File: diamond.xspectra_fermi.out

package info (click to toggle)
espresso 6.7-3
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 311,092 kB
  • sloc: f90: 447,429; ansic: 52,566; sh: 40,631; xml: 37,561; tcl: 20,077; lisp: 5,923; makefile: 4,502; python: 4,379; perl: 1,219; cpp: 761; fortran: 618; java: 568; awk: 128
file content (285 lines) | stat: -rw-r--r-- 14,205 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285

     Program XSpectra v.5.2.0 (svn rev. 11610M) starts on 20Aug2015 at 16:31:53 

     This program is part of the open-source Quantum ESPRESSO suite
     for quantum simulation of materials; please cite
         "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009);
          URL http://www.quantum-espresso.org", 
     in publications or presentations arising from this work. More details at
     http://www.quantum-espresso.org/quote

     Parallel version (MPI), running on     1 processors

     -------------------------------------------------------------------------
                    __  ____                 _
                    \ \/ / _\_ __   ___  ___| |_ _ __ __ _
                     \  /\ \| '_ \ / _ \/ __| __| '__/ _` |
                     /  \_\ \ |_) |  __/ (__| |_| | | (_| |
                    /_/\_\__/ .__/ \___|\___|\__|_|  \__,_|
                            |_|

     In publications arising from the use of XSpectra, please cite:
      - O. Bunau and M. Calandra,
        Phys. Rev. B 87, 205105 (2013)
      - Ch. Gougoussis, M. Calandra, A. P. Seitsonen, F. Mauri,
        Phys. Rev. B 80, 075102 (2009)
      - M. Taillefumier, D. Cabaret, A. M. Flank, and F. Mauri,
        Phys. Rev. B 66, 195107 (2002)

     -------------------------------------------------------------------------
                                Reading input_file
     -------------------------------------------------------------------------

     xepsilon  [crystallographic coordinates]:   1.000000   0.000000   0.000000

     xonly_plot: FALSE
        => complete calculation: Lanczos + spectrum plot

     filecore (core-wavefunction file): C.wfc               

     main plot parameters:
        cut_occ_states: FALSE
        gamma_mode:  constant
        -> using xgamma [eV]:  0.10
        xemin [eV]:   0.00
        xemax [eV]:  10.00
        xnepoint:  100
        energy zero automatically set to the Fermi level

     Fermi level determined from SCF save directory (diamond.save)
     NB: For an insulator (SCF calculated with occupations="fixed")
         the Fermi level will be placed at the position of HOMO.

     WARNING: variable ef_r is obsolete

     -------------------------------------------------------------------------
                      Reading SCF save directory: diamond.save
     -------------------------------------------------------------------------


     Reading data from directory:
     /Users/calandra/Pw/SVN_9_7_2015/espresso/XSpectra/examples/results/tmp/diamond.save

   Info: using nr1, nr2, nr3 values from input

   Info: using nr1, nr2, nr3 values from input

     IMPORTANT: XC functional enforced from input :
     Exchange-correlation      =  SLA  PW   PBX  PBC ( 1  4  3  4 0 0)
     Any further DFT definition will be discarded
     Please, verify this is what you really want


     G-vector sticks info
     --------------------
     sticks:   dense  smooth     PW     G-vecs:    dense   smooth      PW
     Sum         577     577    185                10443    10443    1863


     highest occupied level (ev):    13.3353

     -------------------------------------------------------------------------
                           Getting the Fermi energy 
     -------------------------------------------------------------------------

     From SCF save directory:
        ehomo [eV]:   13.3353 (highest occupied level)
        No LUMO value in SCF calculation
        ef    [eV]:   13.3353

     -> ef (in eV) will be written in x_save_file

     -------------------------------------------------------------------------
                           Energy zero of the spectrum 
     -------------------------------------------------------------------------

     -> ef will be used as energy zero of the spectrum

     G-vector sticks info
     --------------------
     sticks:   dense  smooth     PW     G-vecs:    dense   smooth      PW
     Sum         577     577    213                10443    10443    2205



     bravais-lattice index     =            1
     lattice parameter (alat)  =       6.7403  a.u.
     unit-cell volume          =     306.2169 (a.u.)^3
     number of atoms/cell      =            8
     number of atomic types    =            2
     number of electrons       =        32.00
     number of Kohn-Sham states=           16
     kinetic-energy cutoff     =      40.0000  Ry
     charge density cutoff     =     160.0000  Ry
     Exchange-correlation      =  SLA  PW   PBX  PBC ( 1  4  3  4 0 0)

     celldm(1)=   6.740256  celldm(2)=   0.000000  celldm(3)=   0.000000
     celldm(4)=   0.000000  celldm(5)=   0.000000  celldm(6)=   0.000000

     crystal axes: (cart. coord. in units of alat)
               a(1) = (   1.000000   0.000000   0.000000 )  
               a(2) = (   0.000000   1.000000   0.000000 )  
               a(3) = (   0.000000   0.000000   1.000000 )  

     reciprocal axes: (cart. coord. in units 2 pi/alat)
               b(1) = (  1.000000  0.000000  0.000000 )  
               b(2) = (  0.000000  1.000000  0.000000 )  
               b(3) = (  0.000000  0.000000  1.000000 )  


     PseudoPot. # 1 for C  read from file:
     /Users/calandra/Pw/SVN_9_7_2015/espresso/XSpectra/examples/pseudo/C_PBE_TM_2pj.UPF
     MD5 check sum: e8858615eb0a4b79f05373b4879fdf67
     Pseudo is Norm-conserving, Zval =  4.0
     Generated by new atomic code, or converted to UPF format
     Using radial grid of 1073 points,  1 beta functions with: 
                l(1) =   0

     PseudoPot. # 2 for C  read from file:
     /Users/calandra/Pw/SVN_9_7_2015/espresso/XSpectra/examples/pseudo/C_PBE_TM_2pj.UPF
     MD5 check sum: e8858615eb0a4b79f05373b4879fdf67
     Pseudo is Norm-conserving, Zval =  4.0
     Generated by new atomic code, or converted to UPF format
     Using radial grid of 1073 points,  1 beta functions with: 
                l(1) =   0

     atomic species   valence    mass     pseudopotential
        C_h            4.00    12.00000     C ( 1.00)
        C              4.00    12.00000     C ( 1.00)

     24 Sym. Ops. (no inversion) found



   Cartesian axes

     site n.     atom                  positions (alat units)
         1           C_h tau(   1) = (   0.0000000   0.0000000   0.0000000  )
         2           C   tau(   2) = (   0.0000000   0.5000000   0.5000000  )
         3           C   tau(   3) = (   0.5000000   0.0000000   0.5000000  )
         4           C   tau(   4) = (   0.5000000   0.5000000   0.0000000  )
         5           C   tau(   5) = (   0.7500000   0.7500000   0.2500000  )
         6           C   tau(   6) = (   0.7500000   0.2500000   0.7500000  )
         7           C   tau(   7) = (   0.2500000   0.7500000   0.7500000  )
         8           C   tau(   8) = (   0.2500000   0.2500000   0.2500000  )

     number of k points=    64
                       cart. coord. in units 2pi/alat
        k(    1) = (   0.0000000   0.0000000   0.0000000), wk =   0.0312500
        k(    2) = (   0.0000000   0.0000000   0.2500000), wk =   0.0312500
        k(    3) = (   0.0000000   0.0000000   0.5000000), wk =   0.0312500
        k(    4) = (   0.0000000   0.0000000   0.7500000), wk =   0.0312500
        k(    5) = (   0.0000000   0.2500000   0.0000000), wk =   0.0312500
        k(    6) = (   0.0000000   0.2500000   0.2500000), wk =   0.0312500
        k(    7) = (   0.0000000   0.2500000   0.5000000), wk =   0.0312500
        k(    8) = (   0.0000000   0.2500000   0.7500000), wk =   0.0312500
        k(    9) = (   0.0000000   0.5000000   0.0000000), wk =   0.0312500
        k(   10) = (   0.0000000   0.5000000   0.2500000), wk =   0.0312500
        k(   11) = (   0.0000000   0.5000000   0.5000000), wk =   0.0312500
        k(   12) = (   0.0000000   0.5000000   0.7500000), wk =   0.0312500
        k(   13) = (   0.0000000   0.7500000   0.0000000), wk =   0.0312500
        k(   14) = (   0.0000000   0.7500000   0.2500000), wk =   0.0312500
        k(   15) = (   0.0000000   0.7500000   0.5000000), wk =   0.0312500
        k(   16) = (   0.0000000   0.7500000   0.7500000), wk =   0.0312500
        k(   17) = (   0.2500000   0.0000000   0.0000000), wk =   0.0312500
        k(   18) = (   0.2500000   0.0000000   0.2500000), wk =   0.0312500
        k(   19) = (   0.2500000   0.0000000   0.5000000), wk =   0.0312500
        k(   20) = (   0.2500000   0.0000000   0.7500000), wk =   0.0312500
        k(   21) = (   0.2500000   0.2500000   0.0000000), wk =   0.0312500
        k(   22) = (   0.2500000   0.2500000   0.2500000), wk =   0.0312500
        k(   23) = (   0.2500000   0.2500000   0.5000000), wk =   0.0312500
        k(   24) = (   0.2500000   0.2500000   0.7500000), wk =   0.0312500
        k(   25) = (   0.2500000   0.5000000   0.0000000), wk =   0.0312500
        k(   26) = (   0.2500000   0.5000000   0.2500000), wk =   0.0312500
        k(   27) = (   0.2500000   0.5000000   0.5000000), wk =   0.0312500
        k(   28) = (   0.2500000   0.5000000   0.7500000), wk =   0.0312500
        k(   29) = (   0.2500000   0.7500000   0.0000000), wk =   0.0312500
        k(   30) = (   0.2500000   0.7500000   0.2500000), wk =   0.0312500
        k(   31) = (   0.2500000   0.7500000   0.5000000), wk =   0.0312500
        k(   32) = (   0.2500000   0.7500000   0.7500000), wk =   0.0312500
        k(   33) = (   0.5000000   0.0000000   0.0000000), wk =   0.0312500
        k(   34) = (   0.5000000   0.0000000   0.2500000), wk =   0.0312500
        k(   35) = (   0.5000000   0.0000000   0.5000000), wk =   0.0312500
        k(   36) = (   0.5000000   0.0000000   0.7500000), wk =   0.0312500
        k(   37) = (   0.5000000   0.2500000   0.0000000), wk =   0.0312500
        k(   38) = (   0.5000000   0.2500000   0.2500000), wk =   0.0312500
        k(   39) = (   0.5000000   0.2500000   0.5000000), wk =   0.0312500
        k(   40) = (   0.5000000   0.2500000   0.7500000), wk =   0.0312500
        k(   41) = (   0.5000000   0.5000000   0.0000000), wk =   0.0312500
        k(   42) = (   0.5000000   0.5000000   0.2500000), wk =   0.0312500
        k(   43) = (   0.5000000   0.5000000   0.5000000), wk =   0.0312500
        k(   44) = (   0.5000000   0.5000000   0.7500000), wk =   0.0312500
        k(   45) = (   0.5000000   0.7500000   0.0000000), wk =   0.0312500
        k(   46) = (   0.5000000   0.7500000   0.2500000), wk =   0.0312500
        k(   47) = (   0.5000000   0.7500000   0.5000000), wk =   0.0312500
        k(   48) = (   0.5000000   0.7500000   0.7500000), wk =   0.0312500
        k(   49) = (   0.7500000   0.0000000   0.0000000), wk =   0.0312500
        k(   50) = (   0.7500000   0.0000000   0.2500000), wk =   0.0312500
        k(   51) = (   0.7500000   0.0000000   0.5000000), wk =   0.0312500
        k(   52) = (   0.7500000   0.0000000   0.7500000), wk =   0.0312500
        k(   53) = (   0.7500000   0.2500000   0.0000000), wk =   0.0312500
        k(   54) = (   0.7500000   0.2500000   0.2500000), wk =   0.0312500
        k(   55) = (   0.7500000   0.2500000   0.5000000), wk =   0.0312500
        k(   56) = (   0.7500000   0.2500000   0.7500000), wk =   0.0312500
        k(   57) = (   0.7500000   0.5000000   0.0000000), wk =   0.0312500
        k(   58) = (   0.7500000   0.5000000   0.2500000), wk =   0.0312500
        k(   59) = (   0.7500000   0.5000000   0.5000000), wk =   0.0312500
        k(   60) = (   0.7500000   0.5000000   0.7500000), wk =   0.0312500
        k(   61) = (   0.7500000   0.7500000   0.0000000), wk =   0.0312500
        k(   62) = (   0.7500000   0.7500000   0.2500000), wk =   0.0312500
        k(   63) = (   0.7500000   0.7500000   0.5000000), wk =   0.0312500
        k(   64) = (   0.7500000   0.7500000   0.7500000), wk =   0.0312500

     Dense  grid:    10443 G-vectors     FFT dimensions: (  27,  27,  27)

     Largest allocated arrays     est. size (Mb)     dimensions
        Kohn-Sham Wavefunctions         0.33 Mb     (    1357,   16)
        NL pseudopotentials             0.17 Mb     (    1357,    8)
        Each V/rho on FFT grid          0.30 Mb     (   19683)
        Each G-vector array             0.08 Mb     (   10443)
        G-vector shells                 0.00 Mb     (     156)
     Largest temporary arrays     est. size (Mb)     dimensions
        Auxiliary wavefunctions         0.33 Mb     (    1357,   16)
        Each subspace H/S matrix        0.00 Mb     (      16,   16)
        Each <psi_i|beta_j> matrix      0.00 Mb     (       8,   16)

     The potential is recalculated from file :
     /Users/calandra/Pw/SVN_9_7_2015/espresso/XSpectra/examples/results/tmp/diamond.save/charge-density.dat

     Starting wfc are   64 atomic wfcs

     Approx. ram memory needed per proc in MB =   0.065136


     -------------------------------------------------------------------------
               Reading core wavefunction file for the absorbing atom
     -------------------------------------------------------------------------

     C.wfc successfully read

     -------------------------------------------------------------------------
                              Attributing the PAW radii 
                     for the absorbing atom [units: Bohr radius]
     -------------------------------------------------------------------------

        PAW proj 1: r_paw(l= 0)= 2.25  (1.5*r_cut)
        PAW proj 2: r_paw(l= 0)= 2.25  (1.5*r_cut)
        PAW proj 3: r_paw(l= 1)= 2.25  (1.5*r_cut)
        PAW proj 4: r_paw(l= 1)= 2.25  (1.5*r_cut)

        NB: The calculation will not necessary use all these r_paw values.
            - For a edge in the electric-dipole approximation,
              only the r_paw(l=1) values are used.
            - For a K edge in the electric-quadrupole approximation,
              only the r_paw(l=2) values are used.

            - For a L2 or L3 edge in the electric-quadrupole approximation,

              all projectors (s, p and d) are used.

     fermi_level  :      0.71s CPU      0.78s WALL (       1 calls)

     -------------------------------------------------------------------------
                                END JOB XSpectra
     -------------------------------------------------------------------------