File: INPUT_NEB.xml

package info (click to toggle)
espresso 6.7-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 311,068 kB
  • sloc: f90: 447,429; ansic: 52,566; sh: 40,631; xml: 37,561; tcl: 20,077; lisp: 5,923; makefile: 4,503; python: 4,379; perl: 1,219; cpp: 761; fortran: 618; java: 568; awk: 128
file content (376 lines) | stat: -rw-r--r-- 13,982 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
<?xml version="1.0" encoding="ISO-8859-1"?>
<?xml-stylesheet type="text/xsl" href="input_xx.xsl"?>
<!-- FILE AUTOMATICALLY CREATED: DO NOT EDIT, CHANGES WILL BE LOST -->
    
<input_description distribution="Quantum Espresso" package="NEB" program="neb.x" >
   <toc>
   </toc>
   <intro>
<b>Input data format:</b> { } = optional, [ ] = it depends, | = or

All quantities whose dimensions are not explicitly specified are in
RYDBERG ATOMIC UNITS

<b>BEWARE:</b> TABS, DOS &lt;CR&gt;&lt;LF&gt; CHARACTERS ARE POTENTIAL SOURCES OF TROUBLE

<b>neb.x DOES NOT READ FROM STANDARD INPUT !</b>

There are two ways for running a calculation with neb.x:

(1) specifying a file to parse with the <b>./neb.x -inp</b> or <b>./neb.x -input</b>
    command line option.

(2) or specifying the number of copies of PWscf inputs with the <b>./neb.x -input_images</b>

<b>For case (1)</b> a file containing special KEYWORDS (aka SUPERCARDS) has to be
written (see below). These KEYWORDS tell the parser which part of the file
contains the neb specifics and which part contains the energy/force engine
input (at the moment only PW).  After the parsing, different files are
generated: neb.dat, with the neb specific variables, and a set of pw_*.in
PWscf input files, i.e., one for each input position. All options for a
single SCF calculation apply.

The general structure of the file to be parsed is:
==================================================

<b>BEGIN</b>
  <b>BEGIN_PATH_INPUT</b>
    ... neb specific namelists and cards
  <b>END_PATH_INPUT</b>

  <b>BEGIN_ENGINE_INPUT</b>
    ...pw specific namelists and cards
    <b>BEGIN_POSITIONS</b>
      <b>FIRST_IMAGE</b>
      ...pw ATOMIC_POSITIONS card
      <b>INTERMEDIATE_IMAGE</b>
      ...pw ATOMIC_POSITIONS card
      <b>LAST_IMAGE</b>
      ...pw ATOMIC_POSITIONS card
    <b>END_POSITIONS</b>
    ... other pw specific cards
  <b>END_ENGINE_INPUT</b>
<b>END</b>


<b>For case (2)</b> neb.dat and all pw_1.in, pw_2.in ... should be already present.

Structure of the NEB-only input data (file neb.dat):
====================================================

<b>&amp;PATH</b>
  ...
<b>/</b>

[ <b>CLIMBING_IMAGES</b>
   list of images, separated by a comma ]
   </intro>
   <supercard name="BEGIN" endtag="END" >
      <supercard name="BEGIN_PATH_INPUT" endtag="END_PATH_INPUT" >
         <namelist name="PATH" >
            <var name="string_method" type="CHARACTER" >
               <default> &apos;neb&apos;
               </default>
               <options>
                  <info>
A string describing the task to be performed. Options are:
                  </info>
                  <opt val="'neb'" > nudget-elastic-band
                  </opt>
                  <opt val="'smd'" > string-method-dynamics
                  </opt>
               </options>
            </var>
            <var name="restart_mode" type="CHARACTER" >
               <default> &apos;from_scratch&apos;
               </default>
               <options>
                  <info> Options are:
                  </info>
                  <opt val="'from_scratch'" > from scratch
                  </opt>
                  <opt val="'restart'" > from previous interrupted run
                  </opt>
               </options>
            </var>
            <var name="nstep_path" type="INTEGER" >
               <info>
number of ionic + electronic steps
               </info>
               <default>
1
               </default>
            </var>
            <var name="num_of_images" type="INTEGER" >
               <default> 0
               </default>
               <info>
Number of points used to discretize the path
(it must be larger than 3).
               </info>
            </var>
            <var name="opt_scheme" type="CHARACTER" >
               <default> &apos;quick-min&apos;
               </default>
               <options>
                  <info>
Specify the type of optimization scheme:
                  </info>
                  <opt val="'sd'" >
steepest descent
                  </opt>
                  <opt val="'broyden'" >
quasi-Newton Broyden&apos;s second method (suggested)
                  </opt>
                  <opt val="'broyden2'" >
another variant of the quasi-Newton Broyden&apos;s
second method to be tested and compared with the
previous one.
                  </opt>
                  <opt val="'quick-min'" >
an optimisation algorithm based on the
projected velocity Verlet scheme
                  </opt>
                  <opt val="'langevin'" >
finite temperature langevin dynamics of the
string (smd only). It is used to compute the
average path and the free-energy profile.
                  </opt>
               </options>
            </var>
            <var name="CI_scheme" type="CHARACTER" >
               <default> &apos;no-CI&apos;
               </default>
               <options>
                  <info>
Specify the type of Climbing Image scheme:
                  </info>
                  <opt val="'no-CI'" >
climbing image is not used
                  </opt>
                  <opt val="'auto'" >
original CI scheme. The image highest in energy
does not feel the effect of springs and is
allowed to climb along the path
                  </opt>
                  <opt val="'manual'" >
images that have to climb are manually selected.
See also <ref>CLIMBING_IMAGES</ref> card
                  </opt>
               </options>
            </var>
            <var name="first_last_opt" type="LOGICAL" >
               <default> .FALSE.
               </default>
               <info>
Also the first and the last configurations are optimized
&quot;on the fly&quot; (these images do not feel the effect of the springs).
               </info>
            </var>
            <var name="minimum_image" type="LOGICAL" >
               <default> .FALSE.
               </default>
               <info>
Assume a &quot;minimum image criterion&quot; to build the path. If an atom
moves by more than half the length of a crystal axis between one
image and the next in the input (before interpolation),
an appropriate periodic replica of that atom is chosen.
Useful to avoid jumps in the initial reaction path.
               </info>
            </var>
            <var name="temp_req" type="REAL" >
               <default> 0.D0 Kelvin
               </default>
               <info>
Temperature used for the langevin dynamics of the string.
               </info>
            </var>
            <var name="ds" type="REAL" >
               <default> 1.D0
               </default>
               <info>
Optimisation step length ( Hartree atomic units ).
If <ref>opt_scheme</ref>==&quot;broyden&quot;, ds is used as a guess for the
diagonal part of the Jacobian matrix.
               </info>
            </var>
            <vargroup type="REAL" >
               <var name="k_max" >
               </var>
               <var name="k_min" >
               </var>
               <default> 0.1D0 Hartree atomic units
               </default>
               <info>
Set them to use a Variable Elastic Constants scheme
elastic constants are in the range [ k_min, k_max ]
this is useful to rise the resolution around the saddle point.
               </info>
            </vargroup>
            <var name="path_thr" type="REAL" >
               <default> 0.05D0 eV / Angstrom
               </default>
               <info>
The simulation stops when the error ( the norm of the force
orthogonal to the path in eV/A ) is less than path_thr.
               </info>
            </var>
            <var name="use_masses" type="LOGICAL" >
               <default> .FALSE.
               </default>
               <info>
If. TRUE. the optimisation of the path is performed using
mass-weighted coordinates. Useful together with quick-min
optimization scheme, if some bonds are much stiffer than
others. By assigning a larger (fictitious) mass to atoms
with stiff bonds, one may use a longer time step &quot;ds&quot;
               </info>
            </var>
            <var name="use_freezing" type="LOGICAL" >
               <default> .FALSE.
               </default>
               <info>
If. TRUE. the images are optimised according to their error:
only those images with an error larger than half of the largest
are optimised. The other images are kept frozen.
               </info>
            </var>
            <var name="lfcpopt" type="LOGICAL" >
               <see> fcp_mu
               </see>
               <default> .FALSE.
               </default>
               <info>
If .TRUE. perform a constant bias potential (constant-mu)
calculation with ESM method (assume_isolated = &apos;esm&apos; and
esm_bc = &apos;bc2&apos; or &apos;bc3&apos; must be set in SYSTEM namelist).
<ref>fcp_mu</ref> gives the target Fermi energy.
See the header of PW/src/fcp.f90 for documentation
               </info>
            </var>
            <var name="fcp_mu" type="REAL" >
               <see> lfcpopt
               </see>
               <default> 0.d0
               </default>
               <info>
If <ref>lfcpopt</ref> == .TRUE., gives the target Fermi energy [Ry].
One can specify the total charge of the system for the first
and last image by giving <ref>fcp_tot_charge_first</ref> and <ref>fcp_tot_charge_last</ref>
so that the Fermi energy of these systems will be the target value,
otherwise <ref>first_last_opt</ref> should be .TRUE.
               </info>
            </var>
            <var name="fcp_tot_charge_first" type="REAL" >
               <see> lfcpopt
               </see>
               <default> 0.d0
               </default>
               <info>
Total charge of the system (&apos;tot_charge&apos;) for the first image.
Initial &apos;tot_charge&apos; for intermediate images will be given by
linear interpolation of <ref>fcp_tot_charge_first</ref> and <ref>fcp_tot_charge_last</ref>
               </info>
            </var>
            <var name="fcp_tot_charge_last" type="REAL" >
               <see> lfcpopt
               </see>
               <default> 0.d0
               </default>
               <info>
Total charge of the system (&apos;tot_charge&apos;) for the last image.
Initial &apos;tot_charge&apos; for intermediate images will be given by
linear interpolation of <ref>fcp_tot_charge_first</ref> and <ref>fcp_tot_charge_last</ref>
               </info>
            </var>
         </namelist>
         <card name="CLIMBING_IMAGES" >
            <label>
Optional card, needed only if <ref>CI_scheme</ref> == &apos;manual&apos;, ignored otherwise !
            </label>
            <syntax>
               <list name="climbing_images_list" type="INTEGER" >
                  <format> index1, index2, ... indexN
                  </format>
                  <info>
index1, index2, ..., indexN are indices of the images to which the
Climbing-Image procedure apply. If more than one image is specified
they must be separated by a comma.
                  </info>
               </list>
            </syntax>
         </card>
      </supercard>
      <supercard name="BEGIN_ENGINE_INPUT" endtag="END_ENGINE_INPUT" >
         <message>
Here comes the pw.x specific namelists and cards (see file: <link>INPUT_PW.html</link> or INPUT_PW.txt)
with the exception of <ref>ATOMIC_POSITIONS</ref> cards, which are specified separately within the
<ref>BEGIN_POSITIONS</ref>/END_POSITIONS supercard as described below.

So the input that follows here is of the following structure:

   <b>&amp;CONTROL</b>
      ...
   <b>/</b>
   <b>&amp;SYSTEM</b>
     ...
   <b>/</b>
   <b>&amp;ELECTRONS</b>
     ...
   <b>/</b>
   ...
         </message>
         <supercard name="BEGIN_POSITIONS" endtag="END_POSITIONS" >
            <message>
NB:
Atomic positions for all the images are specified within the <ref>BEGIN_POSITIONS</ref> / END_POSITIONS
supercard, where each instance of <ref>ATOMIC_POSITIONS</ref> card is prefixed either by <ref>FIRST_IMAGE</ref>,
<ref>INTERMEDIATE_IMAGE</ref>, or <ref>LAST_IMAGE</ref> keywords.

Note that intermediate images are optional, i.e., there can be none or any number of
<ref>INTERMEDIATE_IMAGE</ref> images.
            </message>
            <supercard name="FIRST_IMAGE" >
               <card name="ATOMIC_POSITIONS" >
                  <message>
For the description of ATOMIC_POSITIONS card see file: <link>INPUT_PW.html</link> or INPUT_PW.txt
                  </message>
                  <flag name="atompos_unit" use="optional" >
                     <enum> alat | bohr | angstrom | crystal | crystal_sg
                     </enum>
                  </flag>
               </card>
            </supercard>
            <optional>
               <supercard name="INTERMEDIATE_IMAGE" remark="
			There can be any number (including zero) of INTERMEDIATE_IMAGE supercards.
		    " >
                  <card name="ATOMIC_POSITIONS" >
                     <message>
For the description of ATOMIC_POSITIONS card see file: <link>INPUT_PW.html</link> or INPUT_PW.txt
                     </message>
                     <flag name="atompos_unit" use="optional" >
                        <enum> alat | bohr | angstrom | crystal | crystal_sg
                        </enum>
                     </flag>
                  </card>
               </supercard>
            </optional>
            <supercard name="LAST_IMAGE" >
               <card name="ATOMIC_POSITIONS" >
                  <message>
For the description of ATOMIC_POSITIONS card see file: <link>INPUT_PW.html</link> or INPUT_PW.txt
                  </message>
                  <flag name="atompos_unit" use="optional" >
                     <enum> alat | bohr | angstrom | crystal | crystal_sg
                     </enum>
                  </flag>
               </card>
            </supercard>
         </supercard>
         <message>
Here can follow other <b>pw</b> specific <b>cards</b> ...
         </message>
      </supercard>
   </supercard>
</input_description>