1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
|
<?xml version="1.0" encoding="ISO-8859-1"?>
<?xml-stylesheet type="text/xsl" href="input_xx.xsl"?>
<!-- FILE AUTOMATICALLY CREATED: DO NOT EDIT, CHANGES WILL BE LOST -->
<input_description distribution="Quantum Espresso" package="NEB" program="neb.x" >
<toc>
</toc>
<intro>
<b>Input data format:</b> { } = optional, [ ] = it depends, | = or
All quantities whose dimensions are not explicitly specified are in
RYDBERG ATOMIC UNITS
<b>BEWARE:</b> TABS, DOS <CR><LF> CHARACTERS ARE POTENTIAL SOURCES OF TROUBLE
<b>neb.x DOES NOT READ FROM STANDARD INPUT !</b>
There are two ways for running a calculation with neb.x:
(1) specifying a file to parse with the <b>./neb.x -inp</b> or <b>./neb.x -input</b>
command line option.
(2) or specifying the number of copies of PWscf inputs with the <b>./neb.x -input_images</b>
<b>For case (1)</b> a file containing special KEYWORDS (aka SUPERCARDS) has to be
written (see below). These KEYWORDS tell the parser which part of the file
contains the neb specifics and which part contains the energy/force engine
input (at the moment only PW). After the parsing, different files are
generated: neb.dat, with the neb specific variables, and a set of pw_*.in
PWscf input files, i.e., one for each input position. All options for a
single SCF calculation apply.
The general structure of the file to be parsed is:
==================================================
<b>BEGIN</b>
<b>BEGIN_PATH_INPUT</b>
... neb specific namelists and cards
<b>END_PATH_INPUT</b>
<b>BEGIN_ENGINE_INPUT</b>
...pw specific namelists and cards
<b>BEGIN_POSITIONS</b>
<b>FIRST_IMAGE</b>
...pw ATOMIC_POSITIONS card
<b>INTERMEDIATE_IMAGE</b>
...pw ATOMIC_POSITIONS card
<b>LAST_IMAGE</b>
...pw ATOMIC_POSITIONS card
<b>END_POSITIONS</b>
... other pw specific cards
<b>END_ENGINE_INPUT</b>
<b>END</b>
<b>For case (2)</b> neb.dat and all pw_1.in, pw_2.in ... should be already present.
Structure of the NEB-only input data (file neb.dat):
====================================================
<b>&PATH</b>
...
<b>/</b>
[ <b>CLIMBING_IMAGES</b>
list of images, separated by a comma ]
</intro>
<supercard name="BEGIN" endtag="END" >
<supercard name="BEGIN_PATH_INPUT" endtag="END_PATH_INPUT" >
<namelist name="PATH" >
<var name="string_method" type="CHARACTER" >
<default> 'neb'
</default>
<options>
<info>
A string describing the task to be performed. Options are:
</info>
<opt val="'neb'" > nudget-elastic-band
</opt>
<opt val="'smd'" > string-method-dynamics
</opt>
</options>
</var>
<var name="restart_mode" type="CHARACTER" >
<default> 'from_scratch'
</default>
<options>
<info> Options are:
</info>
<opt val="'from_scratch'" > from scratch
</opt>
<opt val="'restart'" > from previous interrupted run
</opt>
</options>
</var>
<var name="nstep_path" type="INTEGER" >
<info>
number of ionic + electronic steps
</info>
<default>
1
</default>
</var>
<var name="num_of_images" type="INTEGER" >
<default> 0
</default>
<info>
Number of points used to discretize the path
(it must be larger than 3).
</info>
</var>
<var name="opt_scheme" type="CHARACTER" >
<default> 'quick-min'
</default>
<options>
<info>
Specify the type of optimization scheme:
</info>
<opt val="'sd'" >
steepest descent
</opt>
<opt val="'broyden'" >
quasi-Newton Broyden's second method (suggested)
</opt>
<opt val="'broyden2'" >
another variant of the quasi-Newton Broyden's
second method to be tested and compared with the
previous one.
</opt>
<opt val="'quick-min'" >
an optimisation algorithm based on the
projected velocity Verlet scheme
</opt>
<opt val="'langevin'" >
finite temperature langevin dynamics of the
string (smd only). It is used to compute the
average path and the free-energy profile.
</opt>
</options>
</var>
<var name="CI_scheme" type="CHARACTER" >
<default> 'no-CI'
</default>
<options>
<info>
Specify the type of Climbing Image scheme:
</info>
<opt val="'no-CI'" >
climbing image is not used
</opt>
<opt val="'auto'" >
original CI scheme. The image highest in energy
does not feel the effect of springs and is
allowed to climb along the path
</opt>
<opt val="'manual'" >
images that have to climb are manually selected.
See also <ref>CLIMBING_IMAGES</ref> card
</opt>
</options>
</var>
<var name="first_last_opt" type="LOGICAL" >
<default> .FALSE.
</default>
<info>
Also the first and the last configurations are optimized
"on the fly" (these images do not feel the effect of the springs).
</info>
</var>
<var name="minimum_image" type="LOGICAL" >
<default> .FALSE.
</default>
<info>
Assume a "minimum image criterion" to build the path. If an atom
moves by more than half the length of a crystal axis between one
image and the next in the input (before interpolation),
an appropriate periodic replica of that atom is chosen.
Useful to avoid jumps in the initial reaction path.
</info>
</var>
<var name="temp_req" type="REAL" >
<default> 0.D0 Kelvin
</default>
<info>
Temperature used for the langevin dynamics of the string.
</info>
</var>
<var name="ds" type="REAL" >
<default> 1.D0
</default>
<info>
Optimisation step length ( Hartree atomic units ).
If <ref>opt_scheme</ref>=="broyden", ds is used as a guess for the
diagonal part of the Jacobian matrix.
</info>
</var>
<vargroup type="REAL" >
<var name="k_max" >
</var>
<var name="k_min" >
</var>
<default> 0.1D0 Hartree atomic units
</default>
<info>
Set them to use a Variable Elastic Constants scheme
elastic constants are in the range [ k_min, k_max ]
this is useful to rise the resolution around the saddle point.
</info>
</vargroup>
<var name="path_thr" type="REAL" >
<default> 0.05D0 eV / Angstrom
</default>
<info>
The simulation stops when the error ( the norm of the force
orthogonal to the path in eV/A ) is less than path_thr.
</info>
</var>
<var name="use_masses" type="LOGICAL" >
<default> .FALSE.
</default>
<info>
If. TRUE. the optimisation of the path is performed using
mass-weighted coordinates. Useful together with quick-min
optimization scheme, if some bonds are much stiffer than
others. By assigning a larger (fictitious) mass to atoms
with stiff bonds, one may use a longer time step "ds"
</info>
</var>
<var name="use_freezing" type="LOGICAL" >
<default> .FALSE.
</default>
<info>
If. TRUE. the images are optimised according to their error:
only those images with an error larger than half of the largest
are optimised. The other images are kept frozen.
</info>
</var>
<var name="lfcpopt" type="LOGICAL" >
<see> fcp_mu
</see>
<default> .FALSE.
</default>
<info>
If .TRUE. perform a constant bias potential (constant-mu)
calculation with ESM method (assume_isolated = 'esm' and
esm_bc = 'bc2' or 'bc3' must be set in SYSTEM namelist).
<ref>fcp_mu</ref> gives the target Fermi energy.
See the header of PW/src/fcp.f90 for documentation
</info>
</var>
<var name="fcp_mu" type="REAL" >
<see> lfcpopt
</see>
<default> 0.d0
</default>
<info>
If <ref>lfcpopt</ref> == .TRUE., gives the target Fermi energy [Ry].
One can specify the total charge of the system for the first
and last image by giving <ref>fcp_tot_charge_first</ref> and <ref>fcp_tot_charge_last</ref>
so that the Fermi energy of these systems will be the target value,
otherwise <ref>first_last_opt</ref> should be .TRUE.
</info>
</var>
<var name="fcp_tot_charge_first" type="REAL" >
<see> lfcpopt
</see>
<default> 0.d0
</default>
<info>
Total charge of the system ('tot_charge') for the first image.
Initial 'tot_charge' for intermediate images will be given by
linear interpolation of <ref>fcp_tot_charge_first</ref> and <ref>fcp_tot_charge_last</ref>
</info>
</var>
<var name="fcp_tot_charge_last" type="REAL" >
<see> lfcpopt
</see>
<default> 0.d0
</default>
<info>
Total charge of the system ('tot_charge') for the last image.
Initial 'tot_charge' for intermediate images will be given by
linear interpolation of <ref>fcp_tot_charge_first</ref> and <ref>fcp_tot_charge_last</ref>
</info>
</var>
</namelist>
<card name="CLIMBING_IMAGES" >
<label>
Optional card, needed only if <ref>CI_scheme</ref> == 'manual', ignored otherwise !
</label>
<syntax>
<list name="climbing_images_list" type="INTEGER" >
<format> index1, index2, ... indexN
</format>
<info>
index1, index2, ..., indexN are indices of the images to which the
Climbing-Image procedure apply. If more than one image is specified
they must be separated by a comma.
</info>
</list>
</syntax>
</card>
</supercard>
<supercard name="BEGIN_ENGINE_INPUT" endtag="END_ENGINE_INPUT" >
<message>
Here comes the pw.x specific namelists and cards (see file: <link>INPUT_PW.html</link> or INPUT_PW.txt)
with the exception of <ref>ATOMIC_POSITIONS</ref> cards, which are specified separately within the
<ref>BEGIN_POSITIONS</ref>/END_POSITIONS supercard as described below.
So the input that follows here is of the following structure:
<b>&CONTROL</b>
...
<b>/</b>
<b>&SYSTEM</b>
...
<b>/</b>
<b>&ELECTRONS</b>
...
<b>/</b>
...
</message>
<supercard name="BEGIN_POSITIONS" endtag="END_POSITIONS" >
<message>
NB:
Atomic positions for all the images are specified within the <ref>BEGIN_POSITIONS</ref> / END_POSITIONS
supercard, where each instance of <ref>ATOMIC_POSITIONS</ref> card is prefixed either by <ref>FIRST_IMAGE</ref>,
<ref>INTERMEDIATE_IMAGE</ref>, or <ref>LAST_IMAGE</ref> keywords.
Note that intermediate images are optional, i.e., there can be none or any number of
<ref>INTERMEDIATE_IMAGE</ref> images.
</message>
<supercard name="FIRST_IMAGE" >
<card name="ATOMIC_POSITIONS" >
<message>
For the description of ATOMIC_POSITIONS card see file: <link>INPUT_PW.html</link> or INPUT_PW.txt
</message>
<flag name="atompos_unit" use="optional" >
<enum> alat | bohr | angstrom | crystal | crystal_sg
</enum>
</flag>
</card>
</supercard>
<optional>
<supercard name="INTERMEDIATE_IMAGE" remark="
There can be any number (including zero) of INTERMEDIATE_IMAGE supercards.
" >
<card name="ATOMIC_POSITIONS" >
<message>
For the description of ATOMIC_POSITIONS card see file: <link>INPUT_PW.html</link> or INPUT_PW.txt
</message>
<flag name="atompos_unit" use="optional" >
<enum> alat | bohr | angstrom | crystal | crystal_sg
</enum>
</flag>
</card>
</supercard>
</optional>
<supercard name="LAST_IMAGE" >
<card name="ATOMIC_POSITIONS" >
<message>
For the description of ATOMIC_POSITIONS card see file: <link>INPUT_PW.html</link> or INPUT_PW.txt
</message>
<flag name="atompos_unit" use="optional" >
<enum> alat | bohr | angstrom | crystal | crystal_sg
</enum>
</flag>
</card>
</supercard>
</supercard>
<message>
Here can follow other <b>pw</b> specific <b>cards</b> ...
</message>
</supercard>
</supercard>
</input_description>
|