File: INPUT_PH.xml

package info (click to toggle)
espresso 6.7-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 311,068 kB
  • sloc: f90: 447,429; ansic: 52,566; sh: 40,631; xml: 37,561; tcl: 20,077; lisp: 5,923; makefile: 4,503; python: 4,379; perl: 1,219; cpp: 761; fortran: 618; java: 568; awk: 128
file content (875 lines) | stat: -rw-r--r-- 32,271 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
<?xml version="1.0" encoding="ISO-8859-1"?>
<?xml-stylesheet type="text/xsl" href="input_xx.xsl"?>
<!-- FILE AUTOMATICALLY CREATED: DO NOT EDIT, CHANGES WILL BE LOST -->
    
<input_description distribution="Quantum Espresso" package="PWscf" program="ph.x" >
   <toc>
   </toc>
   <intro>
<b>Input data format:</b> { } = optional, [ ] = it depends, # = comment

<b>Structure of the input data:</b>
===============================================================================

title_line

<b>&amp;INPUTPH</b>
   ...
<b>/</b>

[ xq(1) xq(2) xq(3) ]                        <i># if <ref>ldisp</ref> != .true.  and  <ref>qplot</ref> != .true.</i>

[ nqs                                        <i># if <ref>qplot</ref> == .true. </i>
  xq(1,i)    xq(2,i)    xq(3,1)    nq(1)
  ...
  xq(1,nqs)  xq(2,nqs)  xq(3,nqs)  nq(nqs) ]

[ atom(1)  atom(2)  ... atom(nat_todo) ]     <i># if <ref>nat_todo</ref> was specified</i>
   </intro>
   <linecard>
      <var name="title_line" type="CHARACTER" >
         <info>
Title of the job, i.e., a line that is reprinted on output.
         </info>
      </var>
   </linecard>
   <namelist name="INPUTPH" >
      <dimension name="amass" start="1" end="ntyp" type="REAL" >
         <default> 0.0
         </default>
         <info>
Atomic mass [amu] of each atomic type.
If not specified, masses are read from data file.
         </info>
      </dimension>
      <var name="outdir" type="CHARACTER" >
         <default>
value of the <tt>ESPRESSO_TMPDIR</tt> environment variable if set;
<br/> current directory (&apos;./&apos;) otherwise
         </default>
         <info>
Directory containing input, output, and scratch files;
must be the same as specified in the calculation of
the unperturbed system.
         </info>
      </var>
      <var name="prefix" type="CHARACTER" >
         <default> &apos;pwscf&apos;
         </default>
         <info>
Prepended to input/output filenames; must be the same
used in the calculation of unperturbed system.
         </info>
      </var>
      <var name="niter_ph" type="INTEGER" >
         <default> maxter=100
         </default>
         <info>
Maximum number of iterations in a scf step. If you want
more than 100, edit variable &quot;maxter&quot; in PH/phcom.f90
         </info>
      </var>
      <var name="tr2_ph" type="REAL" >
         <default> 1e-12
         </default>
         <info> Threshold for self-consistency.
         </info>
      </var>
      <var name="alpha_mix(niter)" type="REAL" >
         <default> alpha_mix(1)=0.7
         </default>
         <info>
Mixing factor (for each iteration) for updating
the scf potential:

vnew(in) = alpha_mix*vold(out) + (1-alpha_mix)*vold(in)
         </info>
      </var>
      <var name="nmix_ph" type="INTEGER" >
         <default> 4
         </default>
         <info> Number of iterations used in potential mixing.
         </info>
      </var>
      <var name="verbosity" type="CHARACTER" >
         <default> &apos;default&apos;
         </default>
         <options>
            <info> Options are:
            </info>
            <opt val="'debug', 'high', 'medium'" > verbose output
            </opt>
            <opt val="'low', 'default', 'minimal'" > short output
            </opt>
         </options>
      </var>
      <var name="reduce_io" type="LOGICAL" >
         <default> .false.
         </default>
         <info> Reduce I/O to the strict minimum.
         </info>
      </var>
      <var name="max_seconds" type="REAL" >
         <default> 1.d7
         </default>
         <info> Maximum allowed run time before the job stops smoothly.
         </info>
      </var>
      <var name="fildyn" type="CHARACTER" >
         <default> &apos;matdyn&apos;
         </default>
         <info> File where the dynamical matrix is written.
         </info>
      </var>
      <var name="fildrho" type="CHARACTER" >
         <default> &apos; &apos;
         </default>
         <info>
File where the charge density responses are written. Note that the file
will actually be saved as <b>${outdir}/_ph0/${prefix}.${fildrho}1</b>
where  <b>${outdir},</b> <b>${prefix}</b> and <b>${fildrho}</b> are the values of the
corresponding input variables
         </info>
      </var>
      <var name="fildvscf" type="CHARACTER" >
         <default> &apos; &apos;
         </default>
         <info>
File where the the potential variation is written
(for later use in electron-phonon calculation, see also fildrho).
         </info>
      </var>
      <var name="epsil" type="LOGICAL" >
         <default> .false.
         </default>
         <info>
If .true. in a q=0 calculation for a non metal the
macroscopic dielectric constant of the system is
computed. Do not set <ref>epsil</ref> to .true. if you have a
metallic system or q/=0: the code will complain and stop.

Note: the input value of <ref>epsil</ref> will be ignored if <ref>ldisp</ref>=.true.
(the code will automatically set <ref>epsil</ref> to .false. for metals,
to .true. for insulators: see routine PHonon/PH/prepare_q.f90).
         </info>
      </var>
      <var name="lrpa" type="LOGICAL" >
         <default> .false.
         </default>
         <info>
If .true. the dielectric constant is calculated at the
RPA level with DV_xc=0.
         </info>
      </var>
      <var name="lnoloc" type="LOGICAL" >
         <default> .false.
         </default>
         <info>
If .true. the dielectric constant is calculated without
local fields, i.e. by setting DV_H=0 and DV_xc=0.
         </info>
      </var>
      <var name="trans" type="LOGICAL" >
         <default> .true.
         </default>
         <info>
If .true. the phonons are computed.
If <ref>trans</ref> .and. <ref>epsil</ref> are .true. effective charges are
calculated.
         </info>
      </var>
      <var name="lraman" type="LOGICAL" >
         <default> .false.
         </default>
         <info>
If .true. calculate non-resonant Raman coefficients
using second-order response as in:
M. Lazzeri and F. Mauri, <a href="https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.90.036401">PRL 90, 036401 (2003)</a>.
         </info>
      </var>
      <group>
         <label> Optional variables for Raman:
         </label>
         <var name="eth_rps" type="REAL" >
            <default> 1.0d-9
            </default>
            <info> Threshold for calculation of  Pc R |psi&gt;.
            </info>
         </var>
         <var name="eth_ns" type="REAL" >
            <default> 1.0e-12
            </default>
            <info> Threshold for non-scf wavefunction calculation.
            </info>
         </var>
         <var name="dek" type="REAL" >
            <default> 1.0e-3
            </default>
            <info> Delta_xk used for wavefunction derivation wrt k.
            </info>
         </var>
      </group>
      <var name="recover" type="LOGICAL" >
         <default> .false.
         </default>
         <info> If .true. restart from an interrupted run.
         </info>
      </var>
      <var name="low_directory_check" type="LOGICAL" >
         <default> .false.
         </default>
         <info>
If .true. search in the phsave directory only the
                 quantities requested in input.
         </info>
      </var>
      <var name="only_init" type="LOGICAL" >
         <default> .false.
         </default>
         <info>
If .true. only the bands and other initialization quantities are calculated.
(used for GRID parallelization)
         </info>
      </var>
      <var name="qplot" type="LOGICAL" >
         <default> .false.
         </default>
         <info> If .true. a list of q points is read from input.
         </info>
      </var>
      <var name="q2d" type="LOGICAL" >
         <default> .false.
         </default>
         <info>
If .true. three q points and relative weights are
read from input. The three q points define the rectangle
q(:,1) + l (q(:,2)-q(:,1)) + m (q(:,3)-q(:,1)) where
0&lt; l,m &lt; 1. The weights are integer and those of points two
and three are the number of points in the two directions.
         </info>
      </var>
      <var name="q_in_band_form" type="LOGICAL" >
         <default> .false.
         </default>
         <info>
This flag is used only when qplot is .true. and q2d is
.false.. When .true. each couple of q points q(:,i+1) and
q(:,i) define the line from q(:,i) to q(:,i+1) and nq
points are generated along that line. nq is the weigth of
q(:,i). When .false. only the list of q points given as
input is calculated. The weights are not used.
         </info>
      </var>
      <var name="electron_phonon" type="CHARACTER" >
         <default> &apos; &apos;
         </default>
         <options>
            <info>
Options are:
            </info>
            <opt val="'simple'" >
Electron-phonon lambda coefficients are computed
for a given q and a grid of k-points specified by
the variables nk1, nk2, nk3, k1, k2, k3.
            </opt>
            <opt val="'interpolated'" >
Electron-phonon is calculated by interpolation
over the Brillouin Zone as in M. Wierzbowska, et
al. <a href="https://arxiv.org/abs/cond-mat/0504077">arXiv:cond-mat/0504077</a>
            </opt>
            <opt val="'lambda_tetra'" >
The electron-phonon coefficient \lambda_{q \nu}
is calculated with the optimized tetrahedron method.
            </opt>
            <opt val="'gamma_tetra'" >
The phonon linewidth \gamma_{q \nu} is calculated
from the electron-phonon interactions
using the optimized tetrahedron method.
            </opt>
            <opt val="'epa'" >
Electron-phonon coupling matrix elements are written
to file prefix.epa.k for further processing by program
epa.x which implements electron-phonon averaged (EPA)
approximation as described in G. Samsonidze &amp; B. Kozinsky,
Adv. Energy Mater. 2018, 1800246 <a href="http://dx.doi.org/10.1002/aenm.201800246">doi:10.1002/aenm.201800246</a>
<a href="https://arxiv.org/abs/1511.08115">arXiv:1511.08115</a>
            </opt>
            <opt val="'ahc'" >
Quantities required for the calculation of phonon-induced
electron self-energy are computed and written to the directory
<ref>ahc_dir</ref>. The output files can be read by postahc.x for
the calculation of electron self-energy.
Available for both metals and insulators.
<ref>trans</ref>=.false. is required.
            </opt>
            <info>
For metals only, requires gaussian smearing (except for &apos;ahc&apos;).

If <ref>trans</ref>=.true., the lambdas are calculated in the same
run, using the same k-point grid for phonons and lambdas.
If <ref>trans</ref>=.false., the lambdas are calculated using
previously saved DeltaVscf in <ref>fildvscf</ref>, previously saved
dynamical matrix, and the present punch file. This allows
the use of a different (larger) k-point grid.
            </info>
         </options>
      </var>
      <var name="el_ph_nsigma" type="INTEGER" >
         <default> 10
         </default>
         <info>
The number of double-delta smearing values used in an
electron-phonon coupling calculation.
         </info>
      </var>
      <var name="el_ph_sigma" type="REAL" >
         <default> 0.02
         </default>
         <info>
The spacing between double-delta smearing values used in
an electron-phonon coupling calculation.
         </info>
      </var>
      <group>
         <label> Variables for <ref>electron_phonon</ref> = &apos;ahc&apos;:
         </label>
         <var name="ahc_dir" type="CHARACTER" >
            <default> outdir // &apos;ahc_dir/&apos;
            </default>
            <info>
Directory where the output binary files are written.
            </info>
         </var>
         <var name="ahc_nbnd" type="INTEGER" >
            <status> REQUIRED
            </status>
            <info>
Number of bands for which the electron self-energy is to be computed.
            </info>
         </var>
         <var name="ahc_nbndskip" type="INTEGER" >
            <default> 0
            </default>
            <info>
Number of bands to exclude when computing the self-energy. Self-energy
is computed for bands with indices from <ref>ahc_nbndskip</ref>+1 to
<ref>ahc_nbndskip</ref>+<ref>ahc_nbnd</ref>. <ref>ahc_nbndskip</ref>+<ref>ahc_nbnd</ref> cannot
exceed nbnd of the preceding SCF or NSCF calculation.
            </info>
         </var>
         <var name="skip_upperfan" type="LOGICAL" >
            <default> .false.
            </default>
            <info>
If .true., skip calculation of the upper Fan self-energy, which
involves solving the Sternheimer equation.
            </info>
         </var>
      </group>
      <var name="lshift_q" type="LOGICAL" >
         <default> .false.
         </default>
         <info>
Use a wave-vector grid displaced by half a grid step
in each direction - meaningful only when ldisp is .true.
When this option is set, the q2r.x code cannot be used.
         </info>
      </var>
      <var name="zeu" type="LOGICAL" >
         <default> zeu=<ref>epsil</ref>
         </default>
         <info>
If .true. in a q=0 calculation for a non metal the
effective charges are computed from the dielectric
response. This is the default algorithm. If <ref>epsil</ref>=.true.
and <ref>zeu</ref>=.false. only the dielectric tensor is calculated.
         </info>
      </var>
      <var name="zue" type="LOGICAL" >
         <default> .false.
         </default>
         <info>
If .true. in a q=0 calculation for a non metal the
effective charges are computed from the phonon
density responses. This is an alternative algorithm,
different from the default one (if <ref>trans</ref> .and. <ref>epsil</ref> )
The results should be the same within numerical noise.
         </info>
      </var>
      <var name="elop" type="LOGICAL" >
         <default> .false.
         </default>
         <info>
If .true. calculate electro-optic tensor.
         </info>
      </var>
      <var name="fpol" type="LOGICAL" >
         <default> .false.
         </default>
         <info>
If .true. calculate dynamic polarizabilities
Requires <ref>epsil</ref>=.true. ( experimental stage:
see example09 for calculation of methane ).
         </info>
      </var>
      <var name="ldisp" type="LOGICAL" >
         <default> .false.
         </default>
         <info>
If .true. the run calculates phonons for a grid of
q-points specified by <ref>nq1</ref>, <ref>nq2</ref>, <ref>nq3</ref> - for direct
calculation of the entire phonon dispersion.
         </info>
      </var>
      <var name="nogg" type="LOGICAL" >
         <default> .false.
         </default>
         <info>
If .true. disable the &quot;gamma_gamma&quot; trick used to speed
up calculations at q=0 (phonon wavevector) if the sum over
the Brillouin Zone includes k=0 only. The gamma_gamma
trick exploits symmetry and acoustic sum rule to reduce
the number of linear response calculations to the strict
minimum, as it is done in code phcg.x.
         </info>
      </var>
      <var name="asr" type="LOGICAL" >
         <default> .false.
         </default>
         <info>
Apply Acoustic Sum Rule to dynamical matrix, effective charges
Works only in conjunction with &quot;gamma_gamma&quot; tricks (see above)
         </info>
      </var>
      <var name="ldiag" type="LOGICAL" >
         <default> .false.
         </default>
         <info>
If .true. forces the diagonalization of the dynamical
matrix also when only a part of the dynamical matrix
has been calculated. It is used together with <ref>start_irr</ref>
and <ref>last_irr</ref>. If all modes corresponding to a
given irreducible representation have been calculated,
the phonon frequencies of that representation are
correct. The others are zero or wrong. Use with care.
         </info>
      </var>
      <var name="lqdir" type="LOGICAL" >
         <default> .false.
         </default>
         <info>
If .true. ph.x creates inside outdir a separate subdirectory
for each q vector. The flag is set to .true. when <ref>ldisp</ref>=.true.
and <ref>fildvscf</ref> /= &apos; &apos; or when an electron-phonon
calculation is performed. The induced potential is saved
separately for each q inside the subdirectories.
         </info>
      </var>
      <var name="search_sym" type="LOGICAL" >
         <default> .true.
         </default>
         <info>
Set it to .false. if you want to disable the mode
symmetry analysis.
         </info>
      </var>
      <vargroup type="INTEGER" >
         <var name="nq1" >
         </var>
         <var name="nq2" >
         </var>
         <var name="nq3" >
         </var>
         <default> 0,0,0
         </default>
         <info>
Parameters of the Monkhorst-Pack grid (no offset) used
when <ref>ldisp</ref>=.true. Same meaning as for nk1, nk2, nk3
in the input of pw.x.
         </info>
      </vargroup>
      <vargroup type="INTEGER" >
         <var name="nk1" >
         </var>
         <var name="nk2" >
         </var>
         <var name="nk3" >
         </var>
         <var name="k1" >
         </var>
         <var name="k2" >
         </var>
         <var name="k3" >
         </var>
         <default> 0,0,0,0,0,0
         </default>
         <info>
When these parameters are specified the phonon program
runs a pw non-self consistent calculation with a different
k-point grid thant that used for the charge density.
This occurs even in the Gamma case.
nk1,nk2,nk3 are the parameters of the Monkhorst-Pack grid
with offset determined by k1,k2,k3.
         </info>
      </vargroup>
      <var name="diagonalization" type="CHARACTER" >
         <default> &apos;david&apos;
         </default>
         <options>
            <info>
Diagonalization method for the non-SCF calculations.
            </info>
            <opt val="'david'" >
Davidson iterative diagonalization with overlap matrix
(default). Fast, may in some rare cases fail.
            </opt>
            <opt val="'cg'" >
Conjugate-gradient-like band-by-band diagonalization.
Slower than &apos;david&apos; but uses less memory and is
(a little bit) more robust.
            </opt>
         </options>
      </var>
      <var name="read_dns_bare" type="LOGICAL" >
         <default> .false.
         </default>
         <info>
If .true. the PH code tries to read three files in the DFPT+U
calculation: dns_orth, dns_bare, d2ns_bare.
dns_orth and dns_bare are the first-order variations of
the occupation matrix, while d2ns_bare is the second-order
variation of the occupation matrix. These matrices are
computed only once during the DFPT+U calculation. However,
their calculation (especially of d2ns_bare) is computationally
expensive, this is why they are written to file and then can be
read (e.g. for restart) in order to save time.
         </info>
      </var>
      <var name="ldvscf_interpolate" type="LOGICAL" >
         <default> .false.
         </default>
         <info>
If .true., use Fourier interpolation of phonon potential
to compute the induced part of phonon potential at each
q point. Results of a dvscf_q2r.x run is needed.
Requires <ref>trans</ref> = .false..
         </info>
      </var>
      <group>
         <label> Optional variables for dvscf interpolation:
         </label>
         <var name="wpot_dir" type="CHARACTER" >
            <default> outdir // &apos;w_pot/&apos;
            </default>
            <info>
Directory where the w_pot binary files are written.
Must be the same with wpot_dir used in dvscf_q2r.x.
The real space potential files are stored in wpot_dir
with names ${prefix}.wpot.irc${irc}//&quot;1&quot;.
            </info>
         </var>
         <var name="do_long_range" type="LOGICAL" >
            <default> .false.
            </default>
            <info>
If .true., add the long-range part of the potential
to the Fourier interpolated potential as in:
S. Ponce et al, J. Chem. Phys. 143, 102813 (2015).
Reads dielectric matrix and Born effective charges from
the ${wpot_dir}/tensors.dat file, written in dvscf_q2r.x.
Currently, only the dipole (Frohlich) part is implemented.
The quadrupole part is not implemented.
            </info>
         </var>
         <var name="do_charge_neutral" type="LOGICAL" >
            <default> .false.
            </default>
            <info>
If .true., impose charge neutrality on the Born effective
charges. Used only if <ref>do_long_range</ref> = .true..
            </info>
         </var>
      </group>
      <group>
         <label> Specification of irreducible representation
         </label>
         <var name="start_irr" type="INTEGER" >
            <default> 1
            </default>
            <see> last_irr
            </see>
            <info>
Perform calculations only from <ref>start_irr</ref> to <ref>last_irr</ref>
irreducible representations.

IMPORTANT:
   * <ref>start_irr</ref> must be &lt;= 3*nat
   * do not specify <ref>nat_todo</ref> together with
     <ref>start_irr</ref>, <ref>last_irr</ref>
            </info>
         </var>
         <var name="last_irr" type="INTEGER" >
            <default> 3*nat
            </default>
            <see> start_irr
            </see>
            <info>
Perform calculations only from <ref>start_irr</ref> to <ref>last_irr</ref>
irreducible representations.

IMPORTANT:
   * <ref>start_irr</ref> must be &lt;= 3*nat
   * do not specify <ref>nat_todo</ref> together with
     <ref>start_irr</ref>, <ref>last_irr</ref>
            </info>
         </var>
         <var name="nat_todo" type="INTEGER" >
            <default> 0, i.e. displace all atoms
            </default>
            <info>
Choose the subset of atoms to be used in the linear response
calculation: <ref>nat_todo</ref> atoms, specified in input (see below)
are displaced. Can be used to estimate modes for a molecule
adsorbed over a surface without performing a full fledged
calculation. Use with care, at your own risk, and be aware
that this is an approximation and may not work.
IMPORTANT:
   * <ref>nat_todo</ref> &lt;= nat
   * if linear-response is calculated for a given atom, it
     should also be done for all symmetry-equivalent atoms,
     or else you will get incorrect results
            </info>
         </var>
         <var name="modenum" type="INTEGER" >
            <default> 0
            </default>
            <info>
For single-mode phonon calculation : modenum is the index of the
irreducible representation (irrep) into which the reducible
representation formed by the 3*nat atomic displacements are
decomposed in order to perform the phonon calculation.
Note that a single-mode calculation will not give you the
frequency of a single phonon mode: in general, the selected
&quot;modenum&quot; is not an eigenvector. What you get on output is
a column of the dynamical matrix.
            </info>
         </var>
      </group>
      <group>
         <label> q-point specification
         </label>
         <var name="start_q" type="INTEGER" >
            <default> 1
            </default>
            <see> last_q
            </see>
            <info>
Used only when ldisp=.true..
Computes only the q points from <ref>start_q</ref> to <ref>last_q</ref>.

IMPORTANT:
   * <ref>start_q</ref> must be &lt;= <ref>nqs</ref> (number of q points found)
   * do not specify <ref>nat_todo</ref> together with
     <ref>start_q</ref>, <ref>last_q</ref>
            </info>
         </var>
         <var name="last_q" type="INTEGER" >
            <default> number of q points
            </default>
            <see> start_q
            </see>
            <info>
Used only when <ref>ldisp</ref>=.true..
Computes only the q points from <ref>start_q</ref> to <ref>last_q</ref>.

IMPORTANT
   * <ref>last_q</ref> must be &lt;= <ref>nqs</ref> (number of q points)
   * do not specify <ref>nat_todo</ref> together with
     <ref>start_q</ref>, <ref>last_q</ref>
            </info>
         </var>
         <var name="dvscf_star" type="STRUCTURE" >
            <default> disabled
            </default>
            <info>
It contains the following components:

<b>dvscf_star%open</b>  (logical, default: .false.)
<b>dvscf_star%dir</b>   (character, default: outdir//&quot;Rotated_DVSCF&quot; or the
                  ESPRESSO_FILDVSCF_DIR environment variable)
<b>dvscf_star%ext</b>   (character, default: &quot;dvscf&quot;) the extension to use
                  for the name of the output files, see below
<b>dvscf_star%basis</b> (character, default: &quot;cartesian&quot;) the basis on which
                  the rotated dvscf will be saved
<b>dvscf_star%pat</b>   (logical, default: false) save an optional file with the
                  displacement patterns and q vector for each dvscf file

IF dvscf_star%open is .true. use symmetry to compute and store the variation
of the self-consistent potential on every q* in the star of the present q.

The rotated dvscf will then be stored in directory dvscf_star%dir with name
prefix.dvscf_star%ext.q_name//&quot;1&quot;. Where q_name is derived from the coordinates
of the q-point, expressed as fractions in crystalline coordinates
(notice that ph.x reads q-points in cartesian coordinates).
E.g. q_cryst= (0, 0.5, -0.25) -&gt; q_name = &quot;0_1o2_-1o4&quot;

The dvscf can be represented on a basis of cartesian 1-atom displacements
(dvscf_star%basis=&apos;cartesian&apos;) or on the basis of the modes at the rotated q-point
(dvscf_star%basis=&apos;modes&apos;). Notice that the el-ph wannier code requires &apos;cartesian&apos;.
Each dvscf file comes with a corresponding pattern file with an additional &quot;.pat&quot;
suffix; this file contains information about the basis and the q-point of the dvscf.

Note: rotating dvscf can require a large amount of RAM memory and can be i/o
      intensive; in its current implementation all the operations are done
      on a single processor.
Note2: this feature is currently untested with image parallelisation.
            </info>
         </var>
         <var name="drho_star" type="STRUCTURE" >
            <see> dvscf_star
            </see>
            <default> disabled
            </default>
            <info>
It contains the following components:

<b>drho_star%open</b>  (logical, default: .false.)
<b>drho_star%dir</b>   (character, default: outdir//&quot;Rotated_DRHO&quot; or the
                 ESPRESSO_FILDRHO_DIR environment variable)
<b>drho_star%ext</b>   (character, default: &quot;drho&quot;) the extension to use
                 for the name of the output files, see below
<b>drho_star%basis</b> (character, default: &quot;modes&quot;) the basis on which
                 the rotated drho will be saved
<b>drho_star%pat</b>   (logical, default: true) save an optional file with the
                 displacement patterns and q vector for each drho file

Like <ref>dvscf_star</ref>, but for the perturbation of the charge density.
Notice that the defaults are different.
            </info>
         </var>
      </group>
   </namelist>
   <choose>
      <when test="ldisp != .true.   and   qplot != .true." >
         <linecard>
            <list name="xq_list" type="REAL" >
               <format> xq(1)  xq(2)  xq(3)
               </format>
               <info>
The phonon wavevector, in units of 2pi/a0
(a0 = lattice parameter).
Not used if <ref>ldisp</ref>=.true. or <ref>qplot</ref>=.true.
               </info>
            </list>
         </linecard>
      </when>
      <elsewhen test="qplot == .true." >
         <label> Specification of q points when <ref>qplot</ref> == .true.
         </label>
         <card name="qPointsSpecs" nameless="1" >
            <syntax>
               <line>
                  <var name="nqs" type="INTEGER" >
                     <info>
Number of q points in the list. Used only if <ref>qplot</ref>=.true.
                     </info>
                  </var>
               </line>
               <table name="qPoints" >
                  <rows start="1" end="nqs" >
                     <colgroup type="REAL" >
                        <info>
q-point coordinates; used only with <ref>ldisp</ref>=.true. and qplot=.true.
The phonon wavevector, in units of 2pi/a0 (a0 = lattice parameter).
The meaning of these q points and their weights nq depend on the
flags q2d and q_in_band_form. (NB: nq is integer)
                        </info>
                        <col name="xq1" >
                        </col>
                        <col name="xq2" >
                        </col>
                        <col name="xq3" >
                        </col>
                     </colgroup>
                     <col name="nq" type="INTEGER" >
                        <info>
The weight of the q-point; the meaning of nq depends
on the flags q2d and q_in_band_form.
                        </info>
                     </col>
                  </rows>
               </table>
            </syntax>
         </card>
      </elsewhen>
   </choose>
   <choose>
      <when test="nat_todo was specified" >
         <linecard>
            <list name="nat_todo_list" type="INTEGER" >
               <format> atom(1)  atom(2) ... atom(nat_todo)
               </format>
               <info>
Contains the list of indices of atoms used in the
calculation if <ref>nat_todo</ref> is specified.
               </info>
            </list>
         </linecard>
      </when>
   </choose>
   <section title=" ADDITIONAL INFORMATION " >
      <text>
NB: The program ph.x writes on the tmp_dir/_ph0/{prefix}.phsave directory
a file for each representation of each q point. This file is called
dynmat.#iq.#irr.xml where #iq is the number of the q point and #irr
is the number of the representation. These files contain the
contribution to the dynamical matrix of the irr representation for the
iq point.

If <ref>recover</ref>=.true. ph.x does not recalculate the
representations already saved in the tmp_dir/_ph0/{prefix}.phsave
directory.  Moreover ph.x writes on the files patterns.#iq.xml in the
tmp_dir/_ph0/{prefix}.phsave directory the displacement patterns that it
is using. If <ref>recover</ref>=.true. ph.x does not recalculate the
displacement patterns found in the tmp_dir/_ph0/{prefix}.phsave directory.

This mechanism allows:

  1) To recover part of the ph.x calculation even if the recover file
     or files are corrupted. You just remove the _ph0/{prefix}.recover
     files from the tmp_dir directory. You can also remove all the _ph0
     files and keep only the _ph0/{prefix}.phsave directory.

  2) To split a phonon calculation into several jobs for different
     machines (or set of nodes). Each machine calculates a subset of
     the representations and saves its dynmat.#iq.#irr.xml files on
     its tmp_dir/_ph0/{prefix}.phsave directory. Then you collect all the
     dynmat.#iq.#irr.xml files in one directory and run ph.x to
     collect all the dynamical matrices and diagonalize them.

NB: To split the q points in different machines, use the input
variables start_q and last_q. To split the irreducible
representations, use the input variables <ref>start_irr</ref>, <ref>last_irr</ref>. Please
note that different machines will use, in general, different
displacement patterns and it is not possible to recollect partial
dynamical matrices generated with different displacement patterns.  A
calculation split into different machines will run as follows: A
preparatory run of ph.x with <ref>start_irr</ref>=0, <ref>last_irr</ref>=0 produces the sets
of displacement patterns and save them on the patterns.#iq.xml files.
These files are copied in all the tmp_dir/_ph0/{prefix}.phsave directories
of the machines where you plan to run ph.x. ph.x is run in different
machines with complementary sets of start_q, last_q, <ref>start_irr</ref> and
<ref>last_irr</ref> variables.  All the files dynmat.#iq.#irr.xml are
collected on a single tmp_dir/_ph0/{prefix}.phsave directory (remember to
collect also dynmat.#iq.0.xml).  A final run of ph.x in this
machine collects all the data contained in the files and diagonalizes
the dynamical matrices.  This is done requesting a complete dispersion
calculation without using start_q, last_q, <ref>start_irr</ref>, or <ref>last_irr</ref>.
See an example in examples/GRID_example.

On parallel machines the q point and the irreps calculations can be split
automatically using the -nimage flag. See the phonon user guide for further
information.
      </text>
   </section>
</input_description>