1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
|
<?xml version="1.0" encoding="ISO-8859-1"?>
<?xml-stylesheet type="text/xsl" href="input_xx.xsl"?>
<!-- FILE AUTOMATICALLY CREATED: DO NOT EDIT, CHANGES WILL BE LOST -->
<input_description distribution="Quantum Espresso" package="PWscf" program="ph.x" >
<toc>
</toc>
<intro>
<b>Input data format:</b> { } = optional, [ ] = it depends, # = comment
<b>Structure of the input data:</b>
===============================================================================
title_line
<b>&INPUTPH</b>
...
<b>/</b>
[ xq(1) xq(2) xq(3) ] <i># if <ref>ldisp</ref> != .true. and <ref>qplot</ref> != .true.</i>
[ nqs <i># if <ref>qplot</ref> == .true. </i>
xq(1,i) xq(2,i) xq(3,1) nq(1)
...
xq(1,nqs) xq(2,nqs) xq(3,nqs) nq(nqs) ]
[ atom(1) atom(2) ... atom(nat_todo) ] <i># if <ref>nat_todo</ref> was specified</i>
</intro>
<linecard>
<var name="title_line" type="CHARACTER" >
<info>
Title of the job, i.e., a line that is reprinted on output.
</info>
</var>
</linecard>
<namelist name="INPUTPH" >
<dimension name="amass" start="1" end="ntyp" type="REAL" >
<default> 0.0
</default>
<info>
Atomic mass [amu] of each atomic type.
If not specified, masses are read from data file.
</info>
</dimension>
<var name="outdir" type="CHARACTER" >
<default>
value of the <tt>ESPRESSO_TMPDIR</tt> environment variable if set;
<br/> current directory ('./') otherwise
</default>
<info>
Directory containing input, output, and scratch files;
must be the same as specified in the calculation of
the unperturbed system.
</info>
</var>
<var name="prefix" type="CHARACTER" >
<default> 'pwscf'
</default>
<info>
Prepended to input/output filenames; must be the same
used in the calculation of unperturbed system.
</info>
</var>
<var name="niter_ph" type="INTEGER" >
<default> maxter=100
</default>
<info>
Maximum number of iterations in a scf step. If you want
more than 100, edit variable "maxter" in PH/phcom.f90
</info>
</var>
<var name="tr2_ph" type="REAL" >
<default> 1e-12
</default>
<info> Threshold for self-consistency.
</info>
</var>
<var name="alpha_mix(niter)" type="REAL" >
<default> alpha_mix(1)=0.7
</default>
<info>
Mixing factor (for each iteration) for updating
the scf potential:
vnew(in) = alpha_mix*vold(out) + (1-alpha_mix)*vold(in)
</info>
</var>
<var name="nmix_ph" type="INTEGER" >
<default> 4
</default>
<info> Number of iterations used in potential mixing.
</info>
</var>
<var name="verbosity" type="CHARACTER" >
<default> 'default'
</default>
<options>
<info> Options are:
</info>
<opt val="'debug', 'high', 'medium'" > verbose output
</opt>
<opt val="'low', 'default', 'minimal'" > short output
</opt>
</options>
</var>
<var name="reduce_io" type="LOGICAL" >
<default> .false.
</default>
<info> Reduce I/O to the strict minimum.
</info>
</var>
<var name="max_seconds" type="REAL" >
<default> 1.d7
</default>
<info> Maximum allowed run time before the job stops smoothly.
</info>
</var>
<var name="fildyn" type="CHARACTER" >
<default> 'matdyn'
</default>
<info> File where the dynamical matrix is written.
</info>
</var>
<var name="fildrho" type="CHARACTER" >
<default> ' '
</default>
<info>
File where the charge density responses are written. Note that the file
will actually be saved as <b>${outdir}/_ph0/${prefix}.${fildrho}1</b>
where <b>${outdir},</b> <b>${prefix}</b> and <b>${fildrho}</b> are the values of the
corresponding input variables
</info>
</var>
<var name="fildvscf" type="CHARACTER" >
<default> ' '
</default>
<info>
File where the the potential variation is written
(for later use in electron-phonon calculation, see also fildrho).
</info>
</var>
<var name="epsil" type="LOGICAL" >
<default> .false.
</default>
<info>
If .true. in a q=0 calculation for a non metal the
macroscopic dielectric constant of the system is
computed. Do not set <ref>epsil</ref> to .true. if you have a
metallic system or q/=0: the code will complain and stop.
Note: the input value of <ref>epsil</ref> will be ignored if <ref>ldisp</ref>=.true.
(the code will automatically set <ref>epsil</ref> to .false. for metals,
to .true. for insulators: see routine PHonon/PH/prepare_q.f90).
</info>
</var>
<var name="lrpa" type="LOGICAL" >
<default> .false.
</default>
<info>
If .true. the dielectric constant is calculated at the
RPA level with DV_xc=0.
</info>
</var>
<var name="lnoloc" type="LOGICAL" >
<default> .false.
</default>
<info>
If .true. the dielectric constant is calculated without
local fields, i.e. by setting DV_H=0 and DV_xc=0.
</info>
</var>
<var name="trans" type="LOGICAL" >
<default> .true.
</default>
<info>
If .true. the phonons are computed.
If <ref>trans</ref> .and. <ref>epsil</ref> are .true. effective charges are
calculated.
</info>
</var>
<var name="lraman" type="LOGICAL" >
<default> .false.
</default>
<info>
If .true. calculate non-resonant Raman coefficients
using second-order response as in:
M. Lazzeri and F. Mauri, <a href="https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.90.036401">PRL 90, 036401 (2003)</a>.
</info>
</var>
<group>
<label> Optional variables for Raman:
</label>
<var name="eth_rps" type="REAL" >
<default> 1.0d-9
</default>
<info> Threshold for calculation of Pc R |psi>.
</info>
</var>
<var name="eth_ns" type="REAL" >
<default> 1.0e-12
</default>
<info> Threshold for non-scf wavefunction calculation.
</info>
</var>
<var name="dek" type="REAL" >
<default> 1.0e-3
</default>
<info> Delta_xk used for wavefunction derivation wrt k.
</info>
</var>
</group>
<var name="recover" type="LOGICAL" >
<default> .false.
</default>
<info> If .true. restart from an interrupted run.
</info>
</var>
<var name="low_directory_check" type="LOGICAL" >
<default> .false.
</default>
<info>
If .true. search in the phsave directory only the
quantities requested in input.
</info>
</var>
<var name="only_init" type="LOGICAL" >
<default> .false.
</default>
<info>
If .true. only the bands and other initialization quantities are calculated.
(used for GRID parallelization)
</info>
</var>
<var name="qplot" type="LOGICAL" >
<default> .false.
</default>
<info> If .true. a list of q points is read from input.
</info>
</var>
<var name="q2d" type="LOGICAL" >
<default> .false.
</default>
<info>
If .true. three q points and relative weights are
read from input. The three q points define the rectangle
q(:,1) + l (q(:,2)-q(:,1)) + m (q(:,3)-q(:,1)) where
0< l,m < 1. The weights are integer and those of points two
and three are the number of points in the two directions.
</info>
</var>
<var name="q_in_band_form" type="LOGICAL" >
<default> .false.
</default>
<info>
This flag is used only when qplot is .true. and q2d is
.false.. When .true. each couple of q points q(:,i+1) and
q(:,i) define the line from q(:,i) to q(:,i+1) and nq
points are generated along that line. nq is the weigth of
q(:,i). When .false. only the list of q points given as
input is calculated. The weights are not used.
</info>
</var>
<var name="electron_phonon" type="CHARACTER" >
<default> ' '
</default>
<options>
<info>
Options are:
</info>
<opt val="'simple'" >
Electron-phonon lambda coefficients are computed
for a given q and a grid of k-points specified by
the variables nk1, nk2, nk3, k1, k2, k3.
</opt>
<opt val="'interpolated'" >
Electron-phonon is calculated by interpolation
over the Brillouin Zone as in M. Wierzbowska, et
al. <a href="https://arxiv.org/abs/cond-mat/0504077">arXiv:cond-mat/0504077</a>
</opt>
<opt val="'lambda_tetra'" >
The electron-phonon coefficient \lambda_{q \nu}
is calculated with the optimized tetrahedron method.
</opt>
<opt val="'gamma_tetra'" >
The phonon linewidth \gamma_{q \nu} is calculated
from the electron-phonon interactions
using the optimized tetrahedron method.
</opt>
<opt val="'epa'" >
Electron-phonon coupling matrix elements are written
to file prefix.epa.k for further processing by program
epa.x which implements electron-phonon averaged (EPA)
approximation as described in G. Samsonidze & B. Kozinsky,
Adv. Energy Mater. 2018, 1800246 <a href="http://dx.doi.org/10.1002/aenm.201800246">doi:10.1002/aenm.201800246</a>
<a href="https://arxiv.org/abs/1511.08115">arXiv:1511.08115</a>
</opt>
<opt val="'ahc'" >
Quantities required for the calculation of phonon-induced
electron self-energy are computed and written to the directory
<ref>ahc_dir</ref>. The output files can be read by postahc.x for
the calculation of electron self-energy.
Available for both metals and insulators.
<ref>trans</ref>=.false. is required.
</opt>
<info>
For metals only, requires gaussian smearing (except for 'ahc').
If <ref>trans</ref>=.true., the lambdas are calculated in the same
run, using the same k-point grid for phonons and lambdas.
If <ref>trans</ref>=.false., the lambdas are calculated using
previously saved DeltaVscf in <ref>fildvscf</ref>, previously saved
dynamical matrix, and the present punch file. This allows
the use of a different (larger) k-point grid.
</info>
</options>
</var>
<var name="el_ph_nsigma" type="INTEGER" >
<default> 10
</default>
<info>
The number of double-delta smearing values used in an
electron-phonon coupling calculation.
</info>
</var>
<var name="el_ph_sigma" type="REAL" >
<default> 0.02
</default>
<info>
The spacing between double-delta smearing values used in
an electron-phonon coupling calculation.
</info>
</var>
<group>
<label> Variables for <ref>electron_phonon</ref> = 'ahc':
</label>
<var name="ahc_dir" type="CHARACTER" >
<default> outdir // 'ahc_dir/'
</default>
<info>
Directory where the output binary files are written.
</info>
</var>
<var name="ahc_nbnd" type="INTEGER" >
<status> REQUIRED
</status>
<info>
Number of bands for which the electron self-energy is to be computed.
</info>
</var>
<var name="ahc_nbndskip" type="INTEGER" >
<default> 0
</default>
<info>
Number of bands to exclude when computing the self-energy. Self-energy
is computed for bands with indices from <ref>ahc_nbndskip</ref>+1 to
<ref>ahc_nbndskip</ref>+<ref>ahc_nbnd</ref>. <ref>ahc_nbndskip</ref>+<ref>ahc_nbnd</ref> cannot
exceed nbnd of the preceding SCF or NSCF calculation.
</info>
</var>
<var name="skip_upperfan" type="LOGICAL" >
<default> .false.
</default>
<info>
If .true., skip calculation of the upper Fan self-energy, which
involves solving the Sternheimer equation.
</info>
</var>
</group>
<var name="lshift_q" type="LOGICAL" >
<default> .false.
</default>
<info>
Use a wave-vector grid displaced by half a grid step
in each direction - meaningful only when ldisp is .true.
When this option is set, the q2r.x code cannot be used.
</info>
</var>
<var name="zeu" type="LOGICAL" >
<default> zeu=<ref>epsil</ref>
</default>
<info>
If .true. in a q=0 calculation for a non metal the
effective charges are computed from the dielectric
response. This is the default algorithm. If <ref>epsil</ref>=.true.
and <ref>zeu</ref>=.false. only the dielectric tensor is calculated.
</info>
</var>
<var name="zue" type="LOGICAL" >
<default> .false.
</default>
<info>
If .true. in a q=0 calculation for a non metal the
effective charges are computed from the phonon
density responses. This is an alternative algorithm,
different from the default one (if <ref>trans</ref> .and. <ref>epsil</ref> )
The results should be the same within numerical noise.
</info>
</var>
<var name="elop" type="LOGICAL" >
<default> .false.
</default>
<info>
If .true. calculate electro-optic tensor.
</info>
</var>
<var name="fpol" type="LOGICAL" >
<default> .false.
</default>
<info>
If .true. calculate dynamic polarizabilities
Requires <ref>epsil</ref>=.true. ( experimental stage:
see example09 for calculation of methane ).
</info>
</var>
<var name="ldisp" type="LOGICAL" >
<default> .false.
</default>
<info>
If .true. the run calculates phonons for a grid of
q-points specified by <ref>nq1</ref>, <ref>nq2</ref>, <ref>nq3</ref> - for direct
calculation of the entire phonon dispersion.
</info>
</var>
<var name="nogg" type="LOGICAL" >
<default> .false.
</default>
<info>
If .true. disable the "gamma_gamma" trick used to speed
up calculations at q=0 (phonon wavevector) if the sum over
the Brillouin Zone includes k=0 only. The gamma_gamma
trick exploits symmetry and acoustic sum rule to reduce
the number of linear response calculations to the strict
minimum, as it is done in code phcg.x.
</info>
</var>
<var name="asr" type="LOGICAL" >
<default> .false.
</default>
<info>
Apply Acoustic Sum Rule to dynamical matrix, effective charges
Works only in conjunction with "gamma_gamma" tricks (see above)
</info>
</var>
<var name="ldiag" type="LOGICAL" >
<default> .false.
</default>
<info>
If .true. forces the diagonalization of the dynamical
matrix also when only a part of the dynamical matrix
has been calculated. It is used together with <ref>start_irr</ref>
and <ref>last_irr</ref>. If all modes corresponding to a
given irreducible representation have been calculated,
the phonon frequencies of that representation are
correct. The others are zero or wrong. Use with care.
</info>
</var>
<var name="lqdir" type="LOGICAL" >
<default> .false.
</default>
<info>
If .true. ph.x creates inside outdir a separate subdirectory
for each q vector. The flag is set to .true. when <ref>ldisp</ref>=.true.
and <ref>fildvscf</ref> /= ' ' or when an electron-phonon
calculation is performed. The induced potential is saved
separately for each q inside the subdirectories.
</info>
</var>
<var name="search_sym" type="LOGICAL" >
<default> .true.
</default>
<info>
Set it to .false. if you want to disable the mode
symmetry analysis.
</info>
</var>
<vargroup type="INTEGER" >
<var name="nq1" >
</var>
<var name="nq2" >
</var>
<var name="nq3" >
</var>
<default> 0,0,0
</default>
<info>
Parameters of the Monkhorst-Pack grid (no offset) used
when <ref>ldisp</ref>=.true. Same meaning as for nk1, nk2, nk3
in the input of pw.x.
</info>
</vargroup>
<vargroup type="INTEGER" >
<var name="nk1" >
</var>
<var name="nk2" >
</var>
<var name="nk3" >
</var>
<var name="k1" >
</var>
<var name="k2" >
</var>
<var name="k3" >
</var>
<default> 0,0,0,0,0,0
</default>
<info>
When these parameters are specified the phonon program
runs a pw non-self consistent calculation with a different
k-point grid thant that used for the charge density.
This occurs even in the Gamma case.
nk1,nk2,nk3 are the parameters of the Monkhorst-Pack grid
with offset determined by k1,k2,k3.
</info>
</vargroup>
<var name="diagonalization" type="CHARACTER" >
<default> 'david'
</default>
<options>
<info>
Diagonalization method for the non-SCF calculations.
</info>
<opt val="'david'" >
Davidson iterative diagonalization with overlap matrix
(default). Fast, may in some rare cases fail.
</opt>
<opt val="'cg'" >
Conjugate-gradient-like band-by-band diagonalization.
Slower than 'david' but uses less memory and is
(a little bit) more robust.
</opt>
</options>
</var>
<var name="read_dns_bare" type="LOGICAL" >
<default> .false.
</default>
<info>
If .true. the PH code tries to read three files in the DFPT+U
calculation: dns_orth, dns_bare, d2ns_bare.
dns_orth and dns_bare are the first-order variations of
the occupation matrix, while d2ns_bare is the second-order
variation of the occupation matrix. These matrices are
computed only once during the DFPT+U calculation. However,
their calculation (especially of d2ns_bare) is computationally
expensive, this is why they are written to file and then can be
read (e.g. for restart) in order to save time.
</info>
</var>
<var name="ldvscf_interpolate" type="LOGICAL" >
<default> .false.
</default>
<info>
If .true., use Fourier interpolation of phonon potential
to compute the induced part of phonon potential at each
q point. Results of a dvscf_q2r.x run is needed.
Requires <ref>trans</ref> = .false..
</info>
</var>
<group>
<label> Optional variables for dvscf interpolation:
</label>
<var name="wpot_dir" type="CHARACTER" >
<default> outdir // 'w_pot/'
</default>
<info>
Directory where the w_pot binary files are written.
Must be the same with wpot_dir used in dvscf_q2r.x.
The real space potential files are stored in wpot_dir
with names ${prefix}.wpot.irc${irc}//"1".
</info>
</var>
<var name="do_long_range" type="LOGICAL" >
<default> .false.
</default>
<info>
If .true., add the long-range part of the potential
to the Fourier interpolated potential as in:
S. Ponce et al, J. Chem. Phys. 143, 102813 (2015).
Reads dielectric matrix and Born effective charges from
the ${wpot_dir}/tensors.dat file, written in dvscf_q2r.x.
Currently, only the dipole (Frohlich) part is implemented.
The quadrupole part is not implemented.
</info>
</var>
<var name="do_charge_neutral" type="LOGICAL" >
<default> .false.
</default>
<info>
If .true., impose charge neutrality on the Born effective
charges. Used only if <ref>do_long_range</ref> = .true..
</info>
</var>
</group>
<group>
<label> Specification of irreducible representation
</label>
<var name="start_irr" type="INTEGER" >
<default> 1
</default>
<see> last_irr
</see>
<info>
Perform calculations only from <ref>start_irr</ref> to <ref>last_irr</ref>
irreducible representations.
IMPORTANT:
* <ref>start_irr</ref> must be <= 3*nat
* do not specify <ref>nat_todo</ref> together with
<ref>start_irr</ref>, <ref>last_irr</ref>
</info>
</var>
<var name="last_irr" type="INTEGER" >
<default> 3*nat
</default>
<see> start_irr
</see>
<info>
Perform calculations only from <ref>start_irr</ref> to <ref>last_irr</ref>
irreducible representations.
IMPORTANT:
* <ref>start_irr</ref> must be <= 3*nat
* do not specify <ref>nat_todo</ref> together with
<ref>start_irr</ref>, <ref>last_irr</ref>
</info>
</var>
<var name="nat_todo" type="INTEGER" >
<default> 0, i.e. displace all atoms
</default>
<info>
Choose the subset of atoms to be used in the linear response
calculation: <ref>nat_todo</ref> atoms, specified in input (see below)
are displaced. Can be used to estimate modes for a molecule
adsorbed over a surface without performing a full fledged
calculation. Use with care, at your own risk, and be aware
that this is an approximation and may not work.
IMPORTANT:
* <ref>nat_todo</ref> <= nat
* if linear-response is calculated for a given atom, it
should also be done for all symmetry-equivalent atoms,
or else you will get incorrect results
</info>
</var>
<var name="modenum" type="INTEGER" >
<default> 0
</default>
<info>
For single-mode phonon calculation : modenum is the index of the
irreducible representation (irrep) into which the reducible
representation formed by the 3*nat atomic displacements are
decomposed in order to perform the phonon calculation.
Note that a single-mode calculation will not give you the
frequency of a single phonon mode: in general, the selected
"modenum" is not an eigenvector. What you get on output is
a column of the dynamical matrix.
</info>
</var>
</group>
<group>
<label> q-point specification
</label>
<var name="start_q" type="INTEGER" >
<default> 1
</default>
<see> last_q
</see>
<info>
Used only when ldisp=.true..
Computes only the q points from <ref>start_q</ref> to <ref>last_q</ref>.
IMPORTANT:
* <ref>start_q</ref> must be <= <ref>nqs</ref> (number of q points found)
* do not specify <ref>nat_todo</ref> together with
<ref>start_q</ref>, <ref>last_q</ref>
</info>
</var>
<var name="last_q" type="INTEGER" >
<default> number of q points
</default>
<see> start_q
</see>
<info>
Used only when <ref>ldisp</ref>=.true..
Computes only the q points from <ref>start_q</ref> to <ref>last_q</ref>.
IMPORTANT
* <ref>last_q</ref> must be <= <ref>nqs</ref> (number of q points)
* do not specify <ref>nat_todo</ref> together with
<ref>start_q</ref>, <ref>last_q</ref>
</info>
</var>
<var name="dvscf_star" type="STRUCTURE" >
<default> disabled
</default>
<info>
It contains the following components:
<b>dvscf_star%open</b> (logical, default: .false.)
<b>dvscf_star%dir</b> (character, default: outdir//"Rotated_DVSCF" or the
ESPRESSO_FILDVSCF_DIR environment variable)
<b>dvscf_star%ext</b> (character, default: "dvscf") the extension to use
for the name of the output files, see below
<b>dvscf_star%basis</b> (character, default: "cartesian") the basis on which
the rotated dvscf will be saved
<b>dvscf_star%pat</b> (logical, default: false) save an optional file with the
displacement patterns and q vector for each dvscf file
IF dvscf_star%open is .true. use symmetry to compute and store the variation
of the self-consistent potential on every q* in the star of the present q.
The rotated dvscf will then be stored in directory dvscf_star%dir with name
prefix.dvscf_star%ext.q_name//"1". Where q_name is derived from the coordinates
of the q-point, expressed as fractions in crystalline coordinates
(notice that ph.x reads q-points in cartesian coordinates).
E.g. q_cryst= (0, 0.5, -0.25) -> q_name = "0_1o2_-1o4"
The dvscf can be represented on a basis of cartesian 1-atom displacements
(dvscf_star%basis='cartesian') or on the basis of the modes at the rotated q-point
(dvscf_star%basis='modes'). Notice that the el-ph wannier code requires 'cartesian'.
Each dvscf file comes with a corresponding pattern file with an additional ".pat"
suffix; this file contains information about the basis and the q-point of the dvscf.
Note: rotating dvscf can require a large amount of RAM memory and can be i/o
intensive; in its current implementation all the operations are done
on a single processor.
Note2: this feature is currently untested with image parallelisation.
</info>
</var>
<var name="drho_star" type="STRUCTURE" >
<see> dvscf_star
</see>
<default> disabled
</default>
<info>
It contains the following components:
<b>drho_star%open</b> (logical, default: .false.)
<b>drho_star%dir</b> (character, default: outdir//"Rotated_DRHO" or the
ESPRESSO_FILDRHO_DIR environment variable)
<b>drho_star%ext</b> (character, default: "drho") the extension to use
for the name of the output files, see below
<b>drho_star%basis</b> (character, default: "modes") the basis on which
the rotated drho will be saved
<b>drho_star%pat</b> (logical, default: true) save an optional file with the
displacement patterns and q vector for each drho file
Like <ref>dvscf_star</ref>, but for the perturbation of the charge density.
Notice that the defaults are different.
</info>
</var>
</group>
</namelist>
<choose>
<when test="ldisp != .true. and qplot != .true." >
<linecard>
<list name="xq_list" type="REAL" >
<format> xq(1) xq(2) xq(3)
</format>
<info>
The phonon wavevector, in units of 2pi/a0
(a0 = lattice parameter).
Not used if <ref>ldisp</ref>=.true. or <ref>qplot</ref>=.true.
</info>
</list>
</linecard>
</when>
<elsewhen test="qplot == .true." >
<label> Specification of q points when <ref>qplot</ref> == .true.
</label>
<card name="qPointsSpecs" nameless="1" >
<syntax>
<line>
<var name="nqs" type="INTEGER" >
<info>
Number of q points in the list. Used only if <ref>qplot</ref>=.true.
</info>
</var>
</line>
<table name="qPoints" >
<rows start="1" end="nqs" >
<colgroup type="REAL" >
<info>
q-point coordinates; used only with <ref>ldisp</ref>=.true. and qplot=.true.
The phonon wavevector, in units of 2pi/a0 (a0 = lattice parameter).
The meaning of these q points and their weights nq depend on the
flags q2d and q_in_band_form. (NB: nq is integer)
</info>
<col name="xq1" >
</col>
<col name="xq2" >
</col>
<col name="xq3" >
</col>
</colgroup>
<col name="nq" type="INTEGER" >
<info>
The weight of the q-point; the meaning of nq depends
on the flags q2d and q_in_band_form.
</info>
</col>
</rows>
</table>
</syntax>
</card>
</elsewhen>
</choose>
<choose>
<when test="nat_todo was specified" >
<linecard>
<list name="nat_todo_list" type="INTEGER" >
<format> atom(1) atom(2) ... atom(nat_todo)
</format>
<info>
Contains the list of indices of atoms used in the
calculation if <ref>nat_todo</ref> is specified.
</info>
</list>
</linecard>
</when>
</choose>
<section title=" ADDITIONAL INFORMATION " >
<text>
NB: The program ph.x writes on the tmp_dir/_ph0/{prefix}.phsave directory
a file for each representation of each q point. This file is called
dynmat.#iq.#irr.xml where #iq is the number of the q point and #irr
is the number of the representation. These files contain the
contribution to the dynamical matrix of the irr representation for the
iq point.
If <ref>recover</ref>=.true. ph.x does not recalculate the
representations already saved in the tmp_dir/_ph0/{prefix}.phsave
directory. Moreover ph.x writes on the files patterns.#iq.xml in the
tmp_dir/_ph0/{prefix}.phsave directory the displacement patterns that it
is using. If <ref>recover</ref>=.true. ph.x does not recalculate the
displacement patterns found in the tmp_dir/_ph0/{prefix}.phsave directory.
This mechanism allows:
1) To recover part of the ph.x calculation even if the recover file
or files are corrupted. You just remove the _ph0/{prefix}.recover
files from the tmp_dir directory. You can also remove all the _ph0
files and keep only the _ph0/{prefix}.phsave directory.
2) To split a phonon calculation into several jobs for different
machines (or set of nodes). Each machine calculates a subset of
the representations and saves its dynmat.#iq.#irr.xml files on
its tmp_dir/_ph0/{prefix}.phsave directory. Then you collect all the
dynmat.#iq.#irr.xml files in one directory and run ph.x to
collect all the dynamical matrices and diagonalize them.
NB: To split the q points in different machines, use the input
variables start_q and last_q. To split the irreducible
representations, use the input variables <ref>start_irr</ref>, <ref>last_irr</ref>. Please
note that different machines will use, in general, different
displacement patterns and it is not possible to recollect partial
dynamical matrices generated with different displacement patterns. A
calculation split into different machines will run as follows: A
preparatory run of ph.x with <ref>start_irr</ref>=0, <ref>last_irr</ref>=0 produces the sets
of displacement patterns and save them on the patterns.#iq.xml files.
These files are copied in all the tmp_dir/_ph0/{prefix}.phsave directories
of the machines where you plan to run ph.x. ph.x is run in different
machines with complementary sets of start_q, last_q, <ref>start_irr</ref> and
<ref>last_irr</ref> variables. All the files dynmat.#iq.#irr.xml are
collected on a single tmp_dir/_ph0/{prefix}.phsave directory (remember to
collect also dynmat.#iq.0.xml). A final run of ph.x in this
machine collects all the data contained in the files and diagonalizes
the dynamical matrices. This is done requesting a complete dispersion
calculation without using start_q, last_q, <ref>start_irr</ref>, or <ref>last_irr</ref>.
See an example in examples/GRID_example.
On parallel machines the q point and the irreps calculations can be split
automatically using the -nimage flag. See the phonon user guide for further
information.
</text>
</section>
</input_description>
|