If .false. a subdirectory for each k_point is not opened
                   in the "prefix".save directory; Kohn-Sham eigenvalues are
                   stored instead in a single file for all k-points. Currently
                   doesn't work together with "wf_collect"
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       max_seconds
   
   Type:           REAL
   Default:        1.D+7, or 150 days, i.e. no time limit
   Description:    Jobs stops after "max_seconds" CPU time. Use this option
                   in conjunction with option "restart_mode" if you need to
                   split a job too long to complete into shorter jobs that
                   fit into your batch queues.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       etot_conv_thr
   
   Type:           REAL
   Default:        1.0D-4
   Description:    Convergence threshold on total energy (a.u) for ionic
                   minimization: the convergence criterion is satisfied
                   when the total energy changes less than "etot_conv_thr"
                   between two consecutive scf steps. Note that "etot_conv_thr"
                   is extensive, like the total energy.
                   See also "forc_conv_thr" - both criteria must be satisfied
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       forc_conv_thr
   
   Type:           REAL
   Default:        1.0D-3
   Description:    Convergence threshold on forces (a.u) for ionic minimization:
                   the convergence criterion is satisfied when all components of
                   all forces are smaller than "forc_conv_thr".
                   See also "etot_conv_thr" - both criteria must be satisfied
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       disk_io
   
   Type:           CHARACTER
   Default:        see below
   Description:   
                   Specifies the amount of disk I/O activity:
                   (only for binary files and xml data file in data directory;
                   other files printed at each molecular dynamics / structural
                   optimization step are not controlled by this option )
    
                   'high' :
                        save charge to disk at each SCF step,
                        keep wavefunctions on disk (in "distributed" format),
                        save mixing data as well.
                        Do not use this option unless you have a good reason!
                        It is no longer needed to specify 'high' in order to be able
                        to restart from an interrupted calculation (see "restart_mode")
    
                   'medium' :
                        save charge to disk at each SCF step,
                        keep wavefunctions on disk only if more than one k-point,
                        per process is present, otherwise keep them in memory;
                        save them to disk only at the end (in "portable" format)
    
                   'low' :
                        save charge to disk at each SCF step,
                        keep wavefunctions in memory (for all k-points),
                        save them to disk only at the end (in "portable" format).
                        Reduces I/O but increases memory wrt the previous cases
    
                   'nowf' :
                        save to disk only the xml data file,
                        never save wavefunctions and charge density
    
                   'none' :
                        do not save anything to disk
    
                   Default is 'low' for the scf case, 'medium' otherwise.
                   Note that the needed RAM increases as disk I/O decreases
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       pseudo_dir
   
   Type:           CHARACTER
   Default:        value of the $ESPRESSO_PSEUDO environment variable if set;
                   '$HOME/espresso/pseudo/' otherwise
   Description:    directory containing pseudopotential files
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       tefield
   
   Type:           LOGICAL
   Default:        .FALSE.
   Description:    If .TRUE. a saw-like potential simulating an electric field
                   is added to the bare ionic potential. See variables "edir",
                   "eamp", "emaxpos", "eopreg" for the form and size of
                   the added potential.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       dipfield
   
   Type:           LOGICAL
   Default:        .FALSE.
   Description:    If .TRUE. and "tefield"==.TRUE. a dipole correction is also
                   added to the bare ionic potential - implements the recipe
                   of L. Bengtsson, PRB 59, 12301 (1999). See variables "edir",
                   "emaxpos", "eopreg" for the form of the correction. Must
                   be used ONLY in a slab geometry, for surface calculations,
                   with the discontinuity FALLING IN THE EMPTY SPACE.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       lelfield
   
   Type:           LOGICAL
   Default:        .FALSE.
   Description:    If .TRUE. a homogeneous finite electric field described
                   through the modern theory of the polarization is applied.
                   This is different from "tefield" == .true. !
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       nberrycyc
   
   Type:           INTEGER
   Default:        1
   Description:    In the case of a finite electric field  ( "lelfield" == .TRUE. )
                   it defines the number of iterations for converging the
                   wavefunctions in the electric field Hamiltonian, for each
                   external iteration on the charge density
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       lorbm
   
   Type:           LOGICAL
   Default:        .FALSE.
   Description:    If .TRUE. perform orbital magnetization calculation.
                   If finite electric field is applied ("lelfield"==.true.) only Kubo terms are computed
                   [for details see New J. Phys. 12, 053032 (2010), doi:10.1088/1367-2630/12/5/053032].
                   
                   The type of calculation is 'nscf' and should be performed on an automatically
                   generated uniform grid of k points.
                   
                   Works ONLY with norm-conserving pseudopotentials.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       lberry
   
   Type:           LOGICAL
   Default:        .FALSE.
   Description:    If .TRUE. perform a Berry phase calculation.
                   See the header of PW/src/bp_c_phase.f90 for documentation.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       gdir
   
   Type:           INTEGER
   Description:    For Berry phase calculation: direction of the k-point
                   strings in reciprocal space. Allowed values: 1, 2, 3
                   1=first, 2=second, 3=third reciprocal lattice vector
                   For calculations with finite electric fields
                   ("lelfield"==.true.) "gdir" is the direction of the field.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       nppstr
   
   Type:           INTEGER
   Description:    For Berry phase calculation: number of k-points to be
                   calculated along each symmetry-reduced string.
                   The same for calculation with finite electric fields
                   ("lelfield"==.true.).
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       lfcpopt
   
   Type:           LOGICAL
   See:            fcp_mu
   Default:        .FALSE.
   Description:    If .TRUE. perform a constant bias potential (constant-mu) calculation
                   for a static system with ESM method. See the header of PW/src/fcp.f90
                   for documentation.
                   
                   NB:
                   - The total energy displayed in 'prefix.out' includes the potentiostat
                     contribution (-mu*N).
                   - "calculation" must be 'relax'.
                   - "assume_isolated" = 'esm' and "esm_bc" = 'bc2' or 'bc3' must be set
                     in "SYSTEM" namelist.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       gate
   
   Type:           LOGICAL
   Default:        .FALSE.
   See:            zgate, relaxz, block, block_1, block_2, block_height
   Description:    In the case of charged cells ("tot_charge" .ne. 0) setting gate = .TRUE.
                   represents the counter charge (i.e. -tot_charge) not by a homogeneous
                   background charge but with a charged plate, which is placed at "zgate"
                   (see below). Details of the gate potential can be found in
                   T. Brumme, M. Calandra, F. Mauri; PRB 89, 245406 (2014).
                   Note, that in systems which are not symmetric with respect to the plate,
                   one needs to enable the dipole correction! ("dipfield"=.true.).
                   Currently, symmetry can be used with gate=.true. but carefully check
                   that no symmetry is included which maps z to -z even if in principle one
                   could still use them for symmetric systems (i.e. no dipole correction).
                   For "nosym"=.false. verbosity is set to 'high'.
                   Note: this option was called "monopole" in v6.0 and 6.1 of pw.x
   +--------------------------------------------------------------------
   
===END OF NAMELIST======================================================


========================================================================
NAMELIST: &SYSTEM

   +--------------------------------------------------------------------
   Variable:       ibrav
   
   Type:           INTEGER
   Status:         REQUIRED
   Description:    Bravais-lattice index. Optional only if space_group is set.
                     If ibrav /= 0, specify EITHER [ "celldm"(1)-"celldm"(6) ]
                     OR [ "A", "B", "C", "cosAB", "cosAC", "cosBC" ]
                     but NOT both. The lattice parameter "alat" is set to
                     alat = celldm(1) (in a.u.) or alat = A (in Angstrom);
                     see below for the other parameters.
                     For ibrav=0 specify the lattice vectors in "CELL_PARAMETERS",
                     optionally the lattice parameter alat = celldm(1) (in a.u.)
                     or = A (in Angstrom). If not specified, the lattice parameter is
                     taken from "CELL_PARAMETERS"
                     IMPORTANT NOTICE 1:
                     with ibrav=0 lattice vectors must be given with a sufficiently large
                     number of digits and with the correct symmetry, or else symmetry
                     detection may fail and strange problems may arise in symmetrization.
                     IMPORTANT NOTICE 2:
                     do not use celldm(1) or A as a.u. to Ang conversion factor,
                     use the true lattice parameters or nothing,
                     specify units in "CELL_PARAMETERS" and "ATOMIC_POSITIONS"
                   
                   ibrav      structure                   celldm(2)-celldm(6)
                                                        or: b,c,cosbc,cosac,cosab
                     0          free
                         crystal axis provided in input: see card "CELL_PARAMETERS"
                   
                     1          cubic P (sc)
                         v1 = a(1,0,0),  v2 = a(0,1,0),  v3 = a(0,0,1)
                   
                     2          cubic F (fcc)
                         v1 = (a/2)(-1,0,1),  v2 = (a/2)(0,1,1), v3 = (a/2)(-1,1,0)
                   
                     3          cubic I (bcc)
                         v1 = (a/2)(1,1,1),  v2 = (a/2)(-1,1,1),  v3 = (a/2)(-1,-1,1)
                    -3          cubic I (bcc), more symmetric axis:
                         v1 = (a/2)(-1,1,1), v2 = (a/2)(1,-1,1),  v3 = (a/2)(1,1,-1)
                   
                     4          Hexagonal and Trigonal P        celldm(3)=c/a
                         v1 = a(1,0,0),  v2 = a(-1/2,sqrt(3)/2,0),  v3 = a(0,0,c/a)
                   
                     5          Trigonal R, 3fold axis c        celldm(4)=cos(gamma)
                         The crystallographic vectors form a three-fold star around
                         the z-axis, the primitive cell is a simple rhombohedron:
                         v1 = a(tx,-ty,tz),   v2 = a(0,2ty,tz),   v3 = a(-tx,-ty,tz)
                         where c=cos(gamma) is the cosine of the angle gamma between
                         any pair of crystallographic vectors, tx, ty, tz are:
                           tx=sqrt((1-c)/2), ty=sqrt((1-c)/6), tz=sqrt((1+2c)/3)
                    -5          Trigonal R, 3fold axis &lt;111&gt;    celldm(4)=cos(gamma)
                         The crystallographic vectors form a three-fold star around
                         &lt;111&gt;. Defining a' = a/sqrt(3) :
                         v1 = a' (u,v,v),   v2 = a' (v,u,v),   v3 = a' (v,v,u)
                         where u and v are defined as
                           u = tz - 2*sqrt(2)*ty,  v = tz + sqrt(2)*ty
                         and tx, ty, tz as for case ibrav=5
                         Note: if you prefer x,y,z as axis in the cubic limit,
                               set  u = tz + 2*sqrt(2)*ty,  v = tz - sqrt(2)*ty
                               See also the note in Modules/latgen.f90
                   
                     6          Tetragonal P (st)               celldm(3)=c/a
                         v1 = a(1,0,0),  v2 = a(0,1,0),  v3 = a(0,0,c/a)
                   
                     7          Tetragonal I (bct)              celldm(3)=c/a
                         v1=(a/2)(1,-1,c/a),  v2=(a/2)(1,1,c/a),  v3=(a/2)(-1,-1,c/a)
                   
                     8          Orthorhombic P                  celldm(2)=b/a
                                                                celldm(3)=c/a
                         v1 = (a,0,0),  v2 = (0,b,0), v3 = (0,0,c)
                   
                     9          Orthorhombic base-centered(bco) celldm(2)=b/a
                                                                celldm(3)=c/a
                         v1 = (a/2, b/2,0),  v2 = (-a/2,b/2,0),  v3 = (0,0,c)
                    -9          as 9, alternate description
                         v1 = (a/2,-b/2,0),  v2 = (a/2, b/2,0),  v3 = (0,0,c)
                    91          Orthorhombic one-face base-centered A-type
                                                                celldm(2)=b/a
                                                                celldm(3)=c/a
                         v1 = (a, 0, 0),  v2 = (0,b/2,-c/2),  v3 = (0,b/2,c/2)
                   
                    10          Orthorhombic face-centered      celldm(2)=b/a
                                                                celldm(3)=c/a
                         v1 = (a/2,0,c/2),  v2 = (a/2,b/2,0),  v3 = (0,b/2,c/2)
                   
                    11          Orthorhombic body-centered      celldm(2)=b/a
                                                                celldm(3)=c/a
                         v1=(a/2,b/2,c/2),  v2=(-a/2,b/2,c/2),  v3=(-a/2,-b/2,c/2)
                   
                    12          Monoclinic P, unique axis c     celldm(2)=b/a
                                                                celldm(3)=c/a,
                                                                celldm(4)=cos(ab)
                         v1=(a,0,0), v2=(b*cos(gamma),b*sin(gamma),0),  v3 = (0,0,c)
                         where gamma is the angle between axis a and b.
                   -12          Monoclinic P, unique axis b     celldm(2)=b/a
                                                                celldm(3)=c/a,
                                                                celldm(5)=cos(ac)
                         v1 = (a,0,0), v2 = (0,b,0), v3 = (c*cos(beta),0,c*sin(beta))
                         where beta is the angle between axis a and c
                   
                    13          Monoclinic base-centered        celldm(2)=b/a
                                (unique axis c)                 celldm(3)=c/a,
                                                                celldm(4)=cos(gamma)
                         v1 = (  a/2,         0,          -c/2),
                         v2 = (b*cos(gamma), b*sin(gamma), 0  ),
                         v3 = (  a/2,         0,           c/2),
                         where gamma=angle between axis a and b projected on xy plane
                   
                   -13          Monoclinic base-centered        celldm(2)=b/a
                                (unique axis b)                 celldm(3)=c/a,
                                                                celldm(5)=cos(beta)
                         v1 = (  a/2,       b/2,             0),
                         v2 = ( -a/2,       b/2,             0),
                         v3 = (c*cos(beta),   0,   c*sin(beta)),
                         where beta=angle between axis a and c projected on xz plane
                    IMPORTANT NOTICE: until QE v.6.4.1, axis for ibrav=-13 had a
                    different definition: v1(old) =-v2(now), v2(old) = v1(now)
                   
                    14          Triclinic                       celldm(2)= b/a,
                                                                celldm(3)= c/a,
                                                                celldm(4)= cos(bc),
                                                                celldm(5)= cos(ac),
                                                                celldm(6)= cos(ab)
                         v1 = (a, 0, 0),
                         v2 = (b*cos(gamma), b*sin(gamma), 0)
                         v3 = (c*cos(beta),  c*(cos(alpha)-cos(beta)cos(gamma))/sin(gamma),
                              c*sqrt( 1 + 2*cos(alpha)cos(beta)cos(gamma)
                                        - cos(alpha)^2-cos(beta)^2-cos(gamma)^2 )/sin(gamma) )
                         where alpha is the angle between axis b and c
                                beta is the angle between axis a and c
                               gamma is the angle between axis a and b
   +--------------------------------------------------------------------
   
   ///---
      EITHER:
      
      +--------------------------------------------------------------------
      Variable:       celldm(i), i=1,6
      
      Type:           REAL
      See:            ibrav
      Description:    Crystallographic constants - see the "ibrav" variable.
                      Specify either these OR "A","B","C","cosAB","cosBC","cosAC" NOT both.
                      Only needed values (depending on "ibrav") must be specified
                      alat = "celldm"(1) is the lattice parameter "a" (in BOHR)
                      If "ibrav"==0, only "celldm"(1) is used if present;
                      cell vectors are read from card "CELL_PARAMETERS"
      +--------------------------------------------------------------------
      
      OR:
      
      +--------------------------------------------------------------------
      Variables:      A, B, C, cosAB, cosAC, cosBC
      
      Type:           REAL
      See:            ibrav
      Description:    Traditional crystallographic constants:
                      
                        a,b,c in ANGSTROM
                        cosAB = cosine of the angle between axis a and b (gamma)
                        cosAC = cosine of the angle between axis a and c (beta)
                        cosBC = cosine of the angle between axis b and c (alpha)
                      
                      The axis are chosen according to the value of @ref ibrav.
                      Specify either these OR @ref celldm but NOT both.
                      Only needed values (depending on @ref ibrav) must be specified.
                      
                      The lattice parameter alat = A (in ANGSTROM ).
                      
                      If @ref ibrav == 0, only A is used if present, and
                      cell vectors are read from card @ref CELL_PARAMETERS.
      +--------------------------------------------------------------------
      
   \\\---
   
   +--------------------------------------------------------------------
   Variable:       nat
   
   Type:           INTEGER
   Status:         REQUIRED
   Description:    number of atoms in the unit cell (ALL atoms, except if
                   space_group is set, in which case, INEQUIVALENT atoms)
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       ntyp
   
   Type:           INTEGER
   Status:         REQUIRED
   Description:    number of types of atoms in the unit cell
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       nbnd
   
   Type:           INTEGER
   Default:        for an insulator, "nbnd" = number of valence bands
                   ("nbnd" = # of electrons /2);
                    for a metal, 20% more (minimum 4 more)
   Description:    Number of electronic states (bands) to be calculated.
                   Note that in spin-polarized calculations the number of
                   k-point, not the number of bands per k-point, is doubled
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       tot_charge
   
   Type:           REAL
   Default:        0.0
   Description:    Total charge of the system. Useful for simulations with charged cells.
                   By default the unit cell is assumed to be neutral (tot_charge=0).
                   tot_charge=+1 means one electron missing from the system,
                   tot_charge=-1 means one additional electron, and so on.
                   
                   In a periodic calculation a compensating jellium background is
                   inserted to remove divergences if the cell is not neutral.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       starting_charge(i), i=1,ntyp
   
   Type:           REAL
   Default:        0.0
   Description:    starting charge on atomic type 'i',
                   to create starting potential with "startingpot" = 'atomic'.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       tot_magnetization
   
   Type:           REAL
   Default:        -1 [unspecified]
   Description:    Total majority spin charge - minority spin charge.
                   Used to impose a specific total electronic magnetization.
                   If unspecified then tot_magnetization variable is ignored and
                   the amount of electronic magnetization is determined during
                   the self-consistent cycle.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       starting_magnetization(i), i=1,ntyp
   
   Type:           REAL
   Default:        0
   Description:    Starting spin polarization on atomic type 'i' in a spin
                   polarized (LSDA or noncollinear/spin-orbit) calculation.
                   Allowed values range between -1 (all spins down for the
                   valence electrons of atom type 'i') to 1 (all spins up).
                   If you expect a nonzero magnetization in your ground state,
                   you MUST either specify a nonzero value for at least one
                   atomic type, or constrain the magnetization using variable
                   "tot_magnetization" for LSDA, "constrained_magnetization"
                   for noncollinear/spin-orbit calculations. If you don't,
                   you will get a nonmagnetic (zero magnetization) state.
                   In order to perform LSDA calculations for an antiferromagnetic
                   state, define two different atomic species corresponding to
                   sublattices of the same atomic type.
                   
                   NOTE 1: "starting_magnetization" is ignored in most BUT NOT ALL
                   cases in non-scf calculations: it is safe to keep the same
                   values for the scf and subsequent non-scf calculation.
                   
                   NOTE 2: If you fix the magnetization with
                   "tot_magnetization", do not specify "starting_magnetization".
                   
                   NOTE 3: In the noncollinear/spin-orbit case, starting with zero
                   starting_magnetization on all atoms imposes time reversal
                   symmetry. The magnetization is never calculated and is
                   set to zero (the internal variable domag is set to .FALSE.).
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       ecutwfc
   
   Type:           REAL
   Status:         REQUIRED
   Description:    kinetic energy cutoff (Ry) for wavefunctions
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       ecutrho
   
   Type:           REAL
   Default:        4 * "ecutwfc"
   Description:    Kinetic energy cutoff (Ry) for charge density and potential
                   For norm-conserving pseudopotential you should stick to the
                   default value, you can reduce it by a little but it will
                   introduce noise especially on forces and stress.
                   If there are ultrasoft PP, a larger value than the default is
                   often desirable (ecutrho = 8 to 12 times "ecutwfc", typically).
                   PAW datasets can often be used at 4*"ecutwfc", but it depends
                   on the shape of augmentation charge: testing is mandatory.
                   The use of gradient-corrected functional, especially in cells
                   with vacuum, or for pseudopotential without non-linear core
                   correction, usually requires an higher values of ecutrho
                   to be accurately converged.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       ecutfock
   
   Type:           REAL
   Default:        ecutrho
   Description:    Kinetic energy cutoff (Ry) for the exact exchange operator in
                   EXX type calculations. By default this is the same as "ecutrho"
                   but in some EXX calculations, a significant speed-up can be obtained
                   by reducing ecutfock, at the expense of some loss in accuracy.
                   Must be .gt. "ecutwfc". Not implemented for stress calculation
                   and for US-PP and PAW pseudopotentials.
                   Use with care, especially in metals where it may give raise
                   to instabilities.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variables:      nr1, nr2, nr3
   
   Type:           INTEGER
   Description:    Three-dimensional FFT mesh (hard grid) for charge
                   density (and scf potential). If not specified
                   the grid is calculated based on the cutoff for
                   charge density (see also @ref ecutrho)
                   Note: you must specify all three dimensions for this setting to
                   be used.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variables:      nr1s, nr2s, nr3s
   
   Type:           INTEGER
   Description:    Three-dimensional mesh for wavefunction FFT and for the smooth
                   part of charge density ( smooth grid ).
                   Coincides with @ref nr1, @ref nr2, @ref nr3 if @ref ecutrho = 4 * ecutwfc ( default )
                   Note: you must specify all three dimensions for this setting to
                   be used.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       nosym
   
   Type:           LOGICAL
   Default:        .FALSE.
   Description:    if (.TRUE.) symmetry is not used. Consequences:
                   
                   - if a list of k points is provided in input, it is used
                     "as is": symmetry-inequivalent k-points are not generated,
                     and the charge density is not symmetrized;
                   
                   - if a uniform (Monkhorst-Pack) k-point grid is provided in
                     input, it is expanded to cover the entire Brillouin Zone,
                     irrespective of the crystal symmetry.
                     Time reversal symmetry is assumed so k and -k are considered
                     as equivalent unless "noinv"=.true. is specified.
                   
                   Do not use this option unless you know exactly what you want
                   and what you get. May be useful in the following cases:
                   - in low-symmetry large cells, if you cannot afford a k-point
                     grid with the correct symmetry
                   - in MD simulations
                   - in calculations for isolated atoms
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       nosym_evc
   
   Type:           LOGICAL
   Default:        .FALSE.
   Description:    if (.TRUE.) symmetry is not used, and k points are
                   forced to have the symmetry of the Bravais lattice;
                   an automatically generated Monkhorst-Pack grid will contain
                   all points of the grid over the entire Brillouin Zone,
                   plus the points rotated by the symmetries of the Bravais
                   lattice which were not in the original grid. The same
                   applies if a k-point list is provided in input instead
                   of a Monkhorst-Pack grid. Time reversal symmetry is assumed
                   so k and -k are equivalent unless "noinv"=.true. is specified.
                   This option differs from "nosym" because it forces k-points
                   in all cases to have the full symmetry of the Bravais lattice
                   (not all uniform grids have such property!)
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       noinv
   
   Type:           LOGICAL
   Default:        .FALSE.
   Description:    if (.TRUE.) disable the usage of k =&gt; -k symmetry
                   (time reversal) in k-point generation
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       no_t_rev
   
   Type:           LOGICAL
   Default:        .FALSE.
   Description:    if (.TRUE.) disable the usage of magnetic symmetry operations
                   that consist in a rotation + time reversal.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       force_symmorphic
   
   Type:           LOGICAL
   Default:        .FALSE.
   Description:    if (.TRUE.) force the symmetry group to be symmorphic by disabling
                   symmetry operations having an associated fractionary translation
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       use_all_frac
   
   Type:           LOGICAL
   Default:        .FALSE.
   Description:    if (.FALSE.) force real-space FFT grids to be commensurate with
                   fractionary translations of non-symmorphic symmetry operations,
                   if present (e.g.: if a fractional translation (0,0,c/4) exists,
                   the FFT dimension along the c axis must be multiple of 4).
                   if (.TRUE.) do not impose any constraints to FFT grids, even in
                   the presence of non-symmorphic symmetry operations.
                   BEWARE: use_all_frac=.TRUE. may lead to wrong results for
                   hybrid functionals and phonon calculations. Both cases use
                   symmetrization in real space that works for non-symmorphic
                   operations only if the real-space FFT grids are commensurate.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       occupations
   
   Type:           CHARACTER
   Description:   
                   Available options are:
    
                   'smearing' :
                        gaussian smearing for metals;
                        see variables "smearing" and "degauss"
    
                   'tetrahedra' :
                        Tetrahedron method, Bloechl's version:
                        P.E. Bloechl, PRB 49, 16223 (1994)
                        Requires uniform grid of k-points, to be
                        automatically generated (see card "K_POINTS").
                        Well suited for calculation of DOS,
                        less so (because not variational) for
                        force/optimization/dynamics calculations.
    
                   'tetrahedra_lin' :
                        Original linear tetrahedron method.
                        To be used only as a reference;
                        the optimized tetrahedron method is more efficient.
    
                   'tetrahedra_opt' :
                        Optimized tetrahedron method:
                        see M. Kawamura, PRB 89, 094515 (2014).
                        Can be used for phonon calculations as well.
    
                   'fixed' :
                        for insulators with a gap
    
                   'from_input' :
                        The occupation are read from input file,
                        card "OCCUPATIONS". Option valid only for a
                        single k-point, requires "nbnd" to be set
                        in input. Occupations should be consistent
                        with the value of "tot_charge".
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       one_atom_occupations
   
   Type:           LOGICAL
   Default:        .FALSE.
   Description:    This flag is used for isolated atoms ("nat"=1) together with
                   "occupations"='from_input'. If it is .TRUE., the wavefunctions
                   are ordered as the atomic starting wavefunctions, independently
                   from their eigenvalue. The occupations indicate which atomic
                   states are filled.
                   
                   The order of the states is written inside the UPF pseudopotential file.
                   In the scalar relativistic case:
                   S -&gt; l=0, m=0
                   P -&gt; l=1, z, x, y
                   D -&gt; l=2, r^2-3z^2, xz, yz, xy, x^2-y^2
                   
                   In the noncollinear magnetic case (with or without spin-orbit),
                   each group of states is doubled. For instance:
                   P -&gt; l=1, z, x, y for spin up, l=1, z, x, y for spin down.
                   Up and down is relative to the direction of the starting
                   magnetization.
                   
                   In the case with spin-orbit and time-reversal
                   ("starting_magnetization"=0.0) the atomic wavefunctions are
                   radial functions multiplied by spin-angle functions.
                   For instance:
                   P -&gt; l=1, j=1/2, m_j=-1/2,1/2. l=1, j=3/2,
                        m_j=-3/2, -1/2, 1/2, 3/2.
                   
                   In the magnetic case with spin-orbit the atomic wavefunctions
                   can be forced to be spin-angle functions by setting
                   "starting_spin_angle" to .TRUE..
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       starting_spin_angle
   
   Type:           LOGICAL
   Default:        .FALSE.
   Description:    In the spin-orbit case when "domag"=.TRUE., by default,
                   the starting wavefunctions are initialized as in scalar
                   relativistic noncollinear case without spin-orbit.
                   
                   By setting "starting_spin_angle"=.TRUE. this behaviour can
                   be changed and the initial wavefunctions are radial
                   functions multiplied by spin-angle functions.
                   
                   When "domag"=.FALSE. the initial wavefunctions are always
                   radial functions multiplied by spin-angle functions
                   independently from this flag.
                   
                   When "lspinorb" is .FALSE. this flag is not used.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       degauss
   
   Type:           REAL
   Default:        0.D0 Ry
   Description:    value of the gaussian spreading (Ry) for brillouin-zone
                   integration in metals.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       smearing
   
   Type:           CHARACTER
   Default:        'gaussian'
   Description:   
                   Available options are:
    
                   'gaussian', 'gauss' :
                        ordinary Gaussian spreading (Default)
    
                   'methfessel-paxton', 'm-p', 'mp' :
                        Methfessel-Paxton first-order spreading
                        (see PRB 40, 3616 (1989)).
    
                   'marzari-vanderbilt', 'cold', 'm-v', 'mv' :
                        Marzari-Vanderbilt-DeVita-Payne cold smearing
                        (see PRL 82, 3296 (1999))
    
                   'fermi-dirac', 'f-d', 'fd' :
                        smearing with Fermi-Dirac function
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       nspin
   
   Type:           INTEGER
   Default:        1
   Description:    nspin = 1 :  non-polarized calculation (default)
                   
                   nspin = 2 :  spin-polarized calculation, LSDA
                                (magnetization along z axis)
                   
                   nspin = 4 :  spin-polarized calculation, noncollinear
                                (magnetization in generic direction)
                                DO NOT specify "nspin" in this case;
                                specify "noncolin"=.TRUE. instead
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       noncolin
   
   Type:           LOGICAL
   Default:        .false.
   Description:    if .true. the program will perform a noncollinear calculation.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       ecfixed
   
   Type:           REAL
   Default:        0.0
   See:            q2sigma
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       qcutz
   
   Type:           REAL
   Default:        0.0
   See:            q2sigma
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       q2sigma
   
   Type:           REAL
   Default:        0.1
   Description:    ecfixed, qcutz, q2sigma:  parameters for modified functional to be
                   used in variable-cell molecular dynamics (or in stress calculation).
                   "ecfixed" is the value (in Rydberg) of the constant-cutoff;
                   "qcutz" and "q2sigma" are the height and the width (in Rydberg)
                   of the energy step for reciprocal vectors whose square modulus
                   is greater than "ecfixed". In the kinetic energy, G^2 is
                   replaced by G^2 + qcutz * (1 + erf ( (G^2 - ecfixed)/q2sigma) )
                   See: M. Bernasconi et al, J. Phys. Chem. Solids 56, 501 (1995),
                   doi:10.1016/0022-3697(94)00228-2
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       input_dft
   
   Type:           CHARACTER
   Default:        read from pseudopotential files
   Description:    Exchange-correlation functional: eg 'PBE', 'BLYP' etc
                   See Modules/funct.f90 for allowed values.
                   Overrides the value read from pseudopotential files.
                   Use with care and if you know what you are doing!
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       ace
   
   Type:           LOGICAL
   Default:        true
   Description:    Use Adaptively Compressed Exchange operator as in
                   Lin Lin, J. Chem. Theory Comput. 2016, 12, 2242--2249, doi:10.1021/acs.jctc.6b00092
                   
                   Set to false to use standard Exchange (much slower)
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       exx_fraction
   
   Type:           REAL
   Default:        it depends on the specified functional
   Description:    Fraction of EXX for hybrid functional calculations. In the case of
                   "input_dft"='PBE0', the default value is 0.25, while for "input_dft"='B3LYP'
                   the "exx_fraction" default value is 0.20.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       screening_parameter
   
   Type:           REAL
   Default:        0.106
   Description:    screening_parameter for HSE like hybrid functionals.
                   For more information, see:
                   J. Chem. Phys. 118, 8207 (2003), doi:10.1063/1.1564060
                   J. Chem. Phys. 124, 219906 (2006), doi:10.1063/1.2204597
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       exxdiv_treatment
   
   Type:           CHARACTER
   Default:        'gygi-baldereschi'
   Description:   
                   Specific for EXX. It selects the kind of approach to be used
                   for treating the Coulomb potential divergencies at small q vectors.
    
                   'gygi-baldereschi' :
                        appropriate for cubic and quasi-cubic supercells
    
                   'vcut_spherical' :
                        appropriate for cubic and quasi-cubic supercells
    
                   'vcut_ws' :
                        appropriate for strongly anisotropic supercells, see also "ecutvcut".
    
                   'none' :
                        sets Coulomb potential at G,q=0 to 0.0 (required for GAU-PBE)
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       x_gamma_extrapolation
   
   Type:           LOGICAL
   Default:        .true.
   Description:    Specific for EXX. If .true., extrapolate the G=0 term of the
                   potential (see README in examples/EXX_example for more)
                   Set this to .false. for GAU-PBE.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       ecutvcut
   
   Type:           REAL
   Default:        0.0 Ry
   See:            exxdiv_treatment
   Description:    Reciprocal space cutoff for correcting Coulomb potential
                   divergencies at small q vectors.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variables:      nqx1, nqx2, nqx3
   
   Type:           INTEGER
   Description:    Three-dimensional mesh for q (k1-k2) sampling of
                   the Fock operator (EXX). Can be smaller than
                   the number of k-points.
                   
                   Currently this defaults to the size of the k-point mesh used.
                   In QE =&lt; 5.0.2 it defaulted to nqx1=nqx2=nqx3=1.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       localization_thr
   
   Type:           REAL
   Default:        0.0
   Description:    Overlap threshold over which the exchange integral over a pair of localized orbitals
                   is included in the evaluation of EXX operator. Any value greater than 0.0 triggers
                   the SCDM localization and the evaluation on EXX using the localized orbitals.
                   Very small value of the threshold should yield the same result as the default EXX
                   evaluation
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       lda_plus_u
   
   Type:           LOGICAL
   Default:        .FALSE.
   Status:         DFT+U (formerly known as LDA+U) currently works only for
                   a few selected elements. Modify Modules/set_hubbard_l.f90 and
                   PW/src/tabd.f90 if you plan to use DFT+U with an element that
                   is not configured there.
   Description:    Specify "lda_plus_u" = .TRUE. to enable DFT+U, DFT+U+V, or DFT+U+J calculations.
                   See: Anisimov, Zaanen, and Andersen, PRB 44, 943 (1991);
                        Anisimov et al., PRB 48, 16929 (1993);
                        Liechtenstein, Anisimov, and Zaanen, PRB 52, R5467 (1994).
                   You must specify, for each Hubbard atom, the value of
                   U and (optionally) V, J, alpha of the Hubbard model (all in eV):
                   see "lda_plus_u_kind", "Hubbard_U", "Hubbard_V",
                   "Hubbard_J", "Hubbard_alpha"
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       lda_plus_u_kind
   
   Type:           INTEGER
   Default:        0
   Description:   
                   Specifies the type of calculation:
    
                   lda_plus_u_kind = 0  :
                        DFT+U simplified version of Cococcioni and de Gironcoli,
                        PRB 71, 035105 (2005), using "Hubbard_U"
    
                   lda_plus_u_kind = 1  :
                        DFT+U rotationally invariant scheme of Liechtenstein et al.,
                        using "Hubbard_U" and "Hubbard_J"
    
                   lda_plus_u_kind = 2  :
                        DFT+U+V simplified version of Campo Jr and Cococcioni,
                        J. Phys.: Condens. Matter 22, 055602 (2010), doi:10.1088/0953-8984/22/5/055602,
                        using "Hubbard_V"
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       Hubbard_U(i), i=1,ntyp
   
   Type:           REAL
   Default:        0.D0 for all species
   Description:    Hubbard_U(i): U parameter (eV) for species i, DFT+U calculation
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       Hubbard_J0(i), i=1,ntype
   
   Type:           REAL
   Default:        0.D0 for all species
   Description:    Hubbard_J0(i): J0 parameter (eV) for species i, DFT+U+J calculation,
                   see PRB 84, 115108 (2011) for details.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       Hubbard_V(na,nb,k), (na,nb,k)=(1,1,1) ... (natx,27*natx,4)
   
   Type:           REAL
   Default:        0.D0 for all elements
   Description:    Hubbard_V(na,nb,k): V parameters (eV) between atoms na and nb,
                   used in DFT+U+V calculations (only for "lda_plus_u_kind"=2).
                   The atomic indices na and nb correspond to the atomic positions
                   in the "ATOMIC_POSITIONS" card (this is not the same as Hubbard_U
                   which is specified for "ATOMIC_SPECIES").
                   
                   When na=nb, then "Hubbard_V"(na,na,k) is the on-site "Hubbard_U"
                   for the atom na.
                   
                   natx=50 (if needed it can be changed in /Modules/parameters.f90)
                   
                   The index k controls the "interaction type" (k=1 is used for the
                   simplest DFT+U+V calculation):
                   k=1 - interaction between standard orbitals (both on na and nb);
                   k=2 - interaction between standard (on na) and background (on nb) orbitals;
                   k=3 - interaction between background orbitals (both on na and nb);
                   k=4 - interaction between background (on na) and standard (on nb) orbitals.
                   
                   Standard orbitals correspond to the main Hubbard channel (e.g. d electrons
                   in transition metals) and background orbitals correspond to the secondary
                   Hubbard channel (e.g. p electrons in transition metals).
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       Hubbard_alpha(i), i=1,ntyp
   
   Type:           REAL
   Default:        0.D0 for all species
   Description:    Hubbard_alpha(i) is the perturbation (on atom i, in eV)
                   used to compute U (and V) with the linear-response method of
                   Cococcioni and de Gironcoli, PRB 71, 035105 (2005)
                   (only for "lda_plus_u_kind"=0 and 2).
                   
                   Note: Hubbard U and V can be computed using the HP code
                   which is based on density-functional perturbation theory,
                   and it gives exactly the same result as the method of
                   Cococcioni and de Gironcoli.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       Hubbard_beta(i), i=1,ntyp
   
   Type:           REAL
   Default:        0.D0 for all species
   Description:    Hubbard_beta(i) is the perturbation (on atom i, in eV)
                   used to compute J0 with the linear-response method of
                   Cococcioni and de Gironcoli, PRB 71, 035105 (2005)
                   (only for "lda_plus_u_kind"=0 and 2). See also
                   PRB 84, 115108 (2011).
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       Hubbard_J(i,ityp), (i,ityp)=(1,1) ... (3,ntyp)
   
   Type:           REAL
   Default:        0.D0 for all species
   Description:    Hubbard_J(i,ityp): J parameters (eV) for species ityp,
                   used in DFT+U calculations (only for "lda_plus_u_kind"=1)
                   
                   For p orbitals:  J = Hubbard_J(1,ityp);
                   For d orbitals:  J = Hubbard_J(1,ityp), B = Hubbard_J(2,ityp);
                   For f orbitals:  J = Hubbard_J(1,ityp), E2 = Hubbard_J(2,ityp),
                                    E3= Hubbard_J(3,ityp).
                   
                   If B or E2 or E3 are not specified or set to 0 they will be
                   calculated from J using atomic ratios.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       starting_ns_eigenvalue(m,ispin,ityp), (m,ispin,ityp)=(1,1,1) ... (2*lmax+1,nspin or npol,ntyp)
   
   Type:           REAL
   Default:        -1.d0 that means NOT SET
   Description:    In the first iteration of an DFT+U run it overwrites
                   the m-th eigenvalue of the ns occupation matrix for the
                   ispin component of atomic species ityp.
                   For the noncollinear case, the ispin index runs up to npol=2
                   The value lmax  is given by the maximum angular momentum
                   number to which the Hubbard U is applied.
                   Leave unchanged eigenvalues that are not set.
                   This is useful to suggest the desired orbital occupations
                   when the default choice takes another path.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       U_projection_type
   
   Type:           CHARACTER
   Default:        'atomic'
   Description:   
                   Only active when "lda_plus_U" is .true., specifies the type
                   of projector on localized orbital to be used in the DFT+U
                   scheme.
                   
                   Currently available choices:
    
                   'atomic' :
                        use atomic wfc's (as they are) to build the projector
    
                   'ortho-atomic' :
                        use Lowdin orthogonalized atomic wfc's
    
                   'norm-atomic' :
                        Lowdin normalization of atomic wfc. Keep in mind:
                        atomic wfc are not orthogonalized in this case.
                        This is a "quick and dirty" trick to be used when
                        atomic wfc from the pseudopotential are not
                        normalized (and thus produce occupation whose
                        value exceeds unity). If orthogonalized wfc are
                        not needed always try 'atomic' first.
    
                   'file' :
                        use the information from file "prefix".atwfc that must
                        have been generated previously, for instance by pmw.x
                        (see PP/src/poormanwannier.f90 for details).
    
                   'pseudo' :
                        use the pseudopotential projectors. The charge density
                        outside the atomic core radii is excluded.
                        N.B.: for atoms with +U, a pseudopotential with the
                        all-electron atomic wavefunctions is required (i.e.,
                        as generated by ld1.x with lsave_wfc flag).
    
                   NB: forces and stress currently implemented only for the
                   'atomic' and 'pseudo' choice.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       Hubbard_parameters
   
   Type:           CHARACTER
   Default:        'input'
   Description:   
                   Available choices:
    
                   'input' :
                        read the "Hubbard_U" (or "Hubbard_V") parameters from
                        the PW input file
    
                   'file' :
                        read the "Hubbard_V" parameters from the file "parameters.in"
                        which can be generated after the linear-response calculation
                        (using the HP code). This option has a higher priority over
                        the "Hubbard_V" if they are specified in the input. This option
                        can be used only when "lda_plus_u_kind" = 2.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       ensemble_energies
   
   Type:           LOGICAL
   Default:        .false.
   Description:    If "ensemble_energies" = .true., an ensemble of xc energies
                   is calculated non-selfconsistently for perturbed
                   exchange-enhancement factors and LDA vs. PBE correlation
                   ratios after each converged electronic ground state
                   calculation.
                   
                   Ensemble energies can be analyzed with the 'bee' utility
                   included with libbeef.
                   
                   Requires linking against libbeef.
                   "input_dft" must be set to a BEEF-type functional
                   (e.g. input_dft = 'BEEF-vdW')
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       edir
   
   Type:           INTEGER
   Description:    The direction of the electric field or dipole correction is
                   parallel to the bg(:,edir) reciprocal lattice vector, so the
                   potential is constant in planes defined by FFT grid points;
                   "edir" = 1, 2 or 3. Used only if "tefield" is .TRUE.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       emaxpos
   
   Type:           REAL
   Default:        0.5D0
   Description:    Position of the maximum of the saw-like potential along crystal
                   axis "edir", within the  unit cell (see below), 0 &lt; emaxpos &lt; 1
                   Used only if "tefield" is .TRUE.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       eopreg
   
   Type:           REAL
   Default:        0.1D0
   Description:    Zone in the unit cell where the saw-like potential decreases.
                   ( see below, 0 &lt; eopreg &lt; 1 ). Used only if "tefield" is .TRUE.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       eamp
   
   Type:           REAL
   Default:        0.001 a.u.
   Description:    Amplitude of the electric field, in ***Hartree*** a.u.;
                   1 a.u. = 51.4220632*10^10 V/m. Used only if "tefield"==.TRUE.
                   The saw-like potential increases with slope "eamp" in the
                   region from ("emaxpos"+"eopreg"-1) to ("emaxpos"), then decreases
                   to 0 until ("emaxpos"+"eopreg"), in units of the crystal
                   vector "edir". Important: the change of slope of this
                   potential must be located in the empty region, or else
                   unphysical forces will result.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       angle1(i), i=1,ntyp
   
   Type:           REAL
   Description:    The angle expressed in degrees between the initial
                   magnetization and the z-axis. For noncollinear calculations
                   only; index i runs over the atom types.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       angle2(i), i=1,ntyp
   
   Type:           REAL
   Description:    The angle expressed in degrees between the projection
                   of the initial magnetization on x-y plane and the x-axis.
                   For noncollinear calculations only.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       lforcet
   
   Type:           LOGICAL
   Description:    When starting a non collinear calculation using an existing density
                   file from a collinear lsda calculation assumes previous density points in
                   z direction and rotates it in the direction described by "angle1" and
                   "angle2" variables for atomic type 1
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       constrained_magnetization
   
   Type:           CHARACTER
   See:            lambda, fixed_magnetization
   Default:        'none'
   Description:   
                   Used to perform constrained calculations in magnetic systems.
                   Currently available choices:
    
                   'none' :
                        no constraint
    
                   'total' :
                        total magnetization is constrained by
                        adding a penalty functional to the total energy:
                        
                        LAMBDA * SUM_{i} ( magnetization(i) - fixed_magnetization(i) )**2
                        
                        where the sum over i runs over the three components of
                        the magnetization. Lambda is a real number (see below).
                        Noncolinear case only. Use "tot_magnetization" for LSDA
    
                   'atomic' :
                        atomic magnetization are constrained to the defined
                        starting magnetization adding a penalty:
                        
                        LAMBDA * SUM_{i,itype} ( magnetic_moment(i,itype) - mcons(i,itype) )**2
                        
                        where i runs over the cartesian components (or just z
                        in the collinear case) and itype over the types (1-ntype).
                        mcons(:,:) array is defined from starting_magnetization,
                        (also from angle1, angle2 in the noncollinear case).
                        lambda is a real number
    
                   'total direction' :
                        the angle theta of the total magnetization
                        with the z axis (theta = fixed_magnetization(3))
                        is constrained:
                        
                        LAMBDA * ( arccos(magnetization(3)/mag_tot) - theta )**2
                        
                        where mag_tot is the modulus of the total magnetization.
    
                   'atomic direction' :
                        not all the components of the atomic
                        magnetic moment are constrained but only the cosine
                        of angle1, and the penalty functional is:
                        
                        LAMBDA * SUM_{itype} ( mag_mom(3,itype)/mag_mom_tot - cos(angle1(ityp)) )**2
    
                   N.B.: symmetrization may prevent to reach the desired orientation
                   of the magnetization. Try not to start with very highly symmetric
                   configurations or use the nosym flag (only as a last remedy)
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       fixed_magnetization(i), i=1,3
   
   Type:           REAL
   See:            constrained_magnetization
   Default:        0.d0
   Description:    total magnetization vector (x,y,z components) to be kept
                   fixed when "constrained_magnetization"=='total'
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       lambda
   
   Type:           REAL
   See:            constrained_magnetization
   Default:        1.d0
   Description:    parameter used for constrained_magnetization calculations
                   N.B.: if the scf calculation does not converge, try to reduce lambda
                         to obtain convergence, then restart the run with a larger lambda
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       report
   
   Type:           INTEGER
   Default:        -1
   Description:    determines when atomic magnetic moments are printed on output:
                   report = 0  never
                   report =-1  at the beginning of the scf and at convergence
                   report = N  as -1, plus every N scf iterations
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       lspinorb
   
   Type:           LOGICAL
   Description:    if .TRUE. the noncollinear code can use a pseudopotential with
                   spin-orbit.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       assume_isolated
   
   Type:           CHARACTER
   Default:        'none'
   Description:   
                   Used to perform calculation assuming the system to be
                   isolated (a molecule or a cluster in a 3D supercell).
                   
                   Currently available choices:
    
                   'none' :
                        (default): regular periodic calculation w/o any correction.
    
                   'makov-payne', 'm-p', 'mp' :
                        the Makov-Payne correction to the
                        total energy is computed. An estimate of the vacuum
                        level is also calculated so that eigenvalues can be
                        properly aligned. ONLY FOR CUBIC SYSTEMS ("ibrav"=1,2,3).
                        Theory: G.Makov, and M.C.Payne,
                             "Periodic boundary conditions in ab initio
                             calculations" , PRB 51, 4014 (1995).
    
                   'martyna-tuckerman', 'm-t', 'mt' :
                        Martyna-Tuckerman correction
                        to both total energy and scf potential. Adapted from:
                        G.J. Martyna, and M.E. Tuckerman,
                        "A reciprocal space based method for treating long
                        range interactions in ab-initio and force-field-based
                        calculation in clusters", J. Chem. Phys. 110, 2810 (1999),
                        doi:10.1063/1.477923.
    
                   'esm' :
                        Effective Screening Medium Method.
                        For polarized or charged slab calculation, embeds
                        the simulation cell within an effective semi-
                        infinite medium in the perpendicular direction
                        (along z). Embedding regions can be vacuum or
                        semi-infinite metal electrodes (use "esm_bc" to
                        choose boundary conditions). If between two
                        electrodes, an optional electric field
                        ('esm_efield') may be applied. Method described in
                        M. Otani and O. Sugino, "First-principles calculations
                        of charged surfaces and interfaces: A plane-wave
                        nonrepeated slab approach", PRB 73, 115407 (2006).
                        
                        NB:
                           - Two dimensional (xy plane) average charge density
                             and electrostatic potentials are printed out to
                             'prefix.esm1'.
                        
                           - Requires cell with a_3 lattice vector along z,
                             normal to the xy plane, with the slab centered
                             around z=0. Also requires symmetry checking to be
                             disabled along z, either by setting "nosym" = .TRUE.
                             or by very slight displacement (i.e., 5e-4 a.u.)
                             of the slab along z.
                        
                           - Components of the total stress; sigma_xy, sigma_yz,
                             sigma_zz, sigma_zy, and sigma_zx are meaningless
                             because ESM stress routines calculate only
                             components of stress; sigma_xx, sigma_xy, sigma_yx,
                             and sigma_yy.
                        
                           - In case of calculation='vc-relax', use
                             cell_dofree='2Dxy' or other parameters so that
                             c-vector along z-axis should not be moved.
                        
                        See "esm_bc", "esm_efield", "esm_w", "esm_nfit".
    
                   '2D' :
                        Truncation of the Coulomb interaction in the z direction
                        for structures periodic in the x-y plane. Total energy,
                        forces and stresses are computed in a two-dimensional framework.
                        Linear-response calculations () done on top of a self-consistent
                        calculation with this flag will automatically be performed in
                        the 2D framework as well. Please refer to:
                        Sohier, T., Calandra, M., & Mauri, F. (2017), Density functional
                        perturbation theory for gated two-dimensional heterostructures:
                        Theoretical developments and application to flexural phonons in graphene.
                        Physical Review B, 96(7), 75448. https://doi.org/10.1103/PhysRevB.96.075448
                        
                        NB:
                           - The length of the unit-cell along the z direction should
                             be larger than twice the thickness of the 2D material
                             (including electrons). A reasonable estimate for a
                             layer's thickness could be the interlayer distance in the
                             corresponding layered bulk material. Otherwise,
                             the atomic thickness + 10 bohr should be a safe estimate.
                             There is also a lower limit of 20 bohr imposed by the cutoff
                             radius used to read pseudopotentials (see read_pseudo.f90 in Modules).
                        
                           - As for ESM above, only in-plane stresses make sense and one
                             should use cell_dofree='2Dxy' in a vc-relax calculation.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       esm_bc
   
   Type:           CHARACTER
   See:            assume_isolated
   Default:        'pbc'
   Description:   
                   If "assume_isolated" = 'esm', determines the boundary
                   conditions used for either side of the slab.
                   
                   Currently available choices:
    
                   'pbc' :
                        (default): regular periodic calculation (no ESM).
    
                   'bc1' :
                        Vacuum-slab-vacuum (open boundary conditions).
    
                   'bc2' :
                        Metal-slab-metal (dual electrode configuration).
                        See also "esm_efield".
    
                   'bc3' :
                        Vacuum-slab-metal
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       esm_w
   
   Type:           REAL
   See:            assume_isolated
   Default:        0.d0
   Description:    If "assume_isolated" = 'esm', determines the position offset
                   [in a.u.] of the start of the effective screening region,
                   measured relative to the cell edge. (ESM region begins at
                   z = +/- [L_z/2 + esm_w] ).
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       esm_efield
   
   Type:           REAL
   See:            assume_isolated
   Default:        0.d0
   Description:    If "assume_isolated" = 'esm' and "esm_bc" = 'bc2', gives the
                   magnitude of the electric field [Ry/a.u.] to be applied
                   between semi-infinite ESM electrodes.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       esm_nfit
   
   Type:           INTEGER
   See:            assume_isolated
   Default:        4
   Description:    If "assume_isolated" = 'esm', gives the number of z-grid points
                   for the polynomial fit along the cell edge.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       fcp_mu
   
   Type:           REAL
   See:            lfcpopt
   Default:        0.d0
   Description:    If "lfcpopt" = .TRUE., gives the target Fermi energy [Ry]. One can start
                   with appropriate total charge of the system by giving 'tot_charge'.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       vdw_corr
   
   Type:           CHARACTER
   Default:        'none'
   See:            london_s6, london_rcut, london_c6, london_rvdw,
                   dftd3_version, dftd3_threebody, ts_vdw_econv_thr, ts_vdw_isolated, xdm_a1, xdm_a2
   Description:   
                   Type of Van der Waals correction. Allowed values:
    
                   'grimme-d2', 'Grimme-D2', 'DFT-D', 'dft-d' :
                        Semiempirical Grimme's DFT-D2. Optional variables:
                        "london_s6", "london_rcut", "london_c6", "london_rvdw"
                        S. Grimme, J. Comp. Chem. 27, 1787 (2006), doi:10.1002/jcc.20495
                        V. Barone et al., J. Comp. Chem. 30, 934 (2009), doi:10.1002/jcc.21112
    
                   'grimme-d3', 'Grimme-D3', 'DFT-D3', 'dft-d3'  :
                        Semiempirical Grimme's DFT-D3. Optional variables:
                        "dftd3_version", "dftd3_threebody"
                        S. Grimme et al, J. Chem. Phys 132, 154104 (2010), doi:10.1002/jcc.20495
    
                   'TS', 'ts', 'ts-vdw', 'ts-vdW', 'tkatchenko-scheffler' :
                        Tkatchenko-Scheffler dispersion corrections with first-principle derived
                        C6 coefficients.
                        Optional variables: "ts_vdw_econv_thr", "ts_vdw_isolated"
                        See A. Tkatchenko and M. Scheffler, PRL 102, 073005 (2009).
    
                   'XDM', 'xdm' :
                        Exchange-hole dipole-moment model. Optional variables: "xdm_a1", "xdm_a2"
                        A. D. Becke et al., J. Chem. Phys. 127, 154108 (2007), doi:10.1063/1.2795701
                        A. Otero de la Roza et al., J. Chem. Phys. 136, 174109 (2012),
                        doi:10.1063/1.4705760
    
                   Note that non-local functionals (eg vdw-DF) are NOT specified here but in "input_dft"
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       london
   
   Type:           LOGICAL
   Default:        .FALSE.
   Status:         OBSOLESCENT, same as "vdw_corr"='DFT-D'
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       london_s6
   
   Type:           REAL
   Default:        0.75
   Description:    global scaling parameter for DFT-D. Default is good for PBE.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       london_c6(i), i=1,ntyp
   
   Type:           REAL
   Default:        standard Grimme-D2 values
   Description:    atomic C6 coefficient of each atom type
                   
                   ( if not specified default values from S. Grimme, J. Comp. Chem. 27, 1787 (2006),
                     doi:10.1002/jcc.20495 are used; see file Modules/mm_dispersion.f90 )
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       london_rvdw(i), i=1,ntyp
   
   Type:           REAL
   Default:        standard Grimme-D2 values
   Description:    atomic vdw radii of each atom type
                   
                   ( if not specified default values from S. Grimme, J. Comp. Chem. 27, 1787 (2006),
                     doi:10.1002/jcc.20495 are used; see file Modules/mm_dispersion.f90 )
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       london_rcut
   
   Type:           REAL
   Default:        200
   Description:    cutoff radius (a.u.) for dispersion interactions
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       dftd3_version
   
   Type:           integer
   Default:        3
   Description:   
                   Version of Grimme implementation of Grimme-D3:
    
                   dftd3_version = 2 :
                        Original Grimme-D2 parametrization
    
                   dftd3_version = 3 :
                        Grimme-D3 (zero damping)
    
                   dftd3_version = 4 :
                        Grimme-D3 (BJ damping)
    
                   dftd3_version = 5 :
                        Grimme-D3M (zero damping)
    
                   dftd3_version = 6 :
                        Grimme-D3M (BJ damping)
    
                   NOTE: not all functionals are parametrized.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       dftd3_threebody
   
   Type:           LOGICAL
   Default:        TRUE
   Description:    Turn three-body terms in Grimme-D3 on. If .false. two-body contributions
                   only are computed, using two-body parameters of Grimme-D3.
                   If dftd3_version=2, three-body contribution is always disabled.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       ts_vdw_econv_thr
   
   Type:           REAL
   Default:        1.D-6
   Description:    Optional: controls the convergence of the vdW energy (and forces). The default value
                   is a safe choice, likely too safe, but you do not gain much in increasing it
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       ts_vdw_isolated
   
   Type:           LOGICAL
   Default:        .FALSE.
   Description:    Optional: set it to .TRUE. when computing the Tkatchenko-Scheffler vdW energy
                   for an isolated (non-periodic) system.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       xdm
   
   Type:           LOGICAL
   Default:        .FALSE.
   Status:         OBSOLESCENT, same as "vdw_corr"='xdm'
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       xdm_a1
   
   Type:           REAL
   Default:        0.6836
   Description:    Damping function parameter a1 (adimensional). It is NOT necessary to give
                   a value if the functional is one of B86bPBE, PW86PBE, PBE, BLYP. For functionals
                   in this list, the coefficients are given in:
                      http://schooner.chem.dal.ca/wiki/XDM
                      A. Otero de la Roza, E. R. Johnson, J. Chem. Phys. 138, 204109 (2013),
                      doi:10.1063/1.4705760
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       xdm_a2
   
   Type:           REAL
   Default:        1.5045
   Description:    Damping function parameter a2 (angstrom). It is NOT necessary to give
                   a value if the functional is one of B86bPBE, PW86PBE, PBE, BLYP. For functionals
                   in this list, the coefficients are given in:
                      http://schooner.chem.dal.ca/wiki/XDM
                      A. Otero de la Roza, E. R. Johnson, J. Chem. Phys. 138, 204109 (2013),
                      doi:10.1063/1.4705760
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       space_group
   
   Type:           INTEGER
   Default:        0
   Description:    The number of the space group of the crystal, as given
                   in the International Tables of Crystallography A (ITA).
                   This allows to give in input only the inequivalent atomic
                   positions. The positions of all the symmetry equivalent atoms
                   are calculated by the code. Used only when the atomic positions
                   are of type crystal_sg. See also "uniqueb",
                   "origin_choice", "rhombohedral"
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       uniqueb
   
   Type:           LOGICAL
   Default:        .FALSE.
   Description:    Used only for monoclinic lattices. If .TRUE. the b
                   unique "ibrav" (-12 or -13) are used, and symmetry
                   equivalent positions are chosen assuming that the
                   twofold axis or the mirror normal is parallel to the
                   b axis. If .FALSE. it is parallel to the c axis.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       origin_choice
   
   Type:           INTEGER
   Default:        1
   Description:    Used only for space groups that in the ITA allow
                   the use of two different origins. "origin_choice"=1,
                   means the first origin, while "origin_choice"=2 is the
                   second origin.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       rhombohedral
   
   Type:           LOGICAL
   Default:        .TRUE.
   Description:    Used only for rhombohedral space groups.
                   When .TRUE. the coordinates of the inequivalent atoms are
                   given with respect to the rhombohedral axes, when .FALSE.
                   the coordinates of the inequivalent atoms are given with
                   respect to the hexagonal axes. They are converted internally
                   to the rhombohedral axes and "ibrav"=5 is used in both cases.
   +--------------------------------------------------------------------
   
   ///---
      VARIABLES USED ONLY IF "GATE" = .TRUE.
      
      +--------------------------------------------------------------------
      Variable:       zgate
      
      Type:           REAL
      Default:        0.5
      Description:    used only if "gate" = .TRUE.
                      Specifies the position of the charged plate which represents
                      the counter charge in doped systems ("tot_charge" .ne. 0).
                      In units of the unit cell length in z direction, "zgate" in ]0,1[
                      Details of the gate potential can be found in
                      T. Brumme, M. Calandra, F. Mauri; PRB 89, 245406 (2014).
      +--------------------------------------------------------------------
      
      +--------------------------------------------------------------------
      Variable:       relaxz
      
      Type:           LOGICAL
      Default:        .FALSE.
      Description:    used only if "gate" = .TRUE.
                      Allows the relaxation of the system towards the charged plate.
                      Use carefully and utilize either a layer of fixed atoms or a
                      potential barrier ("block"=.TRUE.) to avoid the atoms moving to
                      the position of the plate or the dipole of the dipole
                      correction ("dipfield"=.TRUE.).
      +--------------------------------------------------------------------
      
      +--------------------------------------------------------------------
      Variable:       block
      
      Type:           LOGICAL
      Default:        .FALSE.
      Description:    used only if "gate" = .TRUE.
                      Adds a potential barrier to the total potential seen by the
                      electrons to mimic a dielectric in field effect configuration
                      and/or to avoid electrons spilling into the vacuum region for
                      electron doping. Potential barrier is from "block_1" to "block_2" and
                      has a height of block_height.
                      If "dipfield" = .TRUE. then "eopreg" is used for a smooth increase and
                      decrease of the potential barrier.
      +--------------------------------------------------------------------
      
      +--------------------------------------------------------------------
      Variable:       block_1
      
      Type:           REAL
      Default:        0.45
      Description:    used only if "gate" = .TRUE. and "block" = .TRUE.
                      lower beginning of the potential barrier, in units of the
                      unit cell size along z, "block_1" in ]0,1[
      +--------------------------------------------------------------------
      
      +--------------------------------------------------------------------
      Variable:       block_2
      
      Type:           REAL
      Default:        0.55
      Description:    used only if "gate" = .TRUE. and "block" = .TRUE.
                      upper beginning of the potential barrier, in units of the
                      unit cell size along z, "block_2" in ]0,1[
      +--------------------------------------------------------------------
      
      +--------------------------------------------------------------------
      Variable:       block_height
      
      Type:           REAL
      Default:        0.1
      Description:    used only if "gate" = .TRUE. and "block" = .TRUE.
                      Height of the potential barrier in Rydberg.
      +--------------------------------------------------------------------
      
   \\\---
   
===END OF NAMELIST======================================================


========================================================================
NAMELIST: &ELECTRONS

   +--------------------------------------------------------------------
   Variable:       electron_maxstep
   
   Type:           INTEGER
   Default:        100
   Description:    maximum number of iterations in a scf step
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       scf_must_converge
   
   Type:           LOGICAL
   Default:        .TRUE.
   Description:    If .false. do not stop molecular dynamics or ionic relaxation
                   when electron_maxstep is reached. Use with care.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       conv_thr
   
   Type:           REAL
   Default:        1.D-6
   Description:    Convergence threshold for selfconsistency:
                      estimated energy error &lt; conv_thr
                   (note that conv_thr is extensive, like the total energy).
                   
                   For non-self-consistent calculations, conv_thr is used
                   to set the default value of the threshold (ethr) for
                   iterative diagonalizazion: see "diago_thr_init"
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       adaptive_thr
   
   Type:           LOGICAL
   Default:        .FALSE
   Description:    If .TRUE. this turns on the use of an adaptive "conv_thr" for
                   the inner scf loops when using EXX.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       conv_thr_init
   
   Type:           REAL
   Default:        1.D-3
   Description:    When "adaptive_thr" = .TRUE. this is the convergence threshold
                   used for the first scf cycle.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       conv_thr_multi
   
   Type:           REAL
   Default:        1.D-1
   Description:    When "adaptive_thr" = .TRUE. the convergence threshold for
                   each scf cycle is given by:
                   max( "conv_thr", "conv_thr_multi" * dexx )
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       mixing_mode
   
   Type:           CHARACTER
   Default:        'plain'
   Description:   
                   Available options are:
    
                   'plain' :
                        charge density Broyden mixing
    
                   'TF' :
                        as above, with simple Thomas-Fermi screening
                        (for highly homogeneous systems)
    
                   'local-TF' :
                        as above, with local-density-dependent TF screening
                        (for highly inhomogeneous systems)
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       mixing_beta
   
   Type:           REAL
   Default:        0.7D0
   Description:    mixing factor for self-consistency
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       mixing_ndim
   
   Type:           INTEGER
   Default:        8
   Description:    number of iterations used in mixing scheme.
                   If you are tight with memory, you may reduce it to 4 or so.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       mixing_fixed_ns
   
   Type:           INTEGER
   Default:        0
   Description:    For DFT+U : number of iterations with fixed ns ( ns is the
                   atomic density appearing in the Hubbard term ).
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       diagonalization
   
   Type:           CHARACTER
   Default:        'david'
   Description:   
                   Available options are:
    
                   'david' :
                        Davidson iterative diagonalization with overlap matrix
                        (default). Fast, may in some rare cases fail.
    
                   'cg' :
                        Conjugate-gradient-like band-by-band diagonalization.
                        MUCH slower than 'david' but uses less memory and is
                        (a little bit) more robust.
    
                   'ppcg' :
                        PPCG iterative diagonalization
    
                   'paro', 'ParO' :
                        ParO iterative diagonalization
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       diago_thr_init
   
   Type:           REAL
   Description:    Convergence threshold (ethr) for iterative diagonalization
                   (the check is on eigenvalue convergence).
                   
                   For scf calculations: default is 1.D-2 if starting from a
                   superposition of atomic orbitals; 1.D-5 if starting from a
                   charge density. During self consistency the threshold
                   is automatically reduced (but never below 1.D-13) when
                   approaching convergence.
                   
                   For non-scf calculations: default is ("conv_thr"/N elec)/10.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       diago_cg_maxiter
   
   Type:           INTEGER
   Description:    For conjugate gradient diagonalization:  max number of iterations
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       diago_david_ndim
   
   Type:           INTEGER
   Default:        2
   Description:    For Davidson diagonalization: dimension of workspace
                   (number of wavefunction packets, at least 2 needed).
                   A larger value may yield a smaller number of iterations in
                   the algorithm but uses more memory and more CPU time in
                   subspace diagonalization (cdiaghg/rdiaghg). You may try
                   "diago_david_ndim"=4 if you are not tight on memory
                   and if the time spent in subspace diagonalization is small
                   compared to the time spent in h_psi
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       diago_full_acc
   
   Type:           LOGICAL
   Default:        .FALSE.
   Description:    If .TRUE. all the empty states are diagonalized at the same level
                   of accuracy of the occupied ones. Otherwise the empty states are
                   diagonalized using a larger threshold (this should not affect
                   total energy, forces, and other ground-state properties).
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       efield
   
   Type:           REAL
   Default:        0.D0
   Description:    Amplitude of the finite electric field (in Ry a.u.;
                   1 a.u. = 36.3609*10^10 V/m). Used only if "lelfield"==.TRUE.
                   and if k-points ("K_POINTS" card) are not automatic.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       efield_cart(i), i=1,3
   
   Type:           REAL
   Default:        (0.D0, 0.D0, 0.D0)
   Description:    Finite electric field (in Ry a.u.=36.3609*10^10 V/m) in
                   cartesian axis. Used only if "lelfield"==.TRUE. and if
                   k-points ("K_POINTS" card) are automatic.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       efield_phase
   
   Type:           CHARACTER
   Default:        'none'
   Description:   
                   Available options are:
    
                   'read' :
                        set the zero of the electronic polarization (with "lelfield"==.true..)
                        to the result of a previous calculation
    
                   'write' :
                        write on disk data on electronic polarization to be read in another
                        calculation
    
                   'none' :
                        none of the above points
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       startingpot
   
   Type:           CHARACTER
   Description:   
                   Available options are:
    
                   'atomic' :
                        starting potential from atomic charge superposition
                        (default for scf, *relax, *md)
    
                   'file' :
                        start from existing "charge-density.xml" file in the
                        directory specified by variables "prefix" and "outdir"
                        For nscf and bands calculation this is the default
                        and the only sensible possibility.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       startingwfc
   
   Type:           CHARACTER
   Default:        'atomic+random'
   Description:   
                   Available options are:
    
                   'atomic' :
                        Start from superposition of atomic orbitals.
                        If not enough atomic orbitals are available,
                        fill with random numbers the remaining wfcs
                        The scf typically starts better with this option,
                        but in some high-symmetry cases one can "loose"
                        valence states, ending up in the wrong ground state.
    
                   'atomic+random' :
                        As above, plus a superimposed "randomization"
                        of atomic orbitals. Prevents the "loss" of states
                        mentioned above.
    
                   'random' :
                        Start from random wfcs. Slower start of scf but safe.
                        It may also reduce memory usage in conjunction with
                        "diagonalization"='cg'.
    
                   'file' :
                        Start from an existing wavefunction file in the
                        directory specified by variables "prefix" and "outdir".
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       tqr
   
   Type:           LOGICAL
   Default:        .FALSE.
   Description:    If .true., use a real-space algorithm for augmentation
                   charges of ultrasoft pseudopotentials and PAWsets.
                   Faster but numerically less accurate than the default
                   G-space algorithm. Use with care and after testing!
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       real_space
   
   Type:           LOGICAL
   Default:        .FALSE.
   Description:    If .true., exploit real-space localization to compute
                   matrix elements for nonlocal projectors. Faster and in
                   principle better scaling than the default G-space algorithm,
                   but numerically less accurate, may lead to some loss of
                   translational invariance. Use with care and after testing!
   +--------------------------------------------------------------------
   
===END OF NAMELIST======================================================


========================================================================
NAMELIST: &IONS

   REQUIRED IF "CALCULATION" == 'RELAX', 'MD', 'VC-RELAX', OR 'VC-MD'
   OPTIONAL FOR "CALCULATION" == 'SCF' (ONLY "ION_POSITIONS" IS USED)
   
   +--------------------------------------------------------------------
   Variable:       ion_positions
   
   Type:           CHARACTER
   Default:        'default'
   Description:   
                   Available options are:
    
                   'default' :
                        if restarting, use atomic positions read from the
                        restart file; in all other cases, use atomic
                        positions from standard input.
    
                   'from_input' :
                        read atomic positions from standard input, even if restarting.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       ion_velocities
   
   Type:           CHARACTER
   Default:        'default'
   Description:   
                   Initial ionic velocities. Available options are:
    
                   'default' :
                        start a new simulation from random thermalized
                        distribution of velocities if "tempw" is set,
                        with zero velocities otherwise; restart from
                        atomic velocities read from the restart file
    
                   'from_input' :
                        start or continue the simulation with atomic
                        velocities read from standard input - see card
                        "ATOMIC_VELOCITIES"
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       ion_dynamics
   
   Type:           CHARACTER
   Description:   
                   Specify the type of ionic dynamics.
                   
                   For different type of calculation different possibilities are
                   allowed and different default values apply:
                   
                   CASE ( "calculation" == 'relax' )
    
                   'bfgs' :
                        (default)  use BFGS quasi-newton algorithm,
                        based on the trust radius procedure,
                        for structural relaxation
    
                   'damp' :
                        use damped (quick-min Verlet)
                        dynamics for structural relaxation
                        Can be used for constrained
                        optimisation: see "CONSTRAINTS" card
    
                   CASE ( "calculation" == 'md' )
    
                   'verlet' :
                        (default)  use Verlet algorithm to integrate
                        Newton's equation. For constrained
                        dynamics, see "CONSTRAINTS" card
    
                   'langevin' :
                        ion dynamics is over-damped Langevin
    
                   'langevin-smc' :
                        over-damped Langevin with Smart Monte Carlo:
                        see R.J. Rossky, JCP, 69, 4628 (1978), doi:10.1063/1.436415
    
                   CASE ( "calculation" == 'vc-relax' )
    
                   'bfgs' :
                        (default)  use BFGS quasi-newton algorithm;
                        cell_dynamics must be 'bfgs' too
    
                   'damp' :
                        use damped (Beeman) dynamics for
                        structural relaxation
    
                   CASE ( "calculation" == 'vc-md' )
    
                   'beeman' :
                        (default)  use Beeman algorithm to integrate
                        Newton's equation
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       pot_extrapolation
   
   Type:           CHARACTER
   Default:        'atomic'
   Description:   
                   Used to extrapolate the potential from preceding ionic steps.
    
                   'none' :
                        no extrapolation
    
                   'atomic' :
                        extrapolate the potential as if it was a sum of
                        atomic-like orbitals
    
                   'first_order' :
                        extrapolate the potential with first-order
                        formula
    
                   'second_order' :
                        as above, with second order formula
    
                   Note: 'first_order' and 'second-order' extrapolation make sense
                   only for molecular dynamics calculations
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       wfc_extrapolation
   
   Type:           CHARACTER
   Default:        'none'
   Description:   
                   Used to extrapolate the wavefunctions from preceding ionic steps.
    
                   'none' :
                        no extrapolation
    
                   'first_order' :
                        extrapolate the wave-functions with first-order formula.
    
                   'second_order' :
                        as above, with second order formula.
    
                   Note: 'first_order' and 'second-order' extrapolation make sense
                   only for molecular dynamics calculations
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       remove_rigid_rot
   
   Type:           LOGICAL
   Default:        .FALSE.
   Description:    This keyword is useful when simulating the dynamics and/or the
                   thermodynamics of an isolated system. If set to true the total
                   torque of the internal forces is set to zero by adding new forces
                   that compensate the spurious interaction with the periodic
                   images. This allows for the use of smaller supercells.
                   
                   BEWARE: since the potential energy is no longer consistent with
                   the forces (it still contains the spurious interaction with the
                   repeated images), the total energy is not conserved anymore.
                   However the dynamical and thermodynamical properties should be
                   in closer agreement with those of an isolated system.
                   Also the final energy of a structural relaxation will be higher,
                   but the relaxation itself should be faster.
   +--------------------------------------------------------------------
   
   ///---
      VARIABLES USED FOR MOLECULAR DYNAMICS
      
      +--------------------------------------------------------------------
      Variable:       ion_temperature
      
      Type:           CHARACTER
      Default:        'not_controlled'
      Description:   
                      Available options are:
       
                      'rescaling' :
                           control ionic temperature via velocity rescaling
                           (first method) see parameters "tempw", "tolp", and
                           "nraise" (for VC-MD only). This rescaling method
                           is the only one currently implemented in VC-MD
       
                      'rescale-v' :
                           control ionic temperature via velocity rescaling
                           (second method) see parameters "tempw" and "nraise"
       
                      'rescale-T' :
                           scale temperature of the thermostat every "nraise" steps
                           by "delta_t", starting from "tempw".
                           The temperature is controlled via velocitiy rescaling.
       
                      'reduce-T' :
                           reduce temperature of the thermostat every "nraise" steps
                           by the (negative) value "delta_t", starting from "tempw".
                           If  "delta_t" is positive, the target temperature is augmented.
                           The temperature is controlled via velocitiy rescaling.
       
                      'berendsen' :
                           control ionic temperature using "soft" velocity
                           rescaling - see parameters "tempw" and "nraise"
       
                      'andersen' :
                           control ionic temperature using Andersen thermostat
                           see parameters "tempw" and "nraise"
       
                      'svr' :
                           control ionic temperature using stochastic-velocity rescaling
                           (Donadio, Bussi, Parrinello, J. Chem. Phys. 126, 014101, 2007),
                           with parameters "tempw" and "nraise".
       
                      'initial' :
                           initialize ion velocities to temperature "tempw"
                           and leave uncontrolled further on
       
                      'not_controlled' :
                           (default) ionic temperature is not controlled
      +--------------------------------------------------------------------
      
      +--------------------------------------------------------------------
      Variable:       tempw
      
      Type:           REAL
      Default:        300.D0
      Description:    Starting temperature (Kelvin) in MD runs
                      target temperature for most thermostats.
      +--------------------------------------------------------------------
      
      +--------------------------------------------------------------------
      Variable:       tolp
      
      Type:           REAL
      Default:        100.D0
      Description:    Tolerance for velocity rescaling. Velocities are rescaled if
                      the run-averaged and target temperature differ more than tolp.
      +--------------------------------------------------------------------
      
      +--------------------------------------------------------------------
      Variable:       delta_t
      
      Type:           REAL
      Default:        1.D0
      Description:    if "ion_temperature" == 'rescale-T' :
                             at each step the instantaneous temperature is multiplied
                             by delta_t; this is done rescaling all the velocities.
                      
                      if "ion_temperature" == 'reduce-T' :
                             every 'nraise' steps the instantaneous temperature is
                             reduced by -"delta_t" (i.e. "delta_t" &lt; 0 is added to T)
                      
                      The instantaneous temperature is calculated at the end of
                      every ionic move and BEFORE rescaling. This is the temperature
                      reported in the main output.
                      
                      For "delta_t" &lt; 0, the actual average rate of heating or cooling
                      should be roughly C*delta_t/(nraise*dt) (C=1 for an
                      ideal gas, C=0.5 for a harmonic solid, theorem of energy
                      equipartition between all quadratic degrees of freedom).
      +--------------------------------------------------------------------
      
      +--------------------------------------------------------------------
      Variable:       nraise
      
      Type:           INTEGER
      Default:        1
      Description:    if "ion_temperature" == 'reduce-T' :
                             every "nraise" steps the instantaneous temperature is
                             reduced by -"delta_t" (i.e. "delta_t" is added to the temperature)
                      
                      if "ion_temperature" == 'rescale-v' :
                             every "nraise" steps the average temperature, computed from
                             the last "nraise" steps, is rescaled to "tempw"
                      
                      if "ion_temperature" == 'rescaling' and "calculation" == 'vc-md' :
                             every "nraise" steps the instantaneous temperature
                             is rescaled to "tempw"
                      
                      if "ion_temperature" == 'berendsen' :
                             the "rise time" parameter is given in units of the time step:
                             tau = nraise*dt, so dt/tau = 1/nraise
                      
                      if "ion_temperature" == 'andersen' :
                             the "collision frequency" parameter is given as nu=1/tau
                             defined above, so nu*dt = 1/nraise
                      
                      if "ion_temperature" == 'svr' :
                             the "characteristic time" of the thermostat is set to
                             tau = nraise*dt
      +--------------------------------------------------------------------
      
      +--------------------------------------------------------------------
      Variable:       refold_pos
      
      Type:           LOGICAL
      Default:        .FALSE.
      Description:    This keyword applies only in the case of molecular dynamics or
                      damped dynamics. If true the ions are refolded at each step into
                      the supercell.
      +--------------------------------------------------------------------
      
   \\\---
   
   ///---
      KEYWORDS USED ONLY IN BFGS CALCULATIONS
      
      +--------------------------------------------------------------------
      Variable:       upscale
      
      Type:           REAL
      Default:        100.D0
      Description:    Max reduction factor for "conv_thr" during structural optimization
                      "conv_thr" is automatically reduced when the relaxation
                      approaches convergence so that forces are still accurate,
                      but "conv_thr" will not be reduced to less that "conv_thr" / "upscale".
      +--------------------------------------------------------------------
      
      +--------------------------------------------------------------------
      Variable:       bfgs_ndim
      
      Type:           INTEGER
      Default:        1
      Description:    Number of old forces and displacements vectors used in the
                      PULAY mixing of the residual vectors obtained on the basis
                      of the inverse hessian matrix given by the BFGS algorithm.
                      When "bfgs_ndim" = 1, the standard quasi-Newton BFGS method is
                      used.
                      (bfgs only)
      +--------------------------------------------------------------------
      
      +--------------------------------------------------------------------
      Variable:       trust_radius_max
      
      Type:           REAL
      Default:        0.8D0
      Description:    Maximum ionic displacement in the structural relaxation.
                      (bfgs only)
      +--------------------------------------------------------------------
      
      +--------------------------------------------------------------------
      Variable:       trust_radius_min
      
      Type:           REAL
      Default:        1.D-3
      Description:    Minimum ionic displacement in the structural relaxation
                      BFGS is reset when "trust_radius" &lt; "trust_radius_min".
                      (bfgs only)
      +--------------------------------------------------------------------
      
      +--------------------------------------------------------------------
      Variable:       trust_radius_ini
      
      Type:           REAL
      Default:        0.5D0
      Description:    Initial ionic displacement in the structural relaxation.
                      (bfgs only)
      +--------------------------------------------------------------------
      
      +--------------------------------------------------------------------
      Variable:       w_1
      
      Type:           REAL
      Default:        0.01D0
      See:            w_2
      +--------------------------------------------------------------------
      
      +--------------------------------------------------------------------
      Variable:       w_2
      
      Type:           REAL
      Default:        0.5D0
      Description:    Parameters used in line search based on the Wolfe conditions.
                      (bfgs only)
      +--------------------------------------------------------------------
      
   \\\---
   
===END OF NAMELIST======================================================


========================================================================
NAMELIST: &CELL

   INPUT THIS NAMELIST ONLY IF "CALCULATION" == 'VC-RELAX' OR 'VC-MD'
   
   +--------------------------------------------------------------------
   Variable:       cell_dynamics
   
   Type:           CHARACTER
   Description:   
                   Specify the type of dynamics for the cell.
                   For different type of calculation different possibilities
                   are allowed and different default values apply:
                   
                   CASE ( "calculation" == 'vc-relax' )
    
                   'none' :
                        no dynamics
    
                   'sd' :
                        steepest descent ( not implemented )
    
                   'damp-pr' :
                        damped (Beeman) dynamics of the Parrinello-Rahman extended lagrangian
    
                   'damp-w' :
                        damped (Beeman) dynamics of the new Wentzcovitch extended lagrangian
    
                   'bfgs' :
                        BFGS quasi-newton algorithm (default)
                        "ion_dynamics" must be 'bfgs' too
    
                   CASE ( "calculation" == 'vc-md' )
    
                   'none' :
                        no dynamics
    
                   'pr' :
                        (Beeman) molecular dynamics of the Parrinello-Rahman extended lagrangian
    
                   'w' :
                        (Beeman) molecular dynamics of the new Wentzcovitch extended lagrangian
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       press
   
   Type:           REAL
   Default:        0.D0
   Description:    Target pressure [KBar] in a variable-cell md or relaxation run.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       wmass
   
   Type:           REAL
   Default:        0.75*Tot_Mass/pi**2 for Parrinello-Rahman MD;
                   0.75*Tot_Mass/pi**2/Omega**(2/3) for Wentzcovitch MD
   Description:    Fictitious cell mass [amu] for variable-cell simulations
                   (both 'vc-md' and 'vc-relax')
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       cell_factor
   
   Type:           REAL
   Default:        2.0 for variable-cell calculations, 1.0 otherwise
   Description:    Used in the construction of the pseudopotential tables.
                   It should exceed the maximum linear contraction of the
                   cell during a simulation.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       press_conv_thr
   
   Type:           REAL
   Default:        0.5D0 Kbar
   Description:    Convergence threshold on the pressure for variable cell
                   relaxation ('vc-relax' : note that the other convergence
                               thresholds for ionic relaxation apply as well).
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       cell_dofree
   
   Type:           CHARACTER
   Default:        'all'
   Description:   
                   Select which of the cell parameters should be moved:
    
                   'all' :
                        all axis and angles are moved
    
                   'ibrav' :
                        all axis and angles are moved, but the lattice remains consistent with the initial ibrav choice
    
                   'x' :
                        only the x component of axis 1 (v1_x) is moved
    
                   'y' :
                        only the y component of axis 2 (v2_y) is moved
    
                   'z' :
                        only the z component of axis 3 (v3_z) is moved
    
                   'xy' :
                        only v1_x and v2_y are moved
    
                   'xz' :
                        only v1_x and v3_z are moved
    
                   'yz' :
                        only v2_y and v3_z are moved
    
                   'xyz' :
                        only v1_x, v2_y, v3_z are moved
    
                   'shape' :
                        all axis and angles, keeping the volume fixed
    
                   'volume' :
                        the volume changes, keeping all angles fixed (i.e. only celldm(1) changes)
    
                   '2Dxy' :
                        only x and y components are allowed to change
    
                   '2Dshape' :
                        as above, keeping the area in xy plane fixed
    
                   'epitaxial_ab' :
                        fix axis 1 and 2 while allowing axis 3 to move
    
                   'epitaxial_ac' :
                        fix axis 1 and 3 while allowing axis 2 to move
    
                   'epitaxial_bc' :
                        fix axis 2 and 3 while allowing axis 1 to move
    
                   BEWARE: if axis are not orthogonal, some of these options do not
                           work (symmetry is broken). If you are not happy with them,
                           edit subroutine init_dofree in file Modules/cell_base.f90
   +--------------------------------------------------------------------
   
===END OF NAMELIST======================================================


========================================================================
CARD: ATOMIC_SPECIES 

   /////////////////////////////////////////
   // Syntax:                             //
   /////////////////////////////////////////
   
      ATOMIC_SPECIES 
         X(1)     Mass_X(1)     PseudoPot_X(1)     
         X(2)     Mass_X(2)     PseudoPot_X(2)     
         . . . 
         X(ntyp)  Mass_X(ntyp)  PseudoPot_X(ntyp)  
   
   /////////////////////////////////////////
   
   DESCRIPTION OF ITEMS:
   
      +--------------------------------------------------------------------
      Variable:       X
      
      Type:           CHARACTER
      Description:    label of the atom. Acceptable syntax:
                      chemical symbol X (1 or 2 characters, case-insensitive)
                      or chemical symbol plus a number or a letter, as in
                      "Xn" (e.g. Fe1) or "X_*" or "X-*" (e.g. C1, C_h;
                      max total length cannot exceed 3 characters)
      +--------------------------------------------------------------------
      
      +--------------------------------------------------------------------
      Variable:       Mass_X
      
      Type:           REAL
      Description:    mass of the atomic species [amu: mass of C = 12]
                      Used only when performing Molecular Dynamics run
                      or structural optimization runs using Damped MD.
                      Not actually used in all other cases (but stored
                      in data files, so phonon calculations will use
                      these values unless other values are provided)
      +--------------------------------------------------------------------
      
      +--------------------------------------------------------------------
      Variable:       PseudoPot_X
      
      Type:           CHARACTER
      Description:    File containing PP for this species.
                      
                      The pseudopotential file is assumed to be in the new UPF format.
                      If it doesn't work, the pseudopotential format is determined by
                      the file name:
                      
                      *.vdb or *.van     Vanderbilt US pseudopotential code
                      *.RRKJ3            Andrea Dal Corso's code (old format)
                      none of the above  old PWscf norm-conserving format
      +--------------------------------------------------------------------
      
===END OF CARD==========================================================


========================================================================
CARD: ATOMIC_POSITIONS { alat | bohr | angstrom | crystal | crystal_sg }

   ________________________________________________________________________
   * IF calculation == 'bands' OR calculation == 'nscf' : 
   
      Specified atomic positions will be IGNORED and those from the
      previous scf calculation will be used instead !!!
      
       
   * ELSE : 
   
      /////////////////////////////////////////
      // Syntax:                             //
      /////////////////////////////////////////
      
         ATOMIC_POSITIONS { alat | bohr | angstrom | crystal | crystal_sg }
            X(1)    x(1)    y(1)    z(1)    {  if_pos(1)(1)    if_pos(2)(1)    if_pos(3)(1)    }  
            X(2)    x(2)    y(2)    z(2)    {  if_pos(1)(2)    if_pos(2)(2)    if_pos(3)(2)    }  
            . . . 
            X(nat)  x(nat)  y(nat)  z(nat)  {  if_pos(1)(nat)  if_pos(2)(nat)  if_pos(3)(nat)  }  
      
      /////////////////////////////////////////
      
       
   ENDIF
   ________________________________________________________________________
   
   DESCRIPTION OF ITEMS:
   
      +--------------------------------------------------------------------
      Card's flags:   { alat | bohr | angstrom | crystal | crystal_sg }
      
      Default:        (DEPRECATED) alat
      Description:   
                      Units for ATOMIC_POSITIONS:
       
                      alat :
                           atomic positions are in cartesian coordinates, in
                           units of the lattice parameter (either celldm(1)
                           or A). If no option is specified, 'alat' is assumed;
                           not specifying units is DEPRECATED and will no
                           longer be allowed in the future
       
                      bohr :
                           atomic positions are in cartesian coordinate,
                           in atomic units (i.e. Bohr radii)
       
                      angstrom :
                           atomic positions are in cartesian coordinates, in Angstrom
       
                      crystal :
                           atomic positions are in crystal coordinates, i.e.
                           in relative coordinates of the primitive lattice
                           vectors as defined either in card "CELL_PARAMETERS"
                           or via the ibrav + celldm / a,b,c... variables
       
                      crystal_sg :
                           atomic positions are in crystal coordinates, i.e.
                           in relative coordinates of the primitive lattice.
                           This option differs from the previous one because
                           in this case only the symmetry inequivalent atoms
                           are given. The variable "space_group" must indicate
                           the space group number used to find the symmetry
                           equivalent atoms. The other variables that control
                           this option are uniqueb, origin_choice, and
                           rhombohedral.
      +--------------------------------------------------------------------


      +--------------------------------------------------------------------
      Variable:       X
      
      Type:           CHARACTER
      Description:    label of the atom as specified in "ATOMIC_SPECIES"
      +--------------------------------------------------------------------
      
      +--------------------------------------------------------------------
      Variables:      x, y, z
      
      Type:           REAL
      Description:    atomic positions
                      
                      NOTE: each atomic coordinate can also be specified as a simple algebraic expression.
                            To be interpreted correctly expression must NOT contain any blank
                            space and must NOT start with a "+" sign. The available expressions are:
                      
                              + (plus), - (minus), / (division), * (multiplication), ^ (power)
                      
                            All numerical constants included are considered as double-precision numbers;
                            i.e. 1/2 is 0.5, not zero. Other functions, such as sin, sqrt or exp are
                            not available, although sqrt can be replaced with ^(1/2).
                      
                            Example:
                                  C  1/3   1/2*3^(-1/2)   0
                      
                            is equivalent to
                      
                                  C  0.333333  0.288675  0.000000
                      
                            Please note that this feature is NOT supported by XCrysDen (which will
                            display a wrong structure, or nothing at all).
                      
                            When atomic positions are of type crystal_sg coordinates can be given
                            in the following four forms (Wyckoff positions):
                               C  1a
                               C  8g   x
                               C  24m  x y
                               C  48n  x y z
                            The first form must be used when the Wyckoff letter determines uniquely
                            all three coordinates, forms 2,3,4 when the Wyckoff letter and 1,2,3
                            coordinates respectively are needed.
                      
                            The forms:
                               C 8g  x  x  x
                               C 24m x  x  y
                            are not allowed, but
                               C x x x
                               C x x y
                               C x y z
                            are correct.
      +--------------------------------------------------------------------
      
      +--------------------------------------------------------------------
      Variables:      if_pos(1), if_pos(2), if_pos(3)
      
      Type:           INTEGER
      Default:        1
      Description:    component i of the force for this atom is multiplied by if_pos(i),
                      which must be either 0 or 1.  Used to keep selected atoms and/or
                      selected components fixed in MD dynamics or
                      structural optimization run.
                      
                      With crystal_sg atomic coordinates the constraints are copied in all equivalent
                      atoms.
      +--------------------------------------------------------------------
      
===END OF CARD==========================================================


========================================================================
CARD: K_POINTS { tpiba | automatic | crystal | gamma | tpiba_b | crystal_b | tpiba_c | crystal_c }

   ________________________________________________________________________
   * IF tpiba  OR  crystal  OR  tpiba_b  OR  crystal_b OR tpiba_c OR crystal_c : 
   
      /////////////////////////////////////////
      // Syntax:                             //
      /////////////////////////////////////////
      
         K_POINTS tpiba | crystal | tpiba_b | crystal_b | tpiba_c | crystal_c 
            nks
            xk_x(1)    xk_y(1)    xk_z(1)    wk(1)    
            xk_x(2)    xk_y(2)    xk_z(2)    wk(2)    
            . . . 
            xk_x(nks)  xk_y(nks)  xk_z(nks)  wk(nks)  
      
      /////////////////////////////////////////
      
       
   * ELSE IF automatic : 
   
      /////////////////////////////////////////
      // Syntax:                             //
      /////////////////////////////////////////
      
         K_POINTS automatic
            nk1 nk2 nk3 sk1 sk2 sk3
      
      /////////////////////////////////////////
      
       
   * ELSE IF gamma : 
   
      /////////////////////////////////////////
      // Syntax:                             //
      /////////////////////////////////////////
      
         K_POINTS gamma
      
      /////////////////////////////////////////
      
       
   ENDIF
   ________________________________________________________________________
   
   DESCRIPTION OF ITEMS:
   
      +--------------------------------------------------------------------
      Card's flags:   { tpiba | automatic | crystal | gamma | tpiba_b | crystal_b | tpiba_c | crystal_c }
      
      Default:        tbipa
      Description:   
                      K_POINTS options are:
       
                      tpiba :
                           read k-points in cartesian coordinates,
                           in units of 2 pi/a (default)
       
                      automatic :
                           automatically generated uniform grid of k-points, i.e,
                           generates ( nk1, nk2, nk3 ) grid with ( sk1, sk2, sk3 ) offset.
                           nk1, nk2, nk3 as in Monkhorst-Pack grids
                           k1, k2, k3 must be 0 ( no offset ) or 1 ( grid displaced
                           by half a grid step in the corresponding direction )
                           BEWARE: only grids having the full symmetry of the crystal
                                   work with tetrahedra. Some grids with offset may not work.
       
                      crystal :
                           read k-points in crystal coordinates, i.e. in relative
                           coordinates of the reciprocal lattice vectors
       
                      gamma :
                           use k = 0 (no need to list k-point specifications after card)
                           In this case wavefunctions can be chosen as real,
                           and specialized subroutines optimized for calculations
                           at the gamma point are used (memory and cpu requirements
                           are reduced by approximately one half).
       
                      tpiba_b :
                           Used for band-structure plots.
                           See Doc/brillouin_zones.pdf for usage of BZ labels;
                           otherwise, k-points are in units of  2 pi/a.
                           nks points specify nks-1 lines in reciprocal space.
                           Every couple of points identifies the initial and
                           final point of a line. pw.x generates N intermediate
                           points of the line where N is the weight of the first point.
       
                      crystal_b :
                           As tpiba_b, but k-points are in crystal coordinates.
                           See Doc/brillouin_zones.pdf for usage of BZ labels.
       
                      tpiba_c :
                           Used for band-structure contour plots.
                           k-points are in units of  2 pi/a. nks must be 3.
                           3 k-points k_0, k_1, and k_2 specify a rectangle
                           in reciprocal space of vertices k_0, k_1, k_2,
                           k_1 + k_2 - k_0: k_0 + \alpha (k_1-k_0)+
                           \beta (k_2-k_0) with 0 &lt;\alpha,\beta &lt; 1.
                           The code produces a uniform mesh n1 x n2
                           k points in this rectangle. n1 and n2 are
                           the weights of k_1 and k_2. The weight of k_0
                           is not used.
       
                      crystal_c :
                           As tpiba_c, but k-points are in crystal coordinates.
      +--------------------------------------------------------------------


      +--------------------------------------------------------------------
      Variable:       nks
      
      Type:           INTEGER
      Description:    Number of supplied special k-points.
      +--------------------------------------------------------------------
      
      +--------------------------------------------------------------------
      Variables:      xk_x, xk_y, xk_z, wk
      
      Type:           REAL
      Description:    Special k-points (xk_x/y/z) in the irreducible Brillouin Zone
                      (IBZ) of the lattice (with all symmetries) and weights (wk)
                      See the literature for lists of special points and
                      the corresponding weights.
                      
                      If the symmetry is lower than the full symmetry
                      of the lattice, additional points with appropriate
                      weights are generated. Notice that such procedure
                      assumes that ONLY k-points in the IBZ are provided in input
                      
                      In a non-scf calculation, weights do not affect the results.
                      If you just need eigenvalues and eigenvectors (for instance,
                      for a band-structure plot), weights can be set to any value
                      (for instance all equal to 1).
      +--------------------------------------------------------------------
      
      +--------------------------------------------------------------------
      Variables:      nk1, nk2, nk3
      
      Type:           INTEGER
      Description:    These parameters specify the k-point grid
                      (nk1 x nk2 x nk3) as in Monkhorst-Pack grids.
      +--------------------------------------------------------------------
      
      +--------------------------------------------------------------------
      Variables:      sk1, sk2, sk3
      
      Type:           INTEGER
      Description:    The grid offsets;  sk1, sk2, sk3 must be
                      0 ( no offset ) or 1 ( grid displaced by
                      half a grid step in the corresponding direction ).
      +--------------------------------------------------------------------
      
===END OF CARD==========================================================


========================================================================
CARD: ADDITIONAL_K_POINTS 

   OPTIONAL CARD. ADDS A LIST OF K-POINTS WITH ZERO WEIGHT, AFTER THOSE USED FOR THE SCF CALCULATION.
                  WHEN DOING AN EXX CALCULATION AND NQ1X, NQ2X OR NQ3X ARE DIFFERENT FROM ONE, ALSO INCLUDE THE
                  REQUIRED K+Q POINTS. THE MAIN USE OF THIS CARD IS DO BAND PLOTS WITH EXX.
   
   /////////////////////////////////////////
   // Syntax:                             //
   /////////////////////////////////////////
   
      ADDITIONAL_K_POINTS 
         Same as K_POINTS, but does not accept 'automatic'.
         
   
   /////////////////////////////////////////
   
===END OF CARD==========================================================


========================================================================
CARD: CELL_PARAMETERS { alat | bohr | angstrom }

   OPTIONAL CARD, NEEDED ONLY IF "IBRAV" == 0 IS SPECIFIED, IGNORED OTHERWISE !
   
   /////////////////////////////////////////
   // Syntax:                             //
   /////////////////////////////////////////
   
      CELL_PARAMETERS { alat | bohr | angstrom }
         v1(1)  v1(2)  v1(3)  
         v2(1)  v2(2)  v2(3)  
         v3(1)  v3(2)  v3(3)  
   
   /////////////////////////////////////////
   
   DESCRIPTION OF ITEMS:
   
      +--------------------------------------------------------------------
      Card's flags:   { alat | bohr | angstrom }
      
      Description:    Unit for lattice vectors; options are:
                      
                      'bohr' / 'angstrom':
                                           lattice vectors in bohr-radii / angstrom.
                                           In this case the lattice parameter alat = sqrt(v1*v1).
                      
                      'alat' / nothing specified:
                                           lattice vectors in units of the lattice parameter (either
                                           "celldm"(1) or "A"). Not specifying units is DEPRECATED
                                           and will not be allowed in the future.
                      
                      If neither unit nor lattice parameter are specified,
                      'bohr' is assumed - DEPRECATED, will no longer be allowed
      +--------------------------------------------------------------------


      +--------------------------------------------------------------------
      Variables:      v1, v2, v3
      
      Type:           REAL
      Description:    Crystal lattice vectors (in cartesian axis):
                          v1(1)  v1(2)  v1(3)    ... 1st lattice vector
                          v2(1)  v2(2)  v2(3)    ... 2nd lattice vector
                          v3(1)  v3(2)  v3(3)    ... 3rd lattice vector
      +--------------------------------------------------------------------
      
===END OF CARD==========================================================


========================================================================
CARD: CONSTRAINTS 

   OPTIONAL CARD, USED FOR CONSTRAINED DYNAMICS OR CONSTRAINED OPTIMISATIONS
   (ONLY IF "ION_DYNAMICS"=='DAMP' OR 'VERLET', VARIABLE-CELL EXCEPTED)
   
   When this card is present the SHAKE algorithm is automatically used.
   
   /////////////////////////////////////////
   // Syntax:                             //
   /////////////////////////////////////////
   
      CONSTRAINTS 
         nconstr { constr_tol }
         constr_type(1)        constr(1)(1)        constr(2)(1)        [  constr(3)(1)        constr(4)(1)        ]  {  constr_target(1)        }  
         constr_type(2)        constr(1)(2)        constr(2)(2)        [  constr(3)(2)        constr(4)(2)        ]  {  constr_target(2)        }  
         . . . 
         constr_type(nconstr)  constr(1)(nconstr)  constr(2)(nconstr)  [  constr(3)(nconstr)  constr(4)(nconstr)  ]  {  constr_target(nconstr)  }  
   
   /////////////////////////////////////////
   
   DESCRIPTION OF ITEMS:
   
      +--------------------------------------------------------------------
      Variable:       nconstr
      
      Type:           INTEGER
      Description:    Number of constraints.
      +--------------------------------------------------------------------
      
      +--------------------------------------------------------------------
      Variable:       constr_tol
      
      Type:           REAL
      Description:    Tolerance for keeping the constraints satisfied.
      +--------------------------------------------------------------------
      
      +--------------------------------------------------------------------
      Variable:       constr_type
      
      Type:           CHARACTER
      Description:   
                      Type of constraint :
       
                      'type_coord' :
                           constraint on global coordination-number, i.e. the
                           average number of atoms of type B surrounding the
                           atoms of type A. The coordination is defined by
                           using a Fermi-Dirac.
                           (four indexes must be specified).
       
                      'atom_coord' :
                           constraint on local coordination-number, i.e. the
                           average number of atoms of type A surrounding a
                           specific atom. The coordination is defined by
                           using a Fermi-Dirac.
                           (four indexes must be specified).
       
                      'distance' :
                           constraint on interatomic distance
                           (two atom indexes must be specified).
       
                      'planar_angle' :
                           constraint on planar angle
                           (three atom indexes must be specified).
       
                      'torsional_angle' :
                           constraint on torsional angle
                           (four atom indexes must be specified).
       
                      'bennett_proj' :
                           constraint on the projection onto a given direction
                           of the vector defined by the position of one atom
                           minus the center of mass of the others.
                           G. Roma, J.P. Crocombette: J. Nucl. Mater. 403, 32 (2010),
                           doi:10.1016/j.jnucmat.2010.06.001
      +--------------------------------------------------------------------
      
      +--------------------------------------------------------------------
      Variables:      constr(1), constr(2), constr(3), constr(4)
      
      Description:    These variables have different meanings for different constraint types:
                      
                      @b 'type_coord' :
                                     @i constr(1) is the first index of the atomic type involved
                                     @i constr(2) is the second index of the atomic type involved
                                     @i constr(3) is the cut-off radius for estimating the coordination
                                     @i constr(4) is a smoothing parameter
                      
                      @b 'atom_coord' :
                                     @i constr(1) is the atom index of the atom with constrained coordination
                                     @i constr(2) is the index of the atomic type involved in the coordination
                                     @i constr(3) is the cut-off radius for estimating the coordination
                                     @i constr(4) is a smoothing parameter
                      
                      @b 'distance' :
                                     atoms indices object of the constraint, as they appear in
                                     the @ref ATOMIC_POSITIONS card
                      
                      @b 'planar_angle', @b 'torsional_angle' :
                                     atoms indices object of the constraint, as they appear in the
                                     @ref ATOMIC_POSITIONS card (beware the order)
                      
                      @b 'bennett_proj' :
                                     @i constr(1) is the index of the atom whose position is constrained.
                                     @i constr(2:4) are the three coordinates of the vector that specifies
                                     the constraint direction.
      +--------------------------------------------------------------------
      
      +--------------------------------------------------------------------
      Variable:       constr_target
      
      Type:           REAL
      Description:    Target for the constrain ( angles are specified in degrees ).
                      This variable is optional.
      +--------------------------------------------------------------------
      
===END OF CARD==========================================================


========================================================================
CARD: OCCUPATIONS 

   OPTIONAL CARD, USED ONLY IF "OCCUPATIONS" == 'FROM_INPUT', IGNORED OTHERWISE !
   
   /////////////////////////////////////////
   // Syntax:                             //
   /////////////////////////////////////////
   
      OCCUPATIONS 
           f_inp1(1)  f_inp1(2)  . . .  f_inp1(nbnd)  
         [ f_inp2(1)  f_inp2(2)  . . .  f_inp2(nbnd)  ] 
         
   
   /////////////////////////////////////////
   
   DESCRIPTION OF ITEMS:
   
      +--------------------------------------------------------------------
      Variable:       f_inp1
      
      Type:           REAL
      Description:    Occupations of individual states (MAX 10 PER ROW).
                      For spin-polarized calculations, these are majority spin states.
      +--------------------------------------------------------------------
      
      +--------------------------------------------------------------------
      Variable:       f_inp2
      
      Type:           REAL
      Description:    Occupations of minority spin states (MAX 10 PER ROW)
                      To be specified only for spin-polarized calculations.
      +--------------------------------------------------------------------
      
===END OF CARD==========================================================


========================================================================
CARD: ATOMIC_VELOCITIES { a.u }

   OPTIONAL CARD, READS VELOCITIES FROM STANDARD INPUT
   
   /////////////////////////////////////////
   // Syntax:                             //
   /////////////////////////////////////////
   
      ATOMIC_VELOCITIES { a.u }
         V(1)    vx(1)    vy(1)    vz(1)    
         V(2)    vx(2)    vy(2)    vz(2)    
         . . . 
         V(nat)  vx(nat)  vy(nat)  vz(nat)  
   
   /////////////////////////////////////////
   
   DESCRIPTION OF ITEMS:
   
      +--------------------------------------------------------------------
      Card's flags:   { a.u }
      
      +--------------------------------------------------------------------


      +--------------------------------------------------------------------
      Variable:       V
      
      Type:           CHARACTER
      Description:    label of the atom as specified in ATOMIC_SPECIES
      +--------------------------------------------------------------------
      
      +--------------------------------------------------------------------
      Variables:      vx, vy, vz
      
      Type:           REAL
      Description:    atomic velocities along x y and z direction
      +--------------------------------------------------------------------
      
===END OF CARD==========================================================


========================================================================
CARD: ATOMIC_FORCES 

   OPTIONAL CARD USED TO SPECIFY EXTERNAL FORCES ACTING ON ATOMS.
   
   BEWARE: if the sum of external forces is not zero, the center of mass of
           the system will move
   
   /////////////////////////////////////////
   // Syntax:                             //
   /////////////////////////////////////////
   
      ATOMIC_FORCES 
         X(1)    fx(1)    fy(1)    fz(1)    
         X(2)    fx(2)    fy(2)    fz(2)    
         . . . 
         X(nat)  fx(nat)  fy(nat)  fz(nat)  
   
   /////////////////////////////////////////
   
   DESCRIPTION OF ITEMS:
   
      +--------------------------------------------------------------------
      Variable:       X
      
      Type:           CHARACTER
      Description:    label of the atom as specified in "ATOMIC_SPECIES"
      +--------------------------------------------------------------------
      
      +--------------------------------------------------------------------
      Variables:      fx, fy, fz
      
      Type:           REAL
      Description:    external force on atom X (cartesian components, Ry/a.u. units)
      +--------------------------------------------------------------------
      
===END OF CARD==========================================================


This file has been created by helpdoc utility on Wed Dec 02 08:04:48 CET 2020

    </pre>
  </body>
</html>