1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
|
<?xml version="1.0" encoding="ISO-8859-1"?>
<?xml-stylesheet type="text/xsl" href="input_xx.xsl"?>
<!-- FILE AUTOMATICALLY CREATED: DO NOT EDIT, CHANGES WILL BE LOST -->
<input_description distribution="Quantum Espresso" package="turboTDDFPT" program="turbo_davidson.x" >
<toc>
</toc>
<intro>
Input data format: { } = optional, [ ] = it depends.
All quantities whose dimensions are not explicitly specified are in
RYDBERG ATOMIC UNITS
BEWARE: TABS, DOS <CR><LF> CHARACTERS ARE POTENTIAL SOURCES OF TROUBLE
Comment lines in namelists can be introduced by a "!", exactly as in
fortran code. Comments lines in ``cards'' can be introduced by
either a "!" or a "#" character in the first position of a line.
Structure of the input data:
===============================================================================
&lr_input
...
/
&lr_dav
...
/
</intro>
<namelist name="lr_input" >
<label> This namelist is always needed !
</label>
<var name="prefix" type="CHARACTER" >
<default> 'pwscf'
</default>
<info>
Sets the prefix for generated and read files. The files
generated by the ground state pw.x run should have this
same prefix.
</info>
</var>
<var name="outdir" type="CHARACTER" >
<default> './'
</default>
<info>
The directory that contains the run critical files, which
include the files generated by ground state pw.x run.
</info>
</var>
<var name="wfcdir" type="CHARACTER" >
<default> './'
</default>
<info>
The directory that contains the run critical files, which
include the files generated by ground state pw.x run.
</info>
</var>
<var name="max_seconds" type="REAL" >
<default> 1.D+7, or 150 days, i.e. no time limit
</default>
<info>
jobs stops after <ref>max_seconds</ref> CPU time. Use this option
in conjunction with option <ref>restart</ref> if you need to
split a job too long to complete into shorter jobs that
fit into your batch queues.
</info>
</var>
<var name="restart" type="LOGICAL" >
<default> .false.
</default>
<info>
When set to .true., turbo_davidson.x will attempt to restart
from a previous interrupted calculation if <ref>max_seconds</ref>
was specified.
Beware, if set to .false. turbo_davidson.x will OVERWRITE any
previous runs.
</info>
</var>
<var name="lr_verbosity" type="INTEGER" >
<default> 1
</default>
<info>
This integer variable controls the amount of information
written to standard output.
</info>
</var>
<var name="disk_io" type="CHARACTER" >
<default> 'default'
</default>
<info>
Fine control of disk usage. Currently only 'reduced' is
supported where no restart files are written, apart from
the 'default' mode.
</info>
</var>
</namelist>
<namelist name="lr_dav" >
<var name="num_eign" type="INTEGER" >
<default> 1
</default>
<info>
Number of eigenstates to be calculated.
</info>
</var>
<var name="num_init" type="INTEGER" >
<default> 2
</default>
<info>
Number of trial vectors. Usually it is twice as large as
the number of eigenstates to be calculated (see <ref>num_eign</ref>).
</info>
</var>
<var name="if_random_init" type="LOGICAL" >
<default> .false.
</default>
<info>
When set to .true. trial vectors are chosen randomly, otherwise
they are guessed from the ground-state calculation.
If <ref>p_nbnd_occ</ref> * <ref>p_nbnd_virt</ref> < <ref>num_init</ref>, this term
is forced to be .true. The usage of random trial vectors should
cause only a slower convergence, and do not affect the final results.
</info>
</var>
<var name="num_basis_max" type="INTEGER" >
<default> 20
</default>
<info>
Maximum number of basis vectors allowed in the subspace.
When this number is reached, a discharging routine is called.
The memory requirement of the Davidson algorithm is mainly
determined by this variable (an estimation of the memory
is reported at the beginning of the run).
</info>
</var>
<var name="residue_conv_thr" type="REAL" >
<default> 1.0E-4
</default>
<info>
Threshold for the convergence. When the square of the
residue is smaller than this value, the convergence
is achieved.
</info>
</var>
<var name="precondition" type="LOGICAL" >
<default> .true.
</default>
<info>
If set to .true. a precondition is used. At this moment,
one sees no reason why not to use the precondition.
</info>
</var>
<var name="single_pole" type="LOGICAL" >
<default> .false.
</default>
<info>
A slightly better way to set the initial trial vectors,
but the improvement is really small. Currently this flag
can be used only with LDA/PBE + NC PPs. So do not use
it unless it is really necessary.
</info>
</var>
<var name="if_dft_spectrum" type="LOGICAL" >
<default> .false.
</default>
<info>
When set to .true. the independent particle approximation
is used, i.e. the Hartree and exchange-correlation response
contributions are neglected.
</info>
</var>
<var name="reference" type="REAL" >
<default> 0.0d0
</default>
<info>
Reference energy in units of Ry. This variable is used
to constrain the Davidson algorithm to converge the eigenstates
having the energy closest to the reference energy. In this way
one can calculate less eigenstates at once, and to perform multiple
calculations with different reference energies (the post-processing
code tddfpt_calculate_spectrum.x can be used for this purpose).
</info>
</var>
<var name="broadening" type="REAL" >
<default> 0.005d0
</default>
<info>
Lorentzian broadening (Ry) to broaden the absorption spectrum.
</info>
</var>
<var name="start" type="REAL" >
<default> 0.0d0
</default>
<info>
The lower limit of the energy (Ry) scale for the spectrum calculation.
</info>
</var>
<var name="finish" type="REAL" >
<default> 1.0d0
</default>
<info>
The upper limit of the energy (Ry) scale for the spectrum calculation.
</info>
</var>
<var name="step" type="REAL" >
<default> 0.001d0
</default>
<info>
Energy step (Ry) for the spectrum calculation.
</info>
</var>
<var name="p_nbnd_occ" type="INTEGER" >
<default> 10
</default>
<info>
Number of occupied states selected from the total number
of occupied states computed by PWscf. This variable is
useful if there are too many occupied states but your
are interested in only some of them.
In priciple this variable and <ref>p_nbnd_virt</ref> affect only
the interpretation of the eigenstates, but do not effect
their energy and the final absorption spectrum.
Make sure that min(p_nbnd_occ,nbnd_occ)*min(p_nbnd_virt,nbnd_virt)
is lager than the number of initial vectors (<ref>num_init</ref>),
so you will not end up using random trial vectors which would
slow down the convergence.
</info>
</var>
<var name="p_nbnd_virt" type="INTEGER" >
<default> 10
</default>
<info>
Number of empty states selected from the total number
of empty states computed by PWscf. This variable is
useful if there are too many empty states but your
are interested in only some of them.
In priciple this variable and <ref>p_nbnd_occ</ref> affect only
the interpretation of the eigenstates, but do not effect
their energy and the final absorption spectrum.
Make sure that min(p_nbnd_occ,nbnd_occ)*min(p_nbnd_virt,nbnd_virt)
is lager than the number of initial vectors (<ref>num_init</ref>),
so you will not end up using random trial vectors which would
slow down the convergence.
</info>
</var>
<var name="poor_of_ram" type="LOGICAL" >
<default> .false.
</default>
<info>
Use this variable if you do not have enough RAM (only USPP),
i.e. set it to .true. When this variable is set to .false.,
you double the memory used for the USPP calculation, but you
increase a speed of the calculation by getting rid of
applying many times of s_psi and cal_bec in the
calculation, which takes a lot of time (sometimes more than
a half of the whole calculation) when the size of the
subspace is more than 100.
</info>
</var>
<var name="poor_of_ram2" type="LOGICAL" >
<default> .false.
</default>
<info>
Use this variable if you do not have enough RAM (NCPP and USPP),
i.e. set it to .true. When this variable is set to .false.,
you double the memory used for the calculation, but you
increase a speed of the calculation by storing D_ and C_
basis: the calculation will be speeded up a lot when
one is calculating many transitions at the same time.
</info>
</var>
<var name="max_iter" type="INTEGER" >
<default> 100
</default>
<info>
Maximum number of Davidson iterations allowed. When the
number of iterations arrives this number, the calculation
will stop even if the convergence has not been achieved.
</info>
</var>
<var name="no_hxc" type="LOGICAL" >
<default> .false.
</default>
<info>
When set to .true. the change in the internal field
(Hartree and exchange-correlation) is ignored in the
calculation, resulting in the independent electron
approximation.
</info>
</var>
<var name="pseudo_hermitian" type="LOGICAL" >
<default> .true.
</default>
<info>
When set to .true. the pseudo-Hermitian Lanczos
algorithm is used. When set to .false. the
non-Hermitian Lanczos biorthogonalization algorithm
is used (which is two times slower).
</info>
</var>
<var name="ltammd" type="LOGICAL" >
<default> .false.
</default>
<info>
When set to .true. the Tamm-Dancoff approximation is used
in constructing the Liouvillian.
</info>
</var>
<var name="lplot_drho" type="LOGICAL" >
<default> .false.
</default>
<info>
When set to .true. the turbo_davidson.x code will write
files for each eigenstate "drho-of-eign-$i" which are
needed to plot the response charge-density at each resonance.
This implies a calculation using the pp.x post-processing
program with the corresponding input file which must be
prepared. See example "H2O-PLOTRHO".
</info>
</var>
<var name="d0psi_rs" type="LOGICAL" >
<default> .false.
</default>
<info>
When set to .true. the dipole is computed in the
real space. When set to .false. the dipole is
computed in the reciprocal space by computing [H,r].
Note, currently the commutator does not contain
a contribution for hybrids [V_EXX,r]. See also
the variable <ref>lshift_d0psi</ref>.
Important: Treatment of the dipole in the real space
is allowed only if the system is finite.
</info>
</var>
<var name="lshift_d0psi" type="LOGICAL" >
<default> .true.
</default>
<info>
This variable is used only when <ref>d0psi_rs</ref> = .true.
a) If a molecule is placed in the corner of the
supercell, there is a discontinuity problem for the
position operator r, which is not periodic. By setting
<ref>lshift_d0psi</ref> = .true. the discontinuity problem is
solved by shifting the position operator r such that
it is continuous and well defined.
b) If a molecule is placed in the center of the supercell,
there is no discontinuity problem for the position operator r,
and thus you can set <ref>lshift_d0psi</ref> = .false. But if you still
set it to .true., this will not harm, because the position
operator will basically remain as it is, since it is always
centered wrt the center of the molecule.
</info>
</var>
</namelist>
</input_description>
|