1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
|
Program XSpectra v.5.2.0 (svn rev. 11610M) starts on 20Aug2015 at 16:31:53
This program is part of the open-source Quantum ESPRESSO suite
for quantum simulation of materials; please cite
"P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009);
URL http://www.quantum-espresso.org",
in publications or presentations arising from this work. More details at
http://www.quantum-espresso.org/quote
Parallel version (MPI), running on 1 processors
-------------------------------------------------------------------------
__ ____ _
\ \/ / _\_ __ ___ ___| |_ _ __ __ _
\ /\ \| '_ \ / _ \/ __| __| '__/ _` |
/ \_\ \ |_) | __/ (__| |_| | | (_| |
/_/\_\__/ .__/ \___|\___|\__|_| \__,_|
|_|
In publications arising from the use of XSpectra, please cite:
- O. Bunau and M. Calandra,
Phys. Rev. B 87, 205105 (2013)
- Ch. Gougoussis, M. Calandra, A. P. Seitsonen, F. Mauri,
Phys. Rev. B 80, 075102 (2009)
- M. Taillefumier, D. Cabaret, A. M. Flank, and F. Mauri,
Phys. Rev. B 66, 195107 (2002)
-------------------------------------------------------------------------
Reading input_file
-------------------------------------------------------------------------
xepsilon [crystallographic coordinates]: 1.000000 0.000000 0.000000
xonly_plot: FALSE
=> complete calculation: Lanczos + spectrum plot
filecore (core-wavefunction file): C.wfc
main plot parameters:
cut_occ_states: FALSE
gamma_mode: constant
-> using xgamma [eV]: 0.10
xemin [eV]: 0.00
xemax [eV]: 10.00
xnepoint: 100
energy zero automatically set to the Fermi level
Fermi level determined from SCF save directory (diamond.save)
NB: For an insulator (SCF calculated with occupations="fixed")
the Fermi level will be placed at the position of HOMO.
WARNING: variable ef_r is obsolete
-------------------------------------------------------------------------
Reading SCF save directory: diamond.save
-------------------------------------------------------------------------
Reading data from directory:
/Users/calandra/Pw/SVN_9_7_2015/espresso/XSpectra/examples/results/tmp/diamond.save
Info: using nr1, nr2, nr3 values from input
Info: using nr1, nr2, nr3 values from input
IMPORTANT: XC functional enforced from input :
Exchange-correlation = SLA PW PBX PBC ( 1 4 3 4 0 0)
Any further DFT definition will be discarded
Please, verify this is what you really want
G-vector sticks info
--------------------
sticks: dense smooth PW G-vecs: dense smooth PW
Sum 577 577 185 10443 10443 1863
highest occupied level (ev): 13.3353
-------------------------------------------------------------------------
Getting the Fermi energy
-------------------------------------------------------------------------
From SCF save directory:
ehomo [eV]: 13.3353 (highest occupied level)
No LUMO value in SCF calculation
ef [eV]: 13.3353
-> ef (in eV) will be written in x_save_file
-------------------------------------------------------------------------
Energy zero of the spectrum
-------------------------------------------------------------------------
-> ef will be used as energy zero of the spectrum
G-vector sticks info
--------------------
sticks: dense smooth PW G-vecs: dense smooth PW
Sum 577 577 213 10443 10443 2205
bravais-lattice index = 1
lattice parameter (alat) = 6.7403 a.u.
unit-cell volume = 306.2169 (a.u.)^3
number of atoms/cell = 8
number of atomic types = 2
number of electrons = 32.00
number of Kohn-Sham states= 16
kinetic-energy cutoff = 40.0000 Ry
charge density cutoff = 160.0000 Ry
Exchange-correlation = SLA PW PBX PBC ( 1 4 3 4 0 0)
celldm(1)= 6.740256 celldm(2)= 0.000000 celldm(3)= 0.000000
celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000
crystal axes: (cart. coord. in units of alat)
a(1) = ( 1.000000 0.000000 0.000000 )
a(2) = ( 0.000000 1.000000 0.000000 )
a(3) = ( 0.000000 0.000000 1.000000 )
reciprocal axes: (cart. coord. in units 2 pi/alat)
b(1) = ( 1.000000 0.000000 0.000000 )
b(2) = ( 0.000000 1.000000 0.000000 )
b(3) = ( 0.000000 0.000000 1.000000 )
PseudoPot. # 1 for C read from file:
/Users/calandra/Pw/SVN_9_7_2015/espresso/XSpectra/examples/pseudo/C_PBE_TM_2pj.UPF
MD5 check sum: e8858615eb0a4b79f05373b4879fdf67
Pseudo is Norm-conserving, Zval = 4.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 1073 points, 1 beta functions with:
l(1) = 0
PseudoPot. # 2 for C read from file:
/Users/calandra/Pw/SVN_9_7_2015/espresso/XSpectra/examples/pseudo/C_PBE_TM_2pj.UPF
MD5 check sum: e8858615eb0a4b79f05373b4879fdf67
Pseudo is Norm-conserving, Zval = 4.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 1073 points, 1 beta functions with:
l(1) = 0
atomic species valence mass pseudopotential
C_h 4.00 12.00000 C ( 1.00)
C 4.00 12.00000 C ( 1.00)
24 Sym. Ops. (no inversion) found
Cartesian axes
site n. atom positions (alat units)
1 C_h tau( 1) = ( 0.0000000 0.0000000 0.0000000 )
2 C tau( 2) = ( 0.0000000 0.5000000 0.5000000 )
3 C tau( 3) = ( 0.5000000 0.0000000 0.5000000 )
4 C tau( 4) = ( 0.5000000 0.5000000 0.0000000 )
5 C tau( 5) = ( 0.7500000 0.7500000 0.2500000 )
6 C tau( 6) = ( 0.7500000 0.2500000 0.7500000 )
7 C tau( 7) = ( 0.2500000 0.7500000 0.7500000 )
8 C tau( 8) = ( 0.2500000 0.2500000 0.2500000 )
number of k points= 64
cart. coord. in units 2pi/alat
k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0312500
k( 2) = ( 0.0000000 0.0000000 0.2500000), wk = 0.0312500
k( 3) = ( 0.0000000 0.0000000 0.5000000), wk = 0.0312500
k( 4) = ( 0.0000000 0.0000000 0.7500000), wk = 0.0312500
k( 5) = ( 0.0000000 0.2500000 0.0000000), wk = 0.0312500
k( 6) = ( 0.0000000 0.2500000 0.2500000), wk = 0.0312500
k( 7) = ( 0.0000000 0.2500000 0.5000000), wk = 0.0312500
k( 8) = ( 0.0000000 0.2500000 0.7500000), wk = 0.0312500
k( 9) = ( 0.0000000 0.5000000 0.0000000), wk = 0.0312500
k( 10) = ( 0.0000000 0.5000000 0.2500000), wk = 0.0312500
k( 11) = ( 0.0000000 0.5000000 0.5000000), wk = 0.0312500
k( 12) = ( 0.0000000 0.5000000 0.7500000), wk = 0.0312500
k( 13) = ( 0.0000000 0.7500000 0.0000000), wk = 0.0312500
k( 14) = ( 0.0000000 0.7500000 0.2500000), wk = 0.0312500
k( 15) = ( 0.0000000 0.7500000 0.5000000), wk = 0.0312500
k( 16) = ( 0.0000000 0.7500000 0.7500000), wk = 0.0312500
k( 17) = ( 0.2500000 0.0000000 0.0000000), wk = 0.0312500
k( 18) = ( 0.2500000 0.0000000 0.2500000), wk = 0.0312500
k( 19) = ( 0.2500000 0.0000000 0.5000000), wk = 0.0312500
k( 20) = ( 0.2500000 0.0000000 0.7500000), wk = 0.0312500
k( 21) = ( 0.2500000 0.2500000 0.0000000), wk = 0.0312500
k( 22) = ( 0.2500000 0.2500000 0.2500000), wk = 0.0312500
k( 23) = ( 0.2500000 0.2500000 0.5000000), wk = 0.0312500
k( 24) = ( 0.2500000 0.2500000 0.7500000), wk = 0.0312500
k( 25) = ( 0.2500000 0.5000000 0.0000000), wk = 0.0312500
k( 26) = ( 0.2500000 0.5000000 0.2500000), wk = 0.0312500
k( 27) = ( 0.2500000 0.5000000 0.5000000), wk = 0.0312500
k( 28) = ( 0.2500000 0.5000000 0.7500000), wk = 0.0312500
k( 29) = ( 0.2500000 0.7500000 0.0000000), wk = 0.0312500
k( 30) = ( 0.2500000 0.7500000 0.2500000), wk = 0.0312500
k( 31) = ( 0.2500000 0.7500000 0.5000000), wk = 0.0312500
k( 32) = ( 0.2500000 0.7500000 0.7500000), wk = 0.0312500
k( 33) = ( 0.5000000 0.0000000 0.0000000), wk = 0.0312500
k( 34) = ( 0.5000000 0.0000000 0.2500000), wk = 0.0312500
k( 35) = ( 0.5000000 0.0000000 0.5000000), wk = 0.0312500
k( 36) = ( 0.5000000 0.0000000 0.7500000), wk = 0.0312500
k( 37) = ( 0.5000000 0.2500000 0.0000000), wk = 0.0312500
k( 38) = ( 0.5000000 0.2500000 0.2500000), wk = 0.0312500
k( 39) = ( 0.5000000 0.2500000 0.5000000), wk = 0.0312500
k( 40) = ( 0.5000000 0.2500000 0.7500000), wk = 0.0312500
k( 41) = ( 0.5000000 0.5000000 0.0000000), wk = 0.0312500
k( 42) = ( 0.5000000 0.5000000 0.2500000), wk = 0.0312500
k( 43) = ( 0.5000000 0.5000000 0.5000000), wk = 0.0312500
k( 44) = ( 0.5000000 0.5000000 0.7500000), wk = 0.0312500
k( 45) = ( 0.5000000 0.7500000 0.0000000), wk = 0.0312500
k( 46) = ( 0.5000000 0.7500000 0.2500000), wk = 0.0312500
k( 47) = ( 0.5000000 0.7500000 0.5000000), wk = 0.0312500
k( 48) = ( 0.5000000 0.7500000 0.7500000), wk = 0.0312500
k( 49) = ( 0.7500000 0.0000000 0.0000000), wk = 0.0312500
k( 50) = ( 0.7500000 0.0000000 0.2500000), wk = 0.0312500
k( 51) = ( 0.7500000 0.0000000 0.5000000), wk = 0.0312500
k( 52) = ( 0.7500000 0.0000000 0.7500000), wk = 0.0312500
k( 53) = ( 0.7500000 0.2500000 0.0000000), wk = 0.0312500
k( 54) = ( 0.7500000 0.2500000 0.2500000), wk = 0.0312500
k( 55) = ( 0.7500000 0.2500000 0.5000000), wk = 0.0312500
k( 56) = ( 0.7500000 0.2500000 0.7500000), wk = 0.0312500
k( 57) = ( 0.7500000 0.5000000 0.0000000), wk = 0.0312500
k( 58) = ( 0.7500000 0.5000000 0.2500000), wk = 0.0312500
k( 59) = ( 0.7500000 0.5000000 0.5000000), wk = 0.0312500
k( 60) = ( 0.7500000 0.5000000 0.7500000), wk = 0.0312500
k( 61) = ( 0.7500000 0.7500000 0.0000000), wk = 0.0312500
k( 62) = ( 0.7500000 0.7500000 0.2500000), wk = 0.0312500
k( 63) = ( 0.7500000 0.7500000 0.5000000), wk = 0.0312500
k( 64) = ( 0.7500000 0.7500000 0.7500000), wk = 0.0312500
Dense grid: 10443 G-vectors FFT dimensions: ( 27, 27, 27)
Largest allocated arrays est. size (Mb) dimensions
Kohn-Sham Wavefunctions 0.33 Mb ( 1357, 16)
NL pseudopotentials 0.17 Mb ( 1357, 8)
Each V/rho on FFT grid 0.30 Mb ( 19683)
Each G-vector array 0.08 Mb ( 10443)
G-vector shells 0.00 Mb ( 156)
Largest temporary arrays est. size (Mb) dimensions
Auxiliary wavefunctions 0.33 Mb ( 1357, 16)
Each subspace H/S matrix 0.00 Mb ( 16, 16)
Each <psi_i|beta_j> matrix 0.00 Mb ( 8, 16)
The potential is recalculated from file :
/Users/calandra/Pw/SVN_9_7_2015/espresso/XSpectra/examples/results/tmp/diamond.save/charge-density.dat
Starting wfc are 64 atomic wfcs
Approx. ram memory needed per proc in MB = 0.065136
-------------------------------------------------------------------------
Reading core wavefunction file for the absorbing atom
-------------------------------------------------------------------------
C.wfc successfully read
-------------------------------------------------------------------------
Attributing the PAW radii
for the absorbing atom [units: Bohr radius]
-------------------------------------------------------------------------
PAW proj 1: r_paw(l= 0)= 2.25 (1.5*r_cut)
PAW proj 2: r_paw(l= 0)= 2.25 (1.5*r_cut)
PAW proj 3: r_paw(l= 1)= 2.25 (1.5*r_cut)
PAW proj 4: r_paw(l= 1)= 2.25 (1.5*r_cut)
NB: The calculation will not necessary use all these r_paw values.
- For a edge in the electric-dipole approximation,
only the r_paw(l=1) values are used.
- For a K edge in the electric-quadrupole approximation,
only the r_paw(l=2) values are used.
- For a L2 or L3 edge in the electric-quadrupole approximation,
all projectors (s, p and d) are used.
fermi_level : 0.71s CPU 0.78s WALL ( 1 calls)
-------------------------------------------------------------------------
END JOB XSpectra
-------------------------------------------------------------------------
|