1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
|
!
! Copyright (C) 2001-2009 Quantum ESPRESSO group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!----------------------------------------------------------------------------
MODULE rVV10
! This module is modeled after the vdW-DF implementation in
! Modules/xc_vdW_DF.f90. See that file for references, explanations, and
! many useful comments.
USE kinds, ONLY : dp
USE constants, ONLY : pi
USE mp, ONLY : mp_sum
USE mp_bands, ONLY : intra_bgrp_comm
USE io_global, ONLY : ionode, stdout
USE fft_base, ONLY : dfftp
USE fft_interfaces, ONLY : fwfft, invfft
USE control_flags, ONLY : gamma_only, iverbosity
IMPLICIT NONE
SAVE
real(dp), parameter :: epsr = 1.d-12
real(dp), parameter :: epsg = 1.D-10
integer, parameter :: Nr_points = 1024
real(dp), parameter :: r_max = 100.0D0
real(dp), parameter :: dr = r_max/Nr_points
real(dp), parameter :: dk = 2.0D0*pi/r_max
real(dp), parameter :: q_min = 1.0D-4
real(dp), parameter :: q_cut = 0.5D0
integer, parameter :: Nqs = 20
real(dp), parameter, dimension(Nqs):: q_mesh= (/ q_min, 3.0D-4, 5.893850845618885D-4, 1.008103720396345D-3, &
1.613958359589310D-3, 2.490584839564653D-3, 3.758997979748929D-3, 5.594297198907115D-3, &
8.249838297569416D-3, 1.209220822453922D-2, 1.765183095571029D-2, 2.569619042667097D-2, &
3.733577865542191D-2, 5.417739477463518D-2, 7.854595729872216D-2, 0.113805449932145D0, &
0.164823306218807D0 , 0.238642339497217D0 , 0.345452975434964D0 , q_cut /)
real(dp) :: kernel( 0:Nr_points, Nqs, Nqs ), d2phi_dk2( 0:Nr_points, Nqs, Nqs )
real(dp) :: b_value = 6.3_DP
real(dp) :: C_value = 0.0093
private
public :: xc_rVV10, &
interpolate_kernel, &
initialize_spline_interpolation, &
rVV10_stress, b_value, &
q_mesh, Nr_points, r_max, q_min, q_cut, Nqs
CONTAINS
!! #################################################################################################
!! | |
!! | xc_rVV10 |
!! |_____________|
SUBROUTINE xc_rVV10(rho_valence, rho_core, nspin, etxc, vtxc, v, b_value_)
!! Modules to include
!! -------------------------------------------------------------------------
use gvect, ONLY : ngm, g
USE fft_base, ONLY : dfftp
USE cell_base, ONLY : omega, tpiba
!! -------------------------------------------------------------------------
!! Local variables
!! ----------------------------------------------------------------------------------
! _
real(dp), intent(IN) :: rho_valence(:) !
real(dp), intent(IN) :: rho_core(:) ! PWSCF input variables
INTEGER, INTENT(IN) :: nspin !
real(dp), intent(inout) :: etxc, vtxc, v(:,:) !_
real(DP),optional,intent(in) :: b_value_
integer :: i_grid, theta_i, i_proc, I
real(dp) :: grid_cell_volume
real(dp), allocatable :: total_rho(:)
real(dp), allocatable :: gradient_rho(:,:)
real(dp), allocatable :: q0(:)
real(dp), allocatable :: dq0_drho(:)
real(dp), allocatable :: dq0_dgradrho(:)
complex(dp), allocatable :: thetas(:,:)
real(dp) :: Ec_nl
real(dp), allocatable :: potential(:)
logical, save :: first_iteration = .true.
real(dp) :: beta
!! ---------------------------------------------------------------------------------------------
!! Begin calculations
!call errore('xc_rVV10','rVV10 functional not implemented for spin polarized runs', size(rho_valence,2)-1)
if (nspin>2) call errore('xc_vdW_DF','vdW functional not implemented for nspin > 2', nspin)
if(present(b_value_)) b_value = b_value_
!! --------------------------------------------------------------------------------------------------------
call start_clock( 'rVV10' )
beta = 0.0625d0 * (3.0d0 / (b_value**2.0D0) )**(0.75d0)
!! Write parameters during the first iteratio
!!
if (first_iteration) then
first_iteration = .false.
CALL generate_kernel
if (ionode .and. iverbosity > -1 ) then
WRITE(stdout,'(/ /A )') "---------------------------------------------------------------------------------"
WRITE(stdout,'(A)') "Carrying out rVV10 run using the following parameters:"
WRITE(stdout,'(A,I6,A,I6,A,F8.3)') "Nqs = ",Nqs, " Nr_points = ", Nr_points," r_max = ",r_max
WRITE(stdout, '(A, F8.5, A, F8.5 )') "b_value = ", b_value, " beta = ", beta
WRITE(stdout,'(5X,"q_mesh =",4F12.8)') (q_mesh(I), I=1, 4)
WRITE(stdout,'(13X,4F12.8)') (q_mesh(I), I=5, Nqs)
WRITE(stdout,'(/ A )') "Gradients computed in Reciprocal space"
WRITE(stdout,'(/ A / /)') "---------------------------------------------------------------------------------"
end if
end if
!! --------------------------------------------------------------------------------------------------
!! Allocate arrays.
!! ---------------------------------------------------------------------------------------
allocate( q0(dfftp%nnr) )
allocate( gradient_rho(3,dfftp%nnr) )
allocate( dq0_drho(dfftp%nnr), dq0_dgradrho(dfftp%nnr) )
allocate( total_rho(dfftp%nnr) )
!! ---------------------------------------------------------------------------------------
!! Add together the valence and core charge densities to get the total charge density
!
total_rho = rho_valence(:) + rho_core(:)
!! -------------------------------------------------------------------------
!! Here we calculate the gradient in reciprocal space using FFT
!! -------------------------------------------------------------------------
call fft_gradient_r2r( dfftp, total_rho, g, gradient_rho)
!! -------------------------------------------------------------------------
!! Get Q and all the derivatives
!! -------------------------------------------------------------------------
CALL get_q0_on_grid(total_rho, gradient_rho, q0, dq0_drho, dq0_dgradrho)
!! ---------------------------------------------------------------------------------
allocate( thetas(dfftp%nnr, Nqs) )
CALL get_thetas_on_grid(total_rho, q0, thetas)
call start_clock( 'rVV10_energy')
call vdW_energy(thetas, Ec_nl)
Ec_nl = Ec_nl + beta * SUM(total_rho) * (omega/(dfftp%nr1x*dfftp%nr2x*dfftp%nr3x))
etxc = etxc + Ec_nl
call stop_clock( 'rVV10_energy')
!! Print stuff if verbose run
!!
if (iverbosity > 0) then
call mp_sum(Ec_nl,intra_bgrp_comm)
if (ionode) write(*,'(/ / A /)') " ----------------------------------------------------------------"
if (ionode) write(*,'(A, F22.15 /)') " Non-local correlation energy = ", Ec_nl
if (ionode) write(*,'(A /)') " ----------------------------------------------------------------"
end if
!! ----------------------------------------------------------------------------------------
!! Inverse Fourier transform the u_i(k) to get the u_i(r)
!!---------------------------------------------------------------------------------------
call start_clock( 'rVV10_ffts')
do theta_i = 1, Nqs
CALL invfft('Rho', thetas(:,theta_i), dfftp)
end do
call stop_clock( 'rVV10_ffts')
!! -------------------------------------------------------------------------
call start_clock( 'rVV10_v' )
allocate( potential(dfftp%nnr) )
call get_potential(q0, dq0_drho, dq0_dgradrho, total_rho, gradient_rho, thetas, potential)
!! -------------------------------------------------------------------------
!! Add beta
!! -------------------------------------------------------------------------
potential = potential + beta
v(:,1) = v(:,1) + potential(:)
if (nspin==2) v(:,2) = v(:,2) + potential(:)
call stop_clock( 'rVV10_v' )
!! -----------------------------------------------------------------------
!! The integral of rho(r)*potential(r) for the vtxc output variable
!! --------------------------------------------------------------------
grid_cell_volume = omega/(dfftp%nr1*dfftp%nr2*dfftp%nr3)
do i_grid = 1, dfftp%nnr
vtxc = vtxc + grid_cell_volume*rho_valence(i_grid)*potential(i_grid)
end do
deallocate(potential)
!! ----------------------------------------------------------------------
!! Deallocate all arrays.
deallocate(q0, gradient_rho, dq0_drho, dq0_dgradrho, total_rho, thetas)
call stop_clock('rVV10')
END SUBROUTINE xc_rVV10
!! #################################################################################################
!! | |
!! | rVV10_STRESS |
!! |_________________|
SUBROUTINE rVV10_stress (rho_valence, rho_core, nspin, sigma)
USE fft_base, ONLY : dfftp
use gvect, ONLY : ngm, g
USE cell_base, ONLY : tpiba
implicit none
real(dp), intent(IN) :: rho_valence(:) !
real(dp), intent(IN) :: rho_core(:) ! Input variables
INTEGER, INTENT(IN) :: nspin
real(dp), intent(inout) :: sigma(3,3) !
real(dp), allocatable :: gradient_rho(:,:) !
real(dp), allocatable :: total_rho(:) ! Rho values
real(dp), allocatable :: q0(:) !
real(dp), allocatable :: dq0_drho(:) ! Q-values
real(dp), allocatable :: dq0_dgradrho(:) !
complex(dp), allocatable :: thetas(:,:) ! Thetas
integer :: i_proc, theta_i, l, m
real(dp) :: sigma_grad(3,3)
real(dp) :: sigma_ker(3,3)
!! ---------------------------------------------------------------------------------------------
!! Tests
!! --------------------------------------------------------------------------------------------------------
if (nspin>2) call errore('rV10_stress',' rVV10 stress not implemented for nspin > 2', nspin)
sigma(:,:) = 0.0_DP
sigma_grad(:,:) = 0.0_DP
sigma_ker(:,:) = 0.0_DP
!! ---------------------------------------------------------------------------------------
!! Allocations
!! ---------------------------------------------------------------------------------------
allocate( gradient_rho(3,dfftp%nnr) )
allocate( total_rho(dfftp%nnr) )
allocate( q0(dfftp%nnr) )
allocate( dq0_drho(dfftp%nnr), dq0_dgradrho(dfftp%nnr) )
allocate( thetas(dfftp%nnr, Nqs) )
!! ---------------------------------------------------------------------------------------
!! Charge
!! ---------------------------------------------------------------------------------------
total_rho = rho_valence(:) + rho_core(:)
!! -------------------------------------------------------------------------
!! Here we calculate the gradient in reciprocal space using FFT
!! -------------------------------------------------------------------------
call fft_gradient_r2r( dfftp, total_rho, g, gradient_rho)
!! -------------------------------------------------------------------------------------------------------------
!! Get q0.
!! ---------------------------------------------------------------------------------
CALL get_q0_on_grid(total_rho, gradient_rho, q0, dq0_drho, dq0_dgradrho)
!! ---------------------------------------------------------------------------------
!! Get thetas in reciprocal space.
!! ---------------------------------------------------------------------------------
CALL get_thetas_on_grid(total_rho, q0, thetas)
!! ---------------------------------------------------------------------------------------
!! Stress
!! ---------------------------------------------------------------------------------------
CALL rVV10_stress_gradient(total_rho, gradient_rho, q0, dq0_drho, &
dq0_dgradrho, thetas, sigma_grad)
CALL rVV10_stress_kernel(total_rho, q0, thetas, sigma_ker)
sigma = - (sigma_grad + sigma_ker)
do l = 1, 3
do m = 1, l - 1
sigma (m, l) = sigma (l, m)
enddo
enddo
deallocate( gradient_rho, total_rho, q0, dq0_drho, dq0_dgradrho, thetas )
END SUBROUTINE rVV10_stress
!! ###############################################################################################################
!! | |
!! | rVV10_stress_gradient |
SUBROUTINE rVV10_stress_gradient (total_rho, gradient_rho, q0, dq0_drho, &
dq0_dgradrho, thetas, sigma)
!!-----------------------------------------------------------------------------------
!! Modules to include
!! ----------------------------------------------------------------------------------
use gvect, ONLY : ngm, g, gg, igtongl, &
gl, ngl, gstart
USE fft_base, ONLY : dfftp
USE cell_base, ONLY : omega, tpiba, alat, at, tpiba2
!! ----------------------------------------------------------------------------------
implicit none
real(dp), intent(IN) :: total_rho(:) !
real(dp), intent(IN) :: gradient_rho(:, :) ! Input variables
real(dp), intent(inout) :: sigma(:,:) !
real(dp), intent(IN) :: q0(:) !
real(dp), intent(IN) :: dq0_drho(:) !
real(dp), intent(IN) :: dq0_dgradrho(:) !
complex(dp), intent(IN) :: thetas(:,:) !
complex(dp), allocatable :: u_vdW(:,:) !
real(dp), allocatable :: d2y_dx2(:,:) !
real(dp) :: y(Nqs), dP_dq0, P, a, b, c, d, e, f ! Interpolation
real(dp) :: dq !
integer :: q_low, q_hi, q, q1_i, q2_i , g_i ! Loop and q-points
integer :: l, m
real(dp) :: prefactor ! Final summation of sigma
integer :: i_proc, theta_i, i_grid, q_i, & !
ix, iy, iz ! Iterators
character(LEN=1) :: intvar
real(dp) :: const
!real(dp) :: at_inverse(3,3)
allocate( d2y_dx2(Nqs, Nqs) )
allocate( u_vdW(dfftp%nnr, Nqs) )
const = 1.0D0 / (3.0D0 * b_value**(3.0D0/2.0D0) * pi**(5.0D0/4.0D0) )
sigma(:,:) = 0.0_DP
prefactor = 0.0_DP
!! --------------------------------------------------------------------------------------------------
!! Get u in k-space.
!! ---------------------------------------------------------------------------------------------------
call thetas_to_uk(thetas, u_vdW)
!! --------------------------------------------------------------------------------------------------
!! Get u in real space.
!! ---------------------------------------------------------------------------------------------------
call start_clock( 'rVV10_ffts')
do theta_i = 1, Nqs
CALL invfft('Rho', u_vdW(:,theta_i), dfftp)
end do
call stop_clock( 'rVV10_ffts')
!! --------------------------------------------------------------------------------------------------
!! Get the second derivatives for interpolating the P_i
!! ---------------------------------------------------------------------------------------------------
call initialize_spline_interpolation(q_mesh, d2y_dx2(:,:))
!! ---------------------------------------------------------------------------------------------
i_grid = 0
!! ----------------------------------------------------------------------------------------------------
!! Do the real space integration to obtain the stress component
!! ----------------------------------------------------------------------------------------------------
do i_grid = 1, dfftp%nnr
q_low = 1
q_hi = Nqs
!
! Figure out which bin our value of q0 is in in the q_mesh
!
do while ( (q_hi - q_low) > 1)
q = int((q_hi + q_low)/2)
if (q_mesh(q) > q0(i_grid)) then
q_hi = q
else
q_low = q
end if
end do
if (q_hi == q_low) call errore('stress_vdW_gradient','qhi == qlow',1)
! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
dq = q_mesh(q_hi) - q_mesh(q_low)
a = (q_mesh(q_hi) - q0(i_grid))/dq
b = (q0(i_grid) - q_mesh(q_low))/dq
c = (a**3 - a)*dq**2/6.0D0
d = (b**3 - b)*dq**2/6.0D0
e = (3.0D0*a**2 - 1.0D0)*dq/6.0D0
f = (3.0D0*b**2 - 1.0D0)*dq/6.0D0
do q_i = 1, Nqs
y(:) = 0.0D0
y(q_i) = 1.0D0
dP_dq0 = (y(q_hi) - y(q_low))/dq - e*d2y_dx2(q_i,q_low) + f*d2y_dx2(q_i,q_hi)
! +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
if (total_rho(i_grid) > epsr) then
prefactor = u_vdW(i_grid,q_i) * const * total_rho(i_grid)**(3.0D0/4.0D0) * dP_dq0 * dq0_dgradrho(i_grid)
do l = 1, 3
do m = 1, l
sigma (l, m) = sigma (l, m) - prefactor * &
(gradient_rho(l,i_grid) * gradient_rho(m,i_grid))
enddo
enddo
endif
!! +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
end do
end do
call mp_sum( sigma, intra_bgrp_comm )
call dscal (9, 1.d0 / (dfftp%nr1 * dfftp%nr2 * dfftp%nr3), sigma, 1)
deallocate( d2y_dx2, u_vdW )
END SUBROUTINE rVV10_stress_gradient
!! ###############################################################################################################
!! | |
!! | rVV10_stress_kernel |
!! | |
SUBROUTINE rVV10_stress_kernel (total_rho, q0, thetas, sigma)
!! Modules to include
!! ----------------------------------------------------------------------------------
use gvect, ONLY : ngm, g, gg, igtongl, gl, ngl, gstart
USE fft_base, ONLY : dfftp
USE cell_base, ONLY : omega, tpiba, tpiba2
USE constants, ONLY: pi
implicit none
real(dp), intent(IN) :: q0(:)
real(dp), intent(IN) :: total_rho(:)
real(dp), intent(inout) :: sigma(3,3) !
complex(dp), intent(IN) :: thetas(:,:)
real(dp), allocatable :: dkernel_of_dk(:,:) !
integer :: l, m, q1_i, q2_i , g_i !
real(dp) :: g2, ngmod2, g_kernel, G_multiplier !
integer :: last_g, theta_i
allocate( dkernel_of_dk(Nqs, Nqs) )
sigma(:,:) = 0.0_DP
!! --------------------------------------------------------------------------------------------------
!! Integration in g-space
!! ---------------------------------------------------------------------------------------------------
last_g = -1
G_multiplier = 1.0D0
if (gamma_only) G_multiplier = 2.0D0
do g_i = gstart, ngm
g2 = gg (g_i) * tpiba2
g_kernel = sqrt(g2)
if ( igtongl(g_i) .ne. last_g) then
call interpolate_Dkernel_Dk(g_kernel, dkernel_of_dk) ! Gets the derivatives
last_g = igtongl(g_i)
end if
do q2_i = 1, Nqs
do q1_i = 1, Nqs
do l = 1, 3
do m = 1, l
sigma (l, m) = sigma (l, m) - G_multiplier * 0.5 * &
thetas(dfftp%nl(g_i),q1_i)*dkernel_of_dk(q1_i,q2_i)*conjg(thetas(dfftp%nl(g_i),q2_i))* &
(g (l, g_i) * g (m, g_i) * tpiba2) / g_kernel
end do
end do
enddo
end do
if (g_i < gstart ) sigma(:,:) = sigma(:,:) / G_multiplier
enddo
call mp_sum( sigma, intra_bgrp_comm )
deallocate( dkernel_of_dk )
END SUBROUTINE rVV10_stress_kernel
!! ###############################################################################################################
!! | |
!! | GET_Q0_ON_GRID |
!! |__________________|
SUBROUTINE get_q0_on_grid (total_rho, gradient_rho, q0, dq0_drho, dq0_dgradrho)
USE fft_base, ONLY : dfftp
real(dp), intent(IN) :: total_rho(:), gradient_rho(:,:)
real(dp), intent(OUT) :: q0(:), dq0_drho(:), dq0_dgradrho(:)
integer, parameter :: m_cut = 12
real(dp) :: dw0_dn, dk_dn, gmod2
real(dp) :: mod_grad, wp2, wg2, w0, k
real(dp) :: q, exponent, dq0_dq
integer :: i_grid, index, count=0
! initialize q0-related arrays ...
q0(:) = q_cut
dq0_drho(:) = 0.0_DP
dq0_dgradrho(:) = 0.0_DP
do i_grid = 1, dfftp%nnr
if (total_rho(i_grid) > epsr) then
gmod2 = gradient_rho(1,i_grid)**2 + &
gradient_rho(2,i_grid)**2 + &
gradient_rho(3,i_grid)**2
!! Calculate some intermediate values needed to find q
!! ------------------------------------------------------------------------------------
mod_grad = sqrt(gmod2)
wp2= 16.0_dp*pi*total_rho(i_grid)
wg2 = 4.0_dp*C_value * (mod_grad/total_rho(i_grid))**4
k = b_value*3.0_dp*pi* ((total_rho(i_grid)/(9.0_dp*pi))**(1.0_dp/6.0_dp))
w0 = sqrt( wg2 + wp2/3.0_dp )
q = w0 / k
!! Here, we calculate q0 by saturating q according
!! ---------------------------------------------------------------------------------------
exponent = 0.0_dp
dq0_dq = 0.0_dp
do index = 1, m_cut
exponent = exponent + ( (q/q_cut)**index)/index
dq0_dq = dq0_dq + ( (q/q_cut)**(index-1))
end do
q0(i_grid) = q_cut*(1.0_dp - exp(-exponent))
dq0_dq = dq0_dq * exp(-exponent)
!! ---------------------------------------------------------------------------------------
if (q0(i_grid) < q_min) then
q0(i_grid) = q_min
end if
!!---------------------------------Final values---------------------------------
dw0_dn = 1.0_dp/(2.0_dp*w0) * (16.0_dp/3.0_dp*pi - 4.0_dp*wg2 / total_rho(i_grid) )
dk_dn = k / ( 6.0_dp * total_rho(i_grid) )
dq0_drho(i_grid) = dq0_dq / (k**2) * (dw0_dn * k - dk_dn * w0 )
IF ( gmod2 > epsr) THEN
dq0_dgradrho(i_grid) = dq0_dq / ( 2.0_dp*k*w0 ) * 4.0_dp*wg2 / (mod_grad**2)
ELSE
dq0_dgradrho(i_grid) = 0.0_dp
ENDIF
endif
end do
end SUBROUTINE get_q0_on_grid
!! ###############################################################################################################
!! | |
!! | GET_THETAS_ON_GRID |
SUBROUTINE get_thetas_on_grid (total_rho, q0_on_grid, thetas)
real(dp), intent(in) :: total_rho(:), q0_on_grid(:)
complex(dp), intent(inout):: thetas(:,:)
integer :: i_grid, Ngrid_points
integer :: theta_i
Ngrid_points = size(q0_on_grid)
!! Interpolate the P_i polynomials
CALL spline_interpolation(q_mesh, q0_on_grid, thetas)
!! Form the thetas where theta is defined as rho*p_i(q0)
!! ------------------------------------------------------------------------------------
do i_grid = 1, Ngrid_points
if (total_rho(i_grid) > epsr ) then
thetas(i_grid,:) = thetas(i_grid,:) * (1.0 / (3.0 * sqrt(pi) &
* ( b_value**(3.0/2.0) ) ) ) * (total_rho(i_grid) / pi)**(3.0/4.0)
else
thetas(i_grid,:) = 0.0d0
endif
end do
!! ------------------------------------------------------------------------------------
call start_clock( 'rVV10_ffts')
do theta_i = 1, Nqs
CALL fwfft ('Rho', thetas(:,theta_i), dfftp)
end do
call stop_clock( 'rVV10_ffts')
END SUBROUTINE get_thetas_on_grid
!! ###############################################################################################################
!! | |
!! | SPLINE_INTERPOLATION |
!! |________________________|
SUBROUTINE spline_interpolation (x, evaluation_points, values)
real(dp), intent(in) :: x(:), evaluation_points(:) !! Input variables. The x values used to form the interpolation
! !! (q_mesh in this case) and the values of q0 for which we are
! !! interpolating the function
complex(dp), intent(inout) :: values(:,:) !! An output array (allocated outside this routine) that stores the
! !! interpolated values of the P_i (SOLER equation 3) polynomials. The
! !! format is values(grid_point, P_i)
integer :: Ngrid_points, Nx !! Total number of grid points to evaluate and input x points
real(dp), allocatable, save :: d2y_dx2(:,:) !! The second derivatives required to do the interpolation
integer :: i_grid, lower_bound, upper_bound, index, P_i !! Some indexing variables
real(dp), allocatable :: y(:) !! Temporary variables needed for the interpolation
real(dp) :: a, b, c, d, dx !!
Nx = size(x)
Ngrid_points = size(evaluation_points)
!! Allocate the temporary array
allocate( y(Nx) )
!! If this is the first time this routine has been called we need to get the second
!! derivatives (d2y_dx2) required to perform the interpolations. So we allocate the
!! array and call initialize_spline_interpolation to get d2y_dx2.
!! ------------------------------------------------------------------------------------
if (.not. allocated(d2y_dx2) ) then
allocate( d2y_dx2(Nx,Nx) )
call initialize_spline_interpolation(x, d2y_dx2)
end if
!! ------------------------------------------------------------------------------------
do i_grid=1, Ngrid_points
lower_bound = 1
upper_bound = Nx
do while ( (upper_bound - lower_bound) > 1 )
index = (upper_bound+lower_bound)/2
if ( evaluation_points(i_grid) > x(index) ) then
lower_bound = index
else
upper_bound = index
end if
end do
dx = x(upper_bound)-x(lower_bound)
a = (x(upper_bound) - evaluation_points(i_grid))/dx
b = (evaluation_points(i_grid) - x(lower_bound))/dx
c = ((a**3-a)*dx**2)/6.0D0
d = ((b**3-b)*dx**2)/6.0D0
do P_i = 1, Nx
y = 0
y(P_i) = 1
values(i_grid, P_i) = a*y(lower_bound) + b*y(upper_bound) &
+ (c*d2y_dx2(P_i,lower_bound) + d*d2y_dx2(P_i, upper_bound))
end do
end do
deallocate( y )
END SUBROUTINE spline_interpolation
!! ###############################################################################################################
!! | |
!! | INITIALIZE_SPLINE_INTERPOLATION |
!! |___________________________________|
!! This routine is modeled after an algorithm from "Numerical Recipes in C" by Cambridge
!! University Press, pages 96-97. It was adapted for Fortran and for the problem at hand.
SUBROUTINE initialize_spline_interpolation (x, d2y_dx2)
real(dp), intent(in) :: x(:) !! The input abscissa values
real(dp), intent(inout) :: d2y_dx2(:,:) !! The output array (allocated outside this routine)
! !! that holds the second derivatives required for
! !! interpolating the function
integer :: Nx, P_i, index !! The total number of x points and some indexing
! !! variables
real(dp), allocatable :: temp_array(:), y(:) !! Some temporary arrays required. y is the array
! !! that holds the funcion values (all either 0 or 1 here).
real(dp) :: temp1, temp2 !! Some temporary variables required
Nx = size(x)
allocate( temp_array(Nx), y(Nx) )
do P_i=1, Nx
!! In the Soler method, the polynomicals that are interpolated are Kroneker delta funcions
!! at a particular q point. So, we set all y values to 0 except the one corresponding to
!! the particular function P_i.
!! ----------------------------------------------------------------------------------------
y = 0.0D0
y(P_i) = 1.0D0
!! ----------------------------------------------------------------------------------------
d2y_dx2(P_i,1) = 0.0D0
temp_array(1) = 0.0D0
do index = 2, Nx-1
temp1 = (x(index)-x(index-1))/(x(index+1)-x(index-1))
temp2 = temp1 * d2y_dx2(P_i,index-1) + 2.0D0
d2y_dx2(P_i,index) = (temp1-1.0D0)/temp2
temp_array(index) = (y(index+1)-y(index))/(x(index+1)-x(index)) &
- (y(index)-y(index-1))/(x(index)-x(index-1))
temp_array(index) = (6.0D0*temp_array(index)/(x(index+1)-x(index-1)) &
- temp1*temp_array(index-1))/temp2
end do
d2y_dx2(P_i,Nx) = 0.0D0
do index=Nx-1, 1, -1
d2y_dx2(P_i,index) = d2y_dx2(P_i,index) * d2y_dx2(P_i,index+1) + temp_array(index)
end do
end do
deallocate( temp_array, y)
end SUBROUTINE initialize_spline_interpolation
!! ###############################################################################################################
!! | |
!! | INTERPOLATE_KERNEL |
!! |____________________|
!! This routine is modeled after an algorithm from "Numerical Recipes in C" by Cambridge
!! University Press, page 97. Adapted for Fortran and the problem at hand. This function is used to
!! find the Phi_alpha_beta needed for equations 11 and 14 of SOLER.
subroutine interpolate_kernel(k, kernel_of_k)
real(dp), intent(in) :: k !! Input value, the magnitude of the g-vector for the
! !! current point.
real(dp), intent(inout) :: kernel_of_k(:,:) !! An output array (allocated outside this routine)
! !! that holds the interpolated value of the kernel
! !! for each pair of q points (i.e. the phi_alpha_beta
! !! of the Soler method.
integer :: q1_i, q2_i, k_i !! Indexing variables
real(dp) :: A, B, C, D !! Intermediate values for the interpolation
!! Check to make sure that the kernel table we have is capable of dealing with this
!! value of k. If k is larger than Nr_points*2*pi/r_max then we can't perform the
!! interpolation. In that case, a kernel file should be generated with a larger number
!! of radial points.
!! -------------------------------------------------------------------------------------
if ( k >= Nr_points*dk ) then
write(*,'(A,F10.5,A,F10.5)') "k = ", k, " k_max = ",Nr_points*dk
call errore('interpolate kernel', 'k value requested is out of range',1)
end if
!! -------------------------------------------------------------------------------------
kernel_of_k = 0.0D0
!! This integer division figures out which bin k is in since the kernel
!! is set on a uniform grid.
k_i = int(k/dk)
!! Test to see if we are trying to interpolate a k that is one of the actual
!! function points we have. The value is just the value of the function in that
!! case.
!! ----------------------------------------------------------------------------------------
if (mod(k,dk) == 0) then
do q1_i = 1, Nqs
do q2_i = 1, q1_i
kernel_of_k(q1_i, q2_i) = kernel(k_i,q1_i, q2_i)
kernel_of_k(q2_i, q1_i) = kernel(k_i,q2_i, q1_i)
end do
end do
return
end if
!! ----------------------------------------------------------------------------------------
!! If we are not on a function point then we carry out the interpolation
!! ----------------------------------------------------------------------------------------
A = (dk*(k_i+1.0D0) - k)/dk
B = (k - dk*k_i)/dk
C = (A**3-A)*dk**2/6.0D0
D = (B**3-B)*dk**2/6.0D0
do q1_i = 1, Nqs
do q2_i = 1, q1_i
kernel_of_k(q1_i, q2_i) = A*kernel(k_i, q1_i, q2_i) + B*kernel(k_i+1, q1_i, q2_i) &
+(C*d2phi_dk2(k_i, q1_i, q2_i) + D*d2phi_dk2(k_i+1, q1_i, q2_i))
kernel_of_k(q2_i, q1_i) = kernel_of_k(q1_i, q2_i)
end do
end do
!! ----------------------------------------------------------------------------------------
end subroutine interpolate_kernel
!! ###############################################################################################################
!! | |
!! | INTERPOLATE_DKERNEL_DK |
!! |________________________|
subroutine interpolate_Dkernel_Dk(k, dkernel_of_dk)
implicit none
real(dp), intent(in) :: k
real(dp), intent(inout) :: dkernel_of_dk(Nqs,Nqs)
integer :: q1_i, q2_i, k_i
real(dp) :: A, B, dAdk, dBdk, dCdk, dDdk
!! -------------------------------------------------------------------------------------
if ( k >= Nr_points*dk ) then
write(*,'(A,F10.5,A,F10.5)') "k = ", k, " k_max = ",Nr_points*dk
call errore('interpolate kernel', 'k value requested is out of range',1)
end if
!! -------------------------------------------------------------------------------------
dkernel_of_dk = 0.0D0
k_i = int(k/dk)
!! ----------------------------------------------------------------------------------------
A = (dk*(k_i+1.0D0) - k)/dk
B = (k - dk*k_i)/dk
dAdk = -1.0D0/dk
dBdk = 1.0D0/dk
dCdk = -((3*A**2 -1.0D0)/6.0D0)*dk
dDdk = ((3*B**2 -1.0D0)/6.0D0)*dk
do q1_i = 1, Nqs
do q2_i = 1, q1_i
dkernel_of_dk(q1_i, q2_i) = dAdk*kernel(k_i, q1_i, q2_i) + dBdk*kernel(k_i+1, q1_i, q2_i) &
+ dCdk*d2phi_dk2(k_i, q1_i, q2_i) + dDdk*d2phi_dk2(k_i+1, q1_i, q2_i)
dkernel_of_dk(q2_i, q1_i) = dkernel_of_dk(q1_i, q2_i)
end do
end do
!! ----------------------------------------------------------------------------------------
end subroutine interpolate_Dkernel_Dk
!! #################################################################################################
!! | |
!! | thetas_to_uk |
!! |______________|
subroutine thetas_to_uk(thetas, u_vdW)
USE gvect, ONLY : gg, ngm, igtongl, gl, ngl, gstart
USE fft_base, ONLY : dfftp
USE cell_base, ONLY : tpiba, omega
complex(dp), intent(in) :: thetas(:,:)
complex(dp), intent(out) :: u_vdW(:,:)
real(dp), allocatable :: kernel_of_k(:,:)
real(dp) :: g
integer :: last_g, g_i, q1_i, q2_i, count, i_grid
complex(dp) :: theta(Nqs)
!! -------------------------------------------------------------------------------------------------
allocate( kernel_of_k(Nqs, Nqs) )
u_vdW(:,:) = CMPLX(0.0_DP,0.0_DP, kind=dp)
last_g = -1
do g_i = 1, ngm
if ( igtongl(g_i) .ne. last_g) then
g = sqrt(gl(igtongl(g_i))) * tpiba
call interpolate_kernel(g, kernel_of_k)
last_g = igtongl(g_i)
end if
theta = thetas(dfftp%nl(g_i),:)
do q2_i = 1, Nqs
do q1_i = 1, Nqs
u_vdW(dfftp%nl(g_i),q2_i) = u_vdW(dfftp%nl(g_i),q2_i) + kernel_of_k(q2_i,q1_i)*theta(q1_i)
end do
end do
end do
if (gamma_only) u_vdW(dfftp%nlm(:),:) = CONJG(u_vdW(dfftp%nl(:),:))
deallocate( kernel_of_k )
!! -----------------------------------------------------------------------------------------------
end subroutine thetas_to_uk
!! #################################################################################################
!! | |
!! | VDW_ENERGY |
!! |_____________|
subroutine vdW_energy(thetas, vdW_xc_energy)
USE gvect, ONLY : gg, ngm, igtongl, gl, ngl, gstart
USE fft_base, ONLY : dfftp
USE cell_base, ONLY : tpiba, omega
complex(dp), intent(inout) :: thetas(:,:)
real(dp), intent(out) :: vdW_xc_energy
real(dp), allocatable :: kernel_of_k(:,:)
real(dp) :: g
integer :: last_g
integer :: g_i, q1_i, q2_i, count, i_grid
complex(dp) :: theta(Nqs), thetam(Nqs), theta_g(Nqs)
real(dp) :: G0_term, G_multiplier
complex(dp), allocatable :: u_vdw(:,:)
vdW_xc_energy = 0.0D0
allocate (u_vdW(dfftp%nnr,Nqs))
u_vdW(:,:) = CMPLX(0.0_DP,0.0_DP, kind=dp)
allocate( kernel_of_k(Nqs, Nqs) )
!!
!! Here we should use gstart,ngm but all the cases are handeld by conditionals inside the loop
!!
G_multiplier = 1.0D0
if (gamma_only) G_multiplier = 2.0D0
last_g = -1
do g_i = 1, ngm
if ( igtongl(g_i) .ne. last_g) then
g = sqrt(gl(igtongl(g_i))) * tpiba
call interpolate_kernel(g, kernel_of_k)
last_g = igtongl(g_i)
end if
theta = thetas(dfftp%nl(g_i),:)
do q2_i = 1, Nqs
do q1_i = 1, Nqs
u_vdW(dfftp%nl(g_i),q2_i) = u_vdW(dfftp%nl(g_i),q2_i) + kernel_of_k(q2_i,q1_i)*theta(q1_i)
end do
vdW_xc_energy = vdW_xc_energy + G_multiplier * (u_vdW(dfftp%nl(g_i),q2_i)*conjg(theta(q2_i)))
end do
if (g_i < gstart ) vdW_xc_energy = vdW_xc_energy / G_multiplier
end do
if (gamma_only) u_vdW(dfftp%nlm(:),:) = CONJG(u_vdW(dfftp%nl(:),:))
!! Final value
vdW_xc_energy = 0.5D0 * omega * vdW_xc_energy
deallocate( kernel_of_k )
thetas(:,:) = u_vdW(:,:)
deallocate (u_vdW)
!! ---------------------------------------------------------------------------------------------------
end subroutine vdW_energy
!! ###############################################################################################################
!! | |
!! | GET_POTENTIAL |
!! |_________________|
subroutine get_potential(q0, dq0_drho, dq0_dgradrho, total_rho, gradient_rho, u_vdW, potential)
use gvect, ONLY : g
USE fft_base, ONLY : dfftp
USE cell_base, ONLY : alat, tpiba
real(dp), intent(in) :: q0(:), gradient_rho(:,:)
real(dp), intent(in) :: dq0_drho(:), dq0_dgradrho(:)
real(dp), intent(in) :: total_rho(:)
complex(dp), intent(in) :: u_vdW(:,:)
real(dp), intent(inout) :: potential(:)
real(dp), allocatable, save :: d2y_dx2(:,:)
integer :: i_grid, P_i,icar
integer :: q_low, q_hi, q
real(dp) :: dq, a, b, c, d, e, f
real(dp) :: y(Nqs), dP_dq0, P
!
real(dp), allocatable ::h_prefactor(:)
complex(dp), allocatable ::h(:)
real(dp) :: dtheta_dn, dtheta_dgradn
real(dp) :: const
allocate (h_prefactor(dfftp%nnr),h(dfftp%nnr))
const = 1.0D0 / (3.0D0 * b_value**(3.0D0/2.0D0) * pi**(5.0D0/4.0D0) )
potential = 0.0D0
h_prefactor = 0.0D0
!! -------------------------------------------------------------------------------------------
!! Get the second derivatives of the P_i functions for interpolation
!! ---------------------------------------------------------------------------------------------
if (.not. allocated( d2y_dx2) ) then
allocate( d2y_dx2(Nqs, Nqs) )
call initialize_spline_interpolation(q_mesh, d2y_dx2(:,:))
end if
!! ---------------------------------------------------------------------------------------------
do i_grid = 1,dfftp%nnr
q_low = 1
q_hi = Nqs
! Figure out which bin our value of q0 is in in the q_mesh
! +++++++++++++++++++++++++++++++++++++++++++++++++++++++++
do while ( (q_hi - q_low) > 1)
q = int((q_hi + q_low)/2)
if (q_mesh(q) > q0(i_grid)) then
q_hi = q
else
q_low = q
end if
end do
if (q_hi == q_low) call errore('get_potential','qhi == qlow',1)
! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
dq = q_mesh(q_hi) - q_mesh(q_low)
a = (q_mesh(q_hi) - q0(i_grid))/dq
b = (q0(i_grid) - q_mesh(q_low))/dq
c = (a**3 - a)*dq**2/6.0D0
d = (b**3 - b)*dq**2/6.0D0
e = (3.0D0*a**2 - 1.0D0)*dq/6.0D0
f = (3.0D0*b**2 - 1.0D0)*dq/6.0D0
do P_i = 1, Nqs
y = 0.0D0
y(P_i) = 1.0D0
dP_dq0 = (y(q_hi) - y(q_low))/dq - e*d2y_dx2(P_i,q_low) + f*d2y_dx2(P_i,q_hi)
P = a*y(q_low) + b*y(q_hi) + c*d2y_dx2(P_i,q_low) + d*d2y_dx2(P_i,q_hi)
!! IF THE CHARGE DENSITY IS NEGATIVE WE PUT POTENTIAL = 0, OUTSIDE THE SUBROUTINE WE ADD BETA.
if (total_rho(i_grid) > epsr) then
dtheta_dn = const * (3.0D0/4.0D0) / (total_rho(i_grid)**(1.0D0/4.0D0)) * P + &
const * total_rho(i_grid)**(3.0D0/4.0D0) * dP_dq0 * dq0_drho(i_grid)
dtheta_dgradn = const * total_rho(i_grid)**(3.0D0/4.0D0) * dP_dq0 * dq0_dgradrho(i_grid)
potential(i_grid) = potential(i_grid) + u_vdW(i_grid,P_i)* dtheta_dn
if (q0(i_grid) .ne. q_mesh(Nqs)) then
h_prefactor(i_grid) = h_prefactor(i_grid) + u_vdW(i_grid,P_i)* dtheta_dgradn
end if
end if
end do
end do
do icar = 1,3
h(:) = CMPLX( h_prefactor(:)*gradient_rho(icar,:), 0.0_DP, kind=dp)
CALL fwfft ('Rho', h, dfftp)
h(dfftp%nl(:)) = CMPLX(0.0_DP,1.0_DP,kind=dp)*tpiba*g(icar,:)*h(dfftp%nl(:))
if (gamma_only) h(dfftp%nlm(:)) = CONJG(h(dfftp%nl(:)))
CALL invfft ('Rho', h, dfftp)
potential(:) = potential(:) - REAL(h(:))
end do
!! ------------------------------------------------------------------------------------------------------------------------
deallocate (h_prefactor,h)
end subroutine get_potential
!! ###############################################################################################################
!! | |
!! | generate_kernel |
!! |___________________|
SUBROUTINE generate_kernel
implicit none
integer :: q1_i, q2_i, r_i ! Indexing variables
real(dp) :: d1, d2 ! Intermediate values
kernel = 0.0D0
d2phi_dk2 = 0.0D0
do q1_i = 1, Nqs
do q2_i = 1, q1_i
do r_i = 1, Nr_points
d1 = q_mesh(q1_i) * (dr * r_i)**2 ! Different definition of d1 and d2 for vv10
d2 = q_mesh(q2_i) * (dr * r_i)**2 ! Different definition of d1 and d2 for vv10
kernel(r_i, q1_i, q2_i) = -24.0D0 / ( ( d1+1.0 ) * ( d2+1.0 ) * ( d1+d2+2.0 ) )
end do
call radial_fft( kernel(:, q1_i, q2_i) )
call set_up_splines( kernel(:, q1_i, q2_i), d2phi_dk2(:, q1_i, q2_i) )
kernel (:, q2_i, q1_i) = kernel (:, q1_i, q2_i)
d2phi_dk2 (:, q2_i, q1_i) = d2phi_dk2(:, q1_i, q2_i)
end do
end do
END SUBROUTINE generate_kernel
!! ###############################################################################################################
!! | |
!! | radial_fft |
!! |______________|
SUBROUTINE radial_fft(phi)
REAL(DP), INTENT(INOUT) :: phi(0:Nr_points)
REAL(DP) :: phi_k(0:Nr_points)
INTEGER :: k_i, r_i
REAL(DP) :: r, k
phi_k = 0.0D0
DO r_i = 1, Nr_points
r = r_i * dr
phi_k(0) = phi_k(0) + phi(r_i)*r**2
END DO
phi_k(0) = phi_k(0) - 0.5D0 * (Nr_points*dr)**2 * phi(Nr_points)
DO k_i = 1, Nr_points
k = k_i * dk
DO r_i = 1, Nr_points
r = r_i * dr
phi_k(k_i) = phi_k(k_i) + phi(r_i) * r * SIN(k*r) / k
END DO
phi_k(k_i) = phi_k(k_i) - 0.5D0 * phi(Nr_points) * r * SIN(k*r) / k
END DO
phi = 4.0D0 * pi * phi_k * dr
END SUBROUTINE radial_fft
!! ###############################################################################################################
!! | |
!! | set_up_splines |
!! |__________________|
SUBROUTINE set_up_splines(phi, D2)
REAL(DP), INTENT(IN) :: phi(0:Nr_points)
REAL(DP), INTENT(INOUT) :: D2(0:Nr_points)
REAL(DP), ALLOCATABLE :: temp_array(:)
REAL(DP) :: temp_1, temp_2
INTEGER :: r_i
ALLOCATE( temp_array(0:Nr_points) )
D2 = 0
temp_array = 0
DO r_i = 1, Nr_points - 1
temp_1 = DBLE(r_i - (r_i - 1))/DBLE( (r_i + 1) - (r_i - 1) )
temp_2 = temp_1 * D2(r_i-1) + 2.0D0
D2(r_i) = (temp_1 - 1.0D0)/temp_2
temp_array(r_i) = ( phi(r_i+1) - phi(r_i))/DBLE( dk*((r_i+1) - r_i) ) - &
( phi(r_i) - phi(r_i-1))/DBLE( dk*(r_i - (r_i-1)) )
temp_array(r_i) = (6.0D0*temp_array(r_i)/DBLE( dk*((r_i+1) - (r_i-1)) )-&
temp_1*temp_array(r_i-1))/temp_2
END DO
D2(Nr_points) = 0.0D0
DO r_i = Nr_points-1, 0, -1
D2(r_i) = D2(r_i)*D2(r_i+1) + temp_array(r_i)
END DO
DEALLOCATE( temp_array )
END SUBROUTINE set_up_splines
END MODULE rVV10
|