1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 2019.2 (Released June 5, 2019) -->
<HTML lang="EN">
<HEAD>
<TITLE>4.5 Understanding the time report</TITLE>
<META NAME="description" CONTENT="4.5 Understanding the time report">
<META NAME="keywords" CONTENT="user_guide">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=utf-8">
<META NAME="viewport" CONTENT="width=device-width, initial-scale=1.0">
<META NAME="Generator" CONTENT="LaTeX2HTML v2019.2">
<LINK REL="STYLESHEET" HREF="user_guide.css">
<LINK REL="next" HREF="node20.html">
<LINK REL="previous" HREF="node18.html">
<LINK REL="next" HREF="node20.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A
HREF="node20.html">
<IMG WIDTH="37" HEIGHT="24" ALT="next" SRC="next.png"></A>
<A
HREF="node14.html">
<IMG WIDTH="26" HEIGHT="24" ALT="up" SRC="up.png"></A>
<A
HREF="node18.html">
<IMG WIDTH="63" HEIGHT="24" ALT="previous" SRC="prev.png"></A>
<A ID="tex2html201"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALT="contents" SRC="contents.png"></A>
<BR>
<B> Next:</B> <A
HREF="node20.html">4.6 Restarting</A>
<B> Up:</B> <A
HREF="node14.html">4 Performances</A>
<B> Previous:</B> <A
HREF="node18.html">4.4 Parallelization issues</A>
<B> <A ID="tex2html202"
HREF="node1.html">Contents</A></B>
<BR>
<BR>
<!--End of Navigation Panel-->
<!--Table of Child-Links-->
<A ID="CHILD_LINKS"><STRONG>Subsections</STRONG></A>
<UL>
<LI><A ID="tex2html203"
HREF="node19.html#SECTION00055100000000000000">4.5.1 Serial execution</A>
<LI><A ID="tex2html204"
HREF="node19.html#SECTION00055200000000000000">4.5.2 Parallel execution</A>
<UL>
<LI><A ID="tex2html205"
HREF="node19.html#SECTION00055210000000000000">4.5.2.1 Quick estimate of parallelization parameters</A>
<LI><A ID="tex2html206"
HREF="node19.html#SECTION00055220000000000000">4.5.2.2 Typical symptoms of bad/inadequate parallelization</A>
</UL></UL>
<!--End of Table of Child-Links-->
<HR>
<H2><A ID="SECTION00055000000000000000">
4.5 Understanding the time report</A>
</H2>
<P>
The time report printed at the end of a <TT>pw.x</TT> run contains a lot of useful
information that can be used to understand bottlenecks and improve
performances.
<P>
<H3><A ID="SECTION00055100000000000000">
4.5.1 Serial execution</A>
</H3>
The following applies to calculations taking a sizable amount of time
(at least minutes): for short calculations (seconds), the time spent in
the various initializations dominates. Any discrepancy with the following
picture signals some anomaly.
<P>
<UL>
<LI>For a typical job with norm-conserving PPs, the total (wall) time is mostly
spent in routine "electrons", calculating the self-consistent solution.
</LI>
<LI>Most of the time spent in "electrons" is used by routine "c_bands",
calculating Kohn-Sham states. "sum_band" (calculating the charge density),
"v_of_rho" (calculating the potential), "mix_rho" (charge density mixing)
should take a small fraction of the time.
</LI>
<LI>Most of the time spent in "c_bands" is used by routines "cegterg" (k-points)
or "regterg" (Gamma-point only), performing iterative diagonalization of
the Kohn-Sham Hamiltonian in the PW basis set.
</LI>
<LI>Most of the time spent in "*egterg" is used by routine "h_psi",
calculating <I>Hψ</I> products. "cdiaghg" (k-points) or "rdiaghg" (Gamma-only),
performing subspace diagonalization, should take only a small fraction.
</LI>
<LI>Among the "general routines", most of the time is spent in FFT on Kohn-Sham
states: "fftw", and to a smaller extent in other FFTs, "fft" and "ffts",
and in "calbec", calculating <!-- MATH
$\langle\psi|\beta\rangle$
-->
〈<I>ψ</I>| <I>β</I>〉 products.
</LI>
<LI>Forces and stresses typically take a fraction of the order of 10 to 20%
of the total time.
</LI>
</UL>
For PAW and Ultrasoft PP, you will see a larger contribution by "sum_band"
and a nonnegligible "newd" contribution to the time spent in "electrons",
but the overall picture is unchanged. You may drastically reduce the
overhead of Ultrasoft PPs by using input option "tqr=.true.".
<P>
<H3><A ID="SECTION00055200000000000000">
4.5.2 Parallel execution</A>
</H3>
<P>
The various parallelization levels should be used wisely in order to
achieve good results. Let us summarize the effects of them on CPU:
<UL>
<LI>Parallelization on FFT speeds up (with varying efficiency) almost
all routines, with the notable exception of "cdiaghg" and "rdiaghg".
</LI>
<LI>Parallelization on k-points speeds up (almost linearly) "c_bands" and
called routines; speeds up partially "sum_band"; does not speed up
at all "v_of_rho", "newd", "mix_rho".
</LI>
<LI>Linear-algebra parallelization speeds up (not always) "cdiaghg" and "rdiaghg"
</LI>
<LI>"task-group" parallelization speeds up "fftw"
</LI>
<LI>OpenMP parallelization speeds up "fftw", plus selected parts of the
calculation, plus (depending on the availability of OpenMP-aware
libraries) some linear algebra operations
</LI>
</UL>
and on RAM:
<UL>
<LI>Parallelization on FFT distributes most arrays across processors
(i.e. all G-space and R-spaces arrays) but not all of them (in
particular, not subspace Hamiltonian and overlap matrices)
</LI>
<LI>Linear-algebra parallelization also distributes subspace Hamiltonian
and overlap matrices.
</LI>
<LI>All other parallelization levels do not distribute any memory
</LI>
</UL>
In an ideally parallelized run, you should observe the following:
<UL>
<LI>CPU and wall time do not differ by much
</LI>
<LI>Time usage is still dominated by the same routines as for the serial run
</LI>
<LI>Routine "fft_scatter" (called by parallel FFT) takes a sizable part of
the time spent in FFTs but does not dominate it.
</LI>
</UL>
<P>
<H4><A ID="SECTION00055210000000000000">
4.5.2.1 Quick estimate of parallelization parameters</A>
</H4>
<P>
You need to know
<UL>
<LI>the number of k-points, <I>N</I><SUB>k</SUB>
</LI>
<LI>the third dimension of the (smooth) FFT grid, <I>N</I><SUB>3</SUB>
</LI>
<LI>the number of Kohn-Sham states, <I>M</I>
</LI>
</UL>
These data allow to set bounds on parallelization:
<UL>
<LI>k-point parallelization is limited to <I>N</I><SUB>k</SUB> processor pools:
<TT>-nk Nk</TT>
</LI>
<LI>FFT parallelization shouldn't exceed <I>N</I><SUB>3</SUB> processors, i.e. if you
run with <TT>-nk Nk</TT>, use <!-- MATH
$N=N_k\times N_3$
-->
<I>N</I> = <I>N</I><SUB>k</SUB>×<I>N</I><SUB>3</SUB> MPI processes at most (<TT>mpirun -np N ...</TT>)
</LI>
<LI>Unless <I>M</I> is a few hundreds or more, don't bother using linear-algebra
parallelization
</LI>
</UL>
You will need to experiment a bit to find the best compromise. In order
to have good load balancing among MPI processes, the number of k-point
pools should be an integer divisor of <I>N</I><SUB>k</SUB>; the number of processors for
FFT parallelization should be an integer divisor of <I>N</I><SUB>3</SUB>.
<P>
<H4><A ID="SECTION00055220000000000000">
4.5.2.2 Typical symptoms of bad/inadequate parallelization</A>
</H4>
<P>
<UL>
<LI><EM>a large fraction of time is spent in "v_of_rho", "newd", "mix_rho"</EM>, or
<BR><EM>the time doesn't scale well or doesn't scale at all by increasing the
number of processors for k-point parallelization.</EM> Solution:
<UL>
<LI>use (also) FFT parallelization if possible
</LI>
</UL>
</LI>
<LI><EM>a disproportionate time is spent in "cdiaghg"/"rdiaghg".</EM> Solutions:
<UL>
<LI>use (also) k-point parallelization if possible
</LI>
<LI>use linear-algebra parallelization, with scalapack if possible.
</LI>
</UL>
</LI>
<LI><EM>a disproportionate time is spent in "fft_scatter"</EM>, or
<EM>in "fft_scatter" the difference between CPU and wall time is large.</EM> Solutions:
<UL>
<LI>if you do not have fast (better than Gigabit ethernet) communication
hardware, do not try FFT parallelization on more than 4 or 8 procs.
</LI>
<LI>use (also) k-point parallelization if possible
</LI>
</UL>
</LI>
<LI><EM>the time doesn't scale well or doesn't scale at all by increasing the
number of processors for FFT parallelization.</EM>
Solutions:
<UL>
<LI>use "task groups": try command-line option <TT>-ntg 4</TT> or
<TT>-ntg 8</TT>. This may improve your scaling.
</LI>
</UL>
</LI>
</UL>
<P>
<HR>
<!--Navigation Panel-->
<A
HREF="node20.html">
<IMG WIDTH="37" HEIGHT="24" ALT="next" SRC="next.png"></A>
<A
HREF="node14.html">
<IMG WIDTH="26" HEIGHT="24" ALT="up" SRC="up.png"></A>
<A
HREF="node18.html">
<IMG WIDTH="63" HEIGHT="24" ALT="previous" SRC="prev.png"></A>
<A ID="tex2html201"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALT="contents" SRC="contents.png"></A>
<BR>
<B> Next:</B> <A
HREF="node20.html">4.6 Restarting</A>
<B> Up:</B> <A
HREF="node14.html">4 Performances</A>
<B> Previous:</B> <A
HREF="node18.html">4.4 Parallelization issues</A>
<B> <A ID="tex2html202"
HREF="node1.html">Contents</A></B>
<!--End of Navigation Panel-->
</BODY>
</HTML>
|